

 1

Obvious Outliers in ISBSG Repository of Software Projects:
Exploratory Research

Dominic Paré Alain Abran

École de Technologie Supérieure
dominic.pare.1@ens.etsmtl.ca Alain.abran@etsmtl.ca

Abstract

This paper discusses the issue of outliers in the
repository of software projects of the International
Software Benchmarking Standards Group - ISBSG.
The criteria used for the identification of outliers is
whether the productivity is significantly lower and
higher, that is with significant economies or dis-
economies of scale, in relatively homogeneous
samples. Once the outliers identified, other project
variables are investigated by heuristics to identify
candidate explanatory variables that might explain
such outliers’ behaviors.

1. Introduction
In software engineering, software projects
productivity can vary considerably. It is then
interesting to analyze the cause of these significant
variations in order to be able to explain why the
productivity of these projects is much higher or much
lower than the average. The International Software
Benchmarking Standards Group (ISBSG) [1]
designed and maintains a repository of software
projects. For productivity analysis and for estimation
purposes , it is important on the one hand to identify
outliers which have productivity behaviors
significantly different from all other projects and, on
the other hand, to try to discover next which factors
have such a large influence (positive or negative) on
the productivity of these projects.

This article identifies outliers in the ISBSG repository
as well as candidate variables which could explain
major differences in productivity by comparison to
other projects in the same samples. This paper is
structured as follows: section 2 presents on overview
of the ISBSG repository, section 3 the identification
of outliers for the samples selected, section 4 a
discussion on these outliers and, section 5, a summary
and discussion.

2. ISBSG repository

ISBSG makes available to industry and researchers,
at a reasonable cost, an Excel data file which contains
92 variables for each of the projects in its repository,
such as effort (in hours), functional size of the
software (measured according to various standards:
Function Points, COSMIC-FFP - ISO 19761, MKII),
programming language, etc. [2].

The ISBSG repository is a multi-organizational,
multi-application domain and multi-environment data
repository, that is , its data content is fairly
heterogeneous in projects characteristics. Data from
either Release 8 (R8) with 2027 projects or Release 9
(R9) with 3024 projects are used for the various
analyses reported here. Obviously, the analysis
should not be carried out on all the projects
simultaneously. To get a minimum of homogeneity in
the samples to be analyzed, the following two criteria
are taken into account: same functional sizing method
and same programming language.

For the first criterium, projects measured with the
IFPUG function points method have been selected
since in ISBSG R8, close to 90% of the projects had
been measured with the IFPUG method.

For the second criterium, the projects with the same
programming language were grouped together in
distinct samples. In ISBSG R8, there were only 6
programming languages with more than 30 projects,
30 being the number of points for considering a
sample of a reasonable size for statistical purposes;
only these samples were kept for further analysis.
Table 1 presents the number of projects for each of
the following programming languages with over 30
projects: COBOL, C, Visual BASIC, C++, SQL and
Oracle 1. For all other alternative programming
languages within the ISBSG repository, there was an
insufficient number of projects for our purposes.

Programming language Number of projects

 Cobol 413
 C 139
 Visual Basic 103
 C++ 101
 SQL 90
 Oracle 87
Total 933

Table 1. ISBSG R8 -Programming language with
over 30 projects

1 These are the programming languages as recorded in the ISBSG
repository. Some data collectors might have associated an
environment (eg. ORACLE) to a programming language.

 2

3. Identification of Outliers

In Figure 1, the functional size in function points (FP)
is on the X-axis and the effort in hours on the y-axis.
Figure 1 is typical of data sets available in software
engineering, that is with an increasing dispersion of
data, (referred to as heteroscedasticity) [3,4,5].

A number of outliers can been observed in Figure 1,
with either very high productivity while others have
very low productivity for projects of equivalent size.

Function Points C Language

0

10000

20000

30000

40000

50000

60000

0 500 1000 1500 2000 2500 3000 3500 4000

Function Points

W
o

rk
 E

ff
o

rt

Function Points

Figure 1. Data set with heteroscedasticity

Figure 2 points outsome projects in COBOL2 – R9
that have a large functional size with almost no
corresponding effort: for illustrative purposes, seven
(7) outliers were selected which appear to have very
large economies of scale. These 7 outliers within a
functional size range of 1000 to 2500 FP did not cost
more than many projects 10 to 20 times smaller,
thereby appearing to benefit from very large
economies of scale (by a factor in the 10 to 20 range).
The most probable cause is that there are some other
variables that could explain such a minimal effort for
such large size for these projects

Function Points Cobol 2. R9

0

5000

10000

15000

20000

25000

30000

0 500 1000 1500 2000 2500

Function Points

W
o

rk
 E

ff
o

rt

Figure 2. Visual identification of outliers with very
large economies of scale

Figure 3 points out next to some projects in C
language with large effort with relatively small
functional size. Again for illustrative purposes, 3
outliers were selected that could qualify as having

somewhat large dis-economies of scale, in particular
for the outlier in the 300 FP range with a cost at least
10 times more than projects of similar size. The other
two outliers identified graphically do not have such a
large effort discrepancy, while still present.

Function Points C Language

0

10000

20000

30000

40000

50000

60000

0 500 1000 1500 2000 2500 3000 3500 4000

Function Points

W
o

rk
 E

ff
o

rt

Function Points

Figure 3. Visual identification of outliers with dis -

economies of scale

4. Investigation of Outliers
Once the outliers identified, they are next compared
to other projects of similar size or effort to explore if
there exists patterns in the other variables recorded
that might explain such outliers.

For the analysis of the ISBSG data repository, a good
number of distinct tests selected by heuristics on
some of the variables available in the repository were
carried out on both R8 and R9 releases. In practice,
only 8 tests gave results allowing a practical
interpretation leading to the formulation of candidate
hypothes es to be tested later with more robust
statistical analyses.

4.1. Outliers with economies of scale
The analyses of the outliers with very large
economies of scale are presented in tables 2 to 4, by
programming language:

Table 2: COBOL - R8: 53 projects, including 10
outliers.
Table 3: C - R9: 118 projects, including 7 outliers.
Table 4: COBOL2 - R9: 115 projects, 14 outliers.

In these tables, the variables tested by heuristics are
on the left hand-side column, and the value most
often observed in the outliers for such a variable
tested, in the next column. The other two columns
present the ratio of observations of this value over the
samples, first within the subset of outliers, and finally
within the sample to the exclusion of the outliers.

For instance, in Table 2 for COBOL projects, the first
variable tested is the Data Quality Rating assigned to
a project by the ISBSG repository manager. It can
then be observed that the worst value for this

 3

variable, that is D = poor quality (column 2) is
present in 10 out of 10 outliers (column 3) and only in
1 out of the other 43 projects Column 4) within the
sample of projects in COBOL; that is 100% of the
outliers have data considered of very poor quality,
while only 2% of the other projects in COBOL have a
poor data quality rating.

Variables
tested

Value
observed

Ratio of
Outliers

Ratio of
Non-

outliers
Data Quality
Rating D

10 / 10
(100%)

1 / 43
2,3%

Resource
Level

2
10 / 10
(100%)

12 / 43
(28%)

Organization
type Insurance

10 / 10
(100%)

12 / 43
28%

Reference
table approach

Counted as
inputs

10 / 10
(100%)

7 / 43
(16,3%)

Table 2. Economies of scale : COBOL - R8 (N=53).

In tables 2 to 4, several variables have been identified
by heuristics as partially responsible for the outliers
behavior in terms of project productivity ratios. The
ISBSG definitions of these various variables are
presented next :
• Data Quality rating: Quality of the data, as

evaluated by the ISBSG repository manager.
• Resource Level: Personnel included in the

recording of effort.
• Organization type: Type of organization which

sent the data.
• Reference table approach: IFPUG Function

Points version used to count the tables of
codes in the software2.

• Operating system: Operating system (O/S) on
which the software measured runs.

• Primary database system: The main database
management system (DBMS) for the
software measured.

The values admissible for the "Data Quality Rating"
are:
A = data submitted was assessed as being sound.
B = appears fundamentally sound but there are some
factors which could affect the integrity of the data.
C = Due to significant data not being provided, it was
not possible to assess the integrity of the submitted
data.
D = Due to one factor or a combination of factors,
little credibility should be given to the submitted data.

The values admissible for the Resource Level are:

2 This is a peculiarity of the IFPUG method: depending on which
IFPUG version is selected for the measurement of Tables of code,
there can be large differences in the number of Function Points.

1 = development team only
2 = development + support teams
3 = development + support teams + operators
4 = development + support teams + operators +

customers

In Table 2, all of the outliers share the same values
for the 4 variables identified: they all (eg. 100%) have
a poor data quality rating, their effort include hours
for both direct development staff and support staff,
are insurance projects and they have used for size
measurement an IFPUG version that takes into
account each code table.

For the non outliers (Table 2), these characteristics
are much less frequent (from 2 to 28 % of the
projects).

For the sample with the projects in C (Table 3), there
are two candidate explanatory variables for the
economies of scale: the AIX Operating System and
Sysbase as the primary DBMS which appear in
around 50% of the outliers, and only 4% of the non
outliers.

Variable
tested

Valeur
observed

Ratio of
Outliers

Ratio of
Non-

outliers
Operating
System

AIX 3 / 7
(42,9%)

4 / 89
(4,5%)

Primary
Database
System

Sybase 4 / 7
(57,1%)

4 / 111
(3,6%)

Table 3. Economies of scale : C - R9 (N=118).

For the sample with the projects in COBOL2 (Table
4), there are again four candidate explanatory
variables for the economies of scale: they are the
same as for the C sample.

Variable
tested

Value
Observed

Ratio of
Outliers

Ratio of
Non-

outliers
Data Quality
Rating

D 13 / 14
(92,9%)

8 / 101
(7,9%)

Resource
Level

2 14 / 14
(100%)

36 / 101
(35,6%)

Organization
type

Insurance 14 / 14
(100%)

21 / 101
(20,7%)

Reference
table
approach

Counted
as inputs

14 / 14
(100%)

21 / 101
(20,7%)

Table 4. Economies of scale : COBOL2 - R9
(N=115).

 4

4.2. Outliers with dis -economies of scale
The results of the analyses of the outliers with dis -
economies of scale, that is with a very high effort for
comparable projects of smaller functional size, are
presented in Tables 5 to 9.
Table 5: C - R8: 40 projects, 6 outliers
Table 6: Java - R9: 24 projects, 4 outliers
Table 7: COBOL - R8: 412 projects, 7 outliers
Table 8: C - R9: 16 projects, 4 outliers
Table 9: SQL - R9: 26 projects, 4 outliers.

In tables 5 to 9, four additional variables have been
identified by heuristics as partially responsible for the
outliers’ behavior in terms of project productivity
ratios. The ISBSG definitions of these variables are
presented next :
• Standard FP: IFPUG standard used to count the

points of function.
• Max TEAM size: Maximu m number people who

worked on the project at the same time (peak
time).

• Lines of code: Number of lines of source code
produced by the project.

• Project elapsed time: Duration, in months, to
complete the development of the project.

In Table 5 for the C sample, the two most
discriminative variables for dis -economies of scale
are the Max team size greater than 10 people and
Lines of code greater than 100 000, that is projects of
relatively large size when compare to the full sample
of C projects.

Variable
tested

Value
Observed

Ratio of
Outliers

Ratio of
Non-

outliers
Data Quality
Rating

B 6 / 6
(100%)

24 / 34
(70,6%)

FP Standard CPM 4.0 3 / 6
(50%)

7 / 34
(20,6%)

Max team
size

> 10 4 / 6
(66,7%)

4 / 34
(11,8%)

Lines of code > 100
000

2 / 6
(33,3%)

2 / 34
(5,8%)

Table 5. Dis-economies of scale : C - R8 (N=40).

In Tables 6 and 7 for the Java and COBOL samples, a
single discriminative variable has been identified by
heuristics for dis-economies of scale for both COBOL
and C samples, that is , projects with a Max team size
greater than 10 people.

Variable
tested

Value
Observed

Ratio of
Outliers

Ratio of
Non-

outliers

FP
Standard

IFPUG 4 4 / 4
(100%)

2 / 20
(10%)

Table 6. Dis-economies of scale : Java - R9 (N=24).

Variable
tested

Value
Observed

Ratio of
Outliers

Ratio of
Non-

outliers
Max team
size

> 10 5 / 7
(71,4%)

27 / 405
(6,7%)

Table 7. Dis-economies of scale : COBOL - R8
(N=412).

Variable
tested

Value
Observe

Ratio of
Outliers

Ratio of
Non-

outliers
Max team
size

> 10 3 / 4
(75%)

3 / 12

Table 8. Dis-economies of scale : C - R9 (N-16).

Finally, in Table 9 for the SQL sample, the two most
discriminative variables for dis -economies of scale
are a resource level that includes staff in addition to
the development and support teams and a project
elapsed time of over 15 months in duration.

Variable
tested

Value
observed

Ratio of
Outliers

Ratio of
Non-

outliers
Resource
Level

> 2 3 / 4
(75%)

1 / 22
(4,5%)

Project
Elapsed
time

> 15
months

3 / 4
(75%)

2 / 22
(9,1%)

Table 9. Dis-economies of scale : SQL - R9 (N=26).

5. Summary & Discussion
This paper has discussed the issue of outliers in the
repository of software projects of the International
Software Benchmarking Standards Group - ISBSG.
The criteria used for the identification of outliers is
whether the productivity is significantly lower and
higher in relatively homogeneous samples, that is
projects with significant economies or dis -economies
of scale. Once the outliers identified, other project
variables were investigated by heuristics to identify
candidate explanatory variables that might explain
such outliers’ behaviors.

Candidate variables identified as potentially related to
large economies of scale in the ISBSG repository for
some programming languages have been identified
as: resource level 2, insurance as the organization
type and the peculiarity of the Reference table
approach in the IFPUG Function Points sizing
method. The D rating for the data quality assigned to
the outliers project is a somewhat confounding factor:

 5

it is not a data collected by an organization, but rather
a judgment of the ISBSG repository manager who has
indeed identified an unusual effort relationship with
respect to size, but which does not provide any clue
into the whys of such a pattern nor does it provide
confirmation that the data is erroneous.

Candidate variables identified as potentially related to
large dis -economies of scale in the ISBSG repository
for some programming languages have been
identified as: maximum team size larger than 10
people, lines of code greater than 100 000, project
duration greater than 15 months and effort data which
includes not only development and support staff, but
as well operators and customers project related effort.
The specific version of the IFPUG Function Points
method is also a variable identified as a candidate
explanatory variable.

Of course, this list of candidate explanatory variables
is far from being exhaustive: further research is
required on the one hand for more robust methods for
identifying in a systematic manner the outliers and,
on the other hand, for investigating causes of such
outliers’ behaviors. Such further research will be
challenging and time consuming.

Practitioners, however, can derive immediate benefits
from this exploratory research in the following way:
monitoring of the candidate explanatory variables can
provide valuable clues for early detection of potential
project outliers for which most probable estimates
should be selected not within a close range of values
predicted by an estimation model, but rather at their
upper or lower limits: that is , the selection of either
the most optimist or most pes simist value that can be
predicted by the estimation model being used.

References

[1] ISBSG, Estimating, Benchmarking &

Research Suite Release 8 & 9, International
Software Benchmarking Standards Group –
ISBSG, Australia, 2005.

[2] ISBSG, International Software
Benchmarking Standards Group,
www.isbsg.org

[3] B.A Kitchenham, N.R. Taylor, "Software
Cost Models", ICL technical journal , Vol. 4,
no 1, May 1984, pp. 73-102., B.,

[4] A. Abran, P.N. Robillard, “Function Points
Analysis: An Empirical Study of its
Measurement Processes,” IEEE Transactions
on Software Engineering, Vol. 22, no 12,
1996, pp. 895-909.

[5] A. Abran, I. Silva, L. Primera, "Estimation
Models for Functional Maintenance Projects
– Field Studies", in Journal of Software
Maintenance: Research and Practice, Vol.
14, 2002, pp. 31-64.

