

An Evaluation of the Design of Use Case Points (UCP)

Joost Ouwerkerk & Alain Abran

- List of topics
- 1) Overview of Use Case Points
- 2) Published empirical evidence
- 3) Analysis of the Design of Use Case Points
- 4) Discussion

Origin:

Use Case: Jacobson – 1987 Integration into RUP – 1995 Use Case Points – Kraner 1993

Table 1: ACTOR Weights			
Complexity	Definition.	Weight	
Simple	System interaction via API.	1	
Average	Average interaction system via protocol, or Human interaction via a command line.2		
Complex	Complex human interaction via a graphical user interface	3	

Table 2: USE CASE Weights		
Complexity	Definition	Weight
Simple	3 transactions or fewer;	5
	5 analysis classes or fewer	
Average	4 to 7 transactions;	10
	5 to 10 analysis classes	
Complex	Over 7 transactions;	
	Over 10 analysis classes	

Table 3: Technical Quality Factors – TCF			
Factor	Description Weight		
F1	Distributed system 2		
F2	Performance (response time or flow) 1		
F3	Efficiency of user interface 1		
F4	Processing complexity	ty 1	
F5	Reusability		
F6	Installability		
F7	Operability	ility 0.5	
F8	Portability	2	
F9	Maintenability	1	
F10	Simultaneous access 1		
F11	Security 1		
F12	Direct access for third parties 1		
F13	Training features or online help	1	

Table 4: Environmental Factors – EF				
Factor	Description. Weight			
F1	Familiarity with the methodology 1.			
F2	Part-time status -1			
F3	Analysis capability 0.5			
F4	Experience with the application	0.5		
F5	Experience with object-oriented 1			
	methodology			
F6	Motivation 1			
F7	Difficulty of the programming language -1			
F 8	Stability of the specifications 2			

Formula to calculate the number of UCP:

General UCP = UUCP * TCF * EF

- UUCP = Unadjusted Use Case Points
- TCF = Technical Quality Factor
- EF = Environmental Factor

List of topics 1) Overview of Use Case Points 2) Published empirical evidence 3) Analysis of the Design of Use Case Points

4) Discussion

ÉCOLE DE TECHNOLOGIE SUPÉRIEURE – MONTRÉAL - CANADA

Related Studies

- Mageswaren 2001:
 - Adaptation
 - 1 single project
- Mohagheghi 2005
 - Adaptation
 - 2 projects
- Carroll 2005
 - Addition of a risk coefficient
 - Claim of 200 projects over 5 years, but no documented evidence & no detailed analysis

List of topics
1) Overview of Use Case Points
2) Published empirical evidence
3) Analysis of the Design of Use Case Points
4) Discussion

Table 5: ENTITIES		
Entity	Description	
Actor	A use case, as defined by [JAC87], describes the interaction between	
	the actors and the system. The actor is any agent (machine or	
	human) that acts upon system functionality.	
Use Case	A simple functional requirement description for a specific goal,	
	written in the form of a sequence of interactions between an actor	
	and the system.	
Specification	The set of planned requirements for a system, including the	
of	functional requirements (written in use-case form) and other non-	
requirements	functional requirements.	
Development	The human resources participating in the project of designing,	
team	programming and testing the system.	
Programming	The computer programming language used by the development	
language	team to code the software system (Java or C++, for instance).	

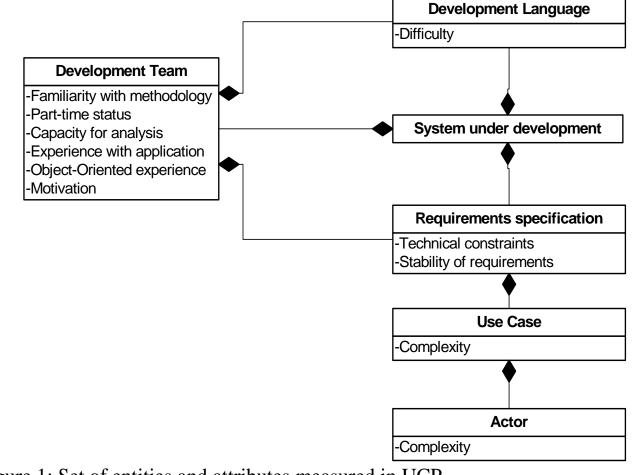


Figure 1: Set of entities and attributes measured in UCP

	Table 6: ATTRIBUTES		
Entity	Attribute	Measurement rule	
Actor	Complexity	The type of complexity (simple, average or	
	(of actor)	complex) of the interaction between the actor and	
		the system.	
Use case	Complexity	The type of complexity (simple, average or	
	(of use case)	complex) measured in the number of transactions.	
Specification	Relevance of	The level of relevance (from 0 to 5) of each of the	
of	the technical	13 known non-functional qualities	
requirements	quality		
	requirements		
	Stability of	The level of stability (from 0 to 5) of the functional	
	requirements	and non-functional requirements	
Development	Familiarity	The level (from 0 to 5) of skills and knowledge of	
team	with the	the development methodology in use for the	
	methodology	project.	
	Part-time	The level (from 0 to 5) of part-time staff on the	
	status	team	
	Analysis	The level (from 0 to 5) of analysis capabilities of	
	capability	the development team with respect to project	
		needs.	
	Application	The level (from 0 to 5) of team experience with the	
	experience	application domain of the system	
	Object-	The level (from 0 to 5) of team experience with	
	oriented	object-oriented design	
	experience		
	Motivation.	The level (from 0 to 5) of team motivation	
Programming	Difficulty	The level (from 0 to 5) of programming difficulty	
language			

Design issues:

- Sumber of 'things' being measured = 7
- Number of properties being measured= 11
- Based on Use Cases= lack of consistency

"Complexity" attribute, assigned to actors and use cases:

- Categorized as being of the ordinal scale type using a scale of three values: simple, average and complex.
 - Thus an actor categorized by the measurer as "simple" is considered less complex than an "average" actor, and an "average" actor less complex than a "complex" actor.
- The scale is similar for use cases: the same category labels are used (simple, average and complex)
 - however it cannot be assumed that the categories and the categorization process are similar, since different entity types are involved.

Technical and resource factors are also all evaluated through a categorization process on an ordinal scale, but one with integers from 0 to 5 (0, 1, 2, 3, 4 or 5)

- These numbers do not represent numerical values on a ratio scale, but merely a category on an ordinal scale; that is, they are merely ordered labels and not numbers.
 - Thus, a programming language assigned a difficulty level of 1 is considered to be less difficult for the development team than a programming language of difficulty level 2, but cannot be considered to be exactly one unit less difficult than one categorized as having a difficulty level of 2 because these levels are being measured on an ordinal scale.
- No justification provided in the description of the UCP model to support a ratio scale:
 - for example, that for a programming language of factor 4 is it twice as difficult is a programming language of factor 2?
 - The levels must therefore be regarded as being on an interval scale.
 - It must also be noted that, even though they have the same labels, e.g. 1,2,3, etc., the intervals are not necessarily regular; for example, each label might represent a different interval, and each interval may not be, and does not need to be, regular within an attribute being measured.

Use-case complexity:

- The UCP model transforms the measurements of use-case complexity:
 - from a ratio-type scale (the number of transactions or classes of analysis)
 - into an ordinal-type scale (complexity categories),
 - and then back to a ratio-type scale (UCP weights).
 - The arbitrary assignment of the weights (5 for simple, 10 for average and 15 for complex) could have been avoided if the number of transactions or classes of analysis had been kept as numbers on a ratio-type scale rather than losing this quantitative precision by mapping them to only three ordered categories with arbitrarily assigned values of 5, 10 and 15.

- Inadmissible transformations across scale types:
 - Nominal
 - Ordinal
 - Ratios

End results of Use Case Points:

Actors & Use Cases & Specs & Dev. Team & Programming language = ?

Unknown measurement unit: It cannot be a number of Use Cases and It cannot be a number of days

List of topics 1) Overview of Use Case Points 2) Published empirical evidence 3) Design of Use Case Points 4) Discussion

Discussion

What would you recommend to practitioners?

What would you recommend to your students?

alain.abran@etsmtl.ca joosto@gmail.com

Ouwerkerk-Abran 2006 \bigcirc

MENSURA 2006 21