
 1

A Technical Review of the Software Construction Knowledge
Area in the SWEBOK Guide (Trial Version 1.0)

François Robert, Alain Abran, Pierre Bourque
École de Technologie Supérieure

(Revision: Sept. 6, 2002)

Abstract

The editorial team of the SWEBOK guide received feedback about its
use at the National Technical University (NTU) confirming usefulness
of the guide with the exception of chapter four, Software Construction,
that did not map easily to industry practices nor to actual academic
curriculum.

After analysis of this specific SWEBOK chapter, some issues were
identified, such as inconstancies between the textual descriptions and
the visual representation. Furthermore, the analysis of this chapter
using the Vincenti classification of engineering knowledge types
allowed to identify some further weaknesses and provided some
guidance on how the structure of this chapter could be improved.

This paper proposes a revised breakdown of topics that is more aligned
with an engineering perspective.

 2

1 Introduction

The SWEBOK project was established with five objectives:

1. Characterise the contents of the software engineering discipline.
2. Provide a topical access to the Software Engineering Body of Knowledge.
3. Promote a consistent view of software engineering worldwide.
4. Clarify the place, and set the boundary, of software engineering with respect to

other disciplines such as computer science, project management, computer
engineering and mathematics.

5. Provide a foundation for curriculum development and individual certification
material.

It must be emphasised that the product of the SWEBOK project is not the Body of
Knowledge itself, but rather a guide to this knowledge. The knowledge already exists and
the purpose of the project is to gain consensus on a characterisation of that knowledge
which illuminates the nature of the software engineering discipline and explains what
knowledge is generally accepted.

In May 2001, trial version 0.95 of the Guide to the Software Engineering Body of
Knowledge (SWEBOK) was released in a web format, and, in December 2001, it was
published in a book format [ABR01]. The guide is the result of more than three years of
review by over five hundred members of the software engineering community. Two
important principles guided the review process: transparency and consensus.
- Transparency: the development process is itself documented, published and

publicised so that important decisions and status are visible to all concerned parties;
- Consensus: the only practical method for legitimising a statement of this kind is

through broad participation and agreement by all significant sectors of the relevant
community.

The guide is now in a trial period of two years by its targeted audiences:

• Private and public organisations desiring a consistent view of software
engineering for the purpose of defining education and training requirements,
classifying jobs and developing performance evaluation policies;

• Practising software engineers;
• Makers of public policy regarding licensing and professional guidelines;
• Professional societies defining accreditation and certification policies for

university curricula and guidelines for professional practice;
• Educators and trainers defining curricula and course content;
• Students of software engineering.

The feedback collected during this trial period will be analysed and will serve as the basis
for further improvements to the Guide. The SWEBOK editorial team has already received
feedback on the use of the Guide by the National Technological University [FRAI02]
which is using it as the neutral basis for the evaluation of software engineering courses
offered by its member universities in the USA. Feedback received confirmed the
usefulness of the Guide for all documented Knowledge Areas, with the exception of the

 3

Software Construction chapter because its content did not map easily to industry practices
or to actual academic curriculum.

The current breakdown of topics in this Knowledge Area is reviewed in section 2,
followed in section 3 by an analysis using the Vincenti classification of engineering
knowledge types [VIN90]. Based on the insights gained from this analysis, Section 4
proposes an improved breakdown of topics which is more aligned and consistent with
breakdowns and taxonomies of the other Knowledge Areas of the SWEBOK Guide.
Observations for further work are summarised in section 5.

2 Breakdown of topics

2.1 Current breakdown representation
While reviewing the SWEBOK Construction Knowledge Area to understand the
feedback from NTU [FRAI02], we observed that the breakdown of topics, as presented
on pages 4 to 10 of the SWEBOK Guide and reproduced here in Figure 1, did not
correspond to the actual structure of the chapter itself. More specifically, the content of
Figure 1 currently corresponds only to the text of a single section of chapter 4, that is 3.3.
Figure 1 is therefore is not an accurate representation of the full chapter, as it deals with
only a subset of the content of the whole chapter, and some elements of knowledge, or
topics, are not included in the breakdown representation. In addition, there are significant
duplications in the figure itself. By comparison, in the other chapters of the SWEBOK
Guide, all topics have been included in the taxonomies (or breakdowns) of the respective
Knowledge Areas.

Software Construction

Reduction of
Complexity

Anticipation of
Diversity

Structuring for
Validation

Use of External
Standards

Linguistic

Formal

Visual

Linguistic

Formal

Visual

Linguistic

Formal

Visual

Linguistic

Formal

Visual

Figure 1: Breakdown of topics as represented in the SWEBOK Guide (Trial version 1.0)

 4

2.2 Initial revised breakdown representation
To facilitate analysis of this Knowledge Area, we redrafted the representation of the
breakdown of topics on the basis of the full set of concepts as actually described textually
in the chapter. The corrected breakdown representation is presented in Figure 2. The
comparison of both figures provides easily indications that the content of chapter four is
much more comprehensive and rich in concepts that what was proposed by Figure 1.

In later steps, on the basis of further analysis from an engineering viewpoint, we propose
further improvements to this initial revision.

Software Construction

Definitions of the
Software K.A.

Breakdown of
Topics

Software Construction
and Software Design

The Role of Tools
in Construction

The Role of Integrated
Evaluation in Construction

The Role of Standards
in Construction

Construction Languages

Programming Languages

Principles of
Organization

Styles of
Construction

Linguistic
Formal
Visual

Reduction of Complexity

Anticipation of Diversity

Structuring for Validation

Use of External Standards

Synthesis

Reduction of Complexity

Anticipation of Diversity

Structuring for Validation

Use of External Standards

Linguistic
Formal
Visual

Linguistic
Formal
Visual

Linguistic
Formal
Visual

Linguistic

Formal

Visual

Manual and Automated
Construction

Figure 2: Initial revised breakdown of topics (basis: actual text in the SWEBOK Guide)

 5

3 Analysis using the Vincenti classification

To gain further insights into the content of this chapter from an engineering viewpoint,
we selected the classification of engineering knowledge types by Vincenti [VIN90] as our
analytical tool for this study. Vincenti, on the basis of his analysis of the evolution of
aerospace engineering knowledge, identified different types of engineering knowledge,
and classified them into six categories:

1. Fundamental design concepts
2. Criteria and specifications
3. Theoretical tools
4. Quantitative data
5. Practical considerations
6. Design instrumentalities

Vincenti postulated that this classification was not specific to aerospace engineering, but
more generic and applicable to engineering in the broad sense. However, to our
knowledge, his classification has not yet been applied to the traditional disciplines of
engineering. Maibaum [MAI01], in contrast, has used Vincenti's classification to
investigate the mathematical foundations of software engineering, but did not look at
specific Knowledge Areas within software engineering.

We used Vincenti's classification to recognise and identify, within this chapter of the
SWEBOK Guide, the types of engineering knowledge included with its current status and
description. By extension, this analysis will also provide insights into the elements of
engineering knowledge that could be missing, either because they do not exist or because
they have been missed in the information gathering and successive review processes.

In this report, we have not, of course, used the Vincenti classification on the generic
domain of software engineering, but on one of its Knowledge Areas in the SWEBOK
Guide, that is, software construction. In the specific context of software construction
engineering, the six categories can be described by the following tailored definitions:

• Fundamental design concepts: can be viewed as the “operational principles of the
device”, the device being the software construction technology itself, including not
only tools but also procedural knowledge (engineering 'know-how').

• Criteria and specifications: the specific technical specifications applied to the

construction of software.

• Theoretical tools: the mathematical or formal methods and theories for the design
calculations involved in software construction.

• Quantitative data: the data obtained empirically or calculated based on a theoretical

model.

 6

• Practical considerations: the activities, which are not formally codified but are
represented by rules of thumb.

• Design instrumentalities: in this case, the procedural knowledge.

The analysis of this SWEBOK chapter from the above interpretation of Vincenti
viewpoint can be summarised as follows:

• Fundamental design concepts (for the construction of software): three in particular are

found under the three topic headings of reduction in complexity, structuring for
validation and linguistic style of construction. More specifically:
a) Reduction in complexity is recognised as being a crucial element of software

construction, and even beyond construction. Several studies referenced in this
chapter have addressed the topic and demonstrated its importance.

b) Structuring for validation means constructing software with the intention of
validating that it functions well by various means. This topic is well covered in a
number of studies referenced in the chapter and can be considered fundamental
knowledge.

c) Linguistic style of construction is, by definition, fundamental knowledge in the
computer sciences, and, by extension, in software engineering.

• Criteria and specifications: some of them are inherent in both the role of standards

and the use of external standards. More specifically:
d) Standards in software construction are mainly “prescriptive” and as such represent

criteria and specifications.

• Theoretical tools: some of which can be located only in the formal style of

construction. More specifically:
e) Formal type of construction: the only theoretical tools available are described in

this chapter. They are considered theoretical since they follow strict formal rules.

• Quantitative data: none of them are documented or referenced in the text.

• Practical considerations: they have be identified in four topic areas, that is, software

construction and software design, role of integrated evaluation, manual and
automated construction and anticipation of diversity. More specifically:
f) The difference between what is in the software design area and what is in the

software construction area is determined by practical considerations, since there
are no existing rules, theories or procedures for doing so.

g) Integrated evaluation is described as including all activities such as peer reviews
and code testing. Surprisingly, there is no reference to procedural knowledge for
such evaluation, and have therefore elected to classify these activities as practical
considerations.

h) Choosing between manual and automated construction of software is not based on
structured or formal knowledge. According to Andrew Hunt and David Thomas
[HU001], the programmer must refer to common sense for choosing between

 7

manual and automated construction. Common sense must be classified as a
practical consideration.

i) Similarly, there is no reference in the SWEBOK Guide that anticipation of
diversity is based on formal knowledge. There are studies that demonstrate that
requirements change, but little work has been done on the impact of such changes
on software construction. For the time being, this should still be considered as
practical knowledge.

• Design instrumentalities, some of which were identified as belonging to the role of

integrated evaluation, construction languages, programming languages and the visual
style of construction. More specifically:
j) Choosing the right tool (language, compiler, etc.) for a given problem is a

structured and documented skill.
k) Construction languages that include programming languages constitute, almost by

definition, procedural knowledge. Language design and usage are skills, and both
are inherited from the computer sciences.

l) Visual type of construction is not based on formal rules or specific theory, but
procedures are followed. In this sense, the visual type can be classified under
design instrumentalities.

Table 1 presents, in summary, the classification of each topic of the current breakdown
according to Vincenti definition of the types of knowledge in engineering. Each letter
found in columns refers to a label from the previous paragraphs. It can be readily
observed from Table 1 that the content of this SWEBOK chapter, when classified by
engineering types of knowledge, does not map easily to the current taxonomy (e.g.
structure) of this Software Construction chapter.

 8

 F.D. C.S. T.T. Q.D. P.C. D.I.
2.0 Definition
2.1 Software construction and software design f
2.2 The role of tools in construction j
2.3The role of integrated evaluation in construction. g
2.4 The role of standards in construction d
2.5 Manual and automated construction h
2.6 Construction Languages k
2.7 Programming Languages k
3.0 Breakdown
3.1 Principle of organisation
3.1.1 Reduction in complexity a
3.1.2 Anticipation of diversity i
3.1.3 Structuring for validation b
3.1.4 Use of external standards d
3.2 Style of construction
3.2.1 Linguistic c
3.2.2 Formal e
3.2.3 Visual l

F.P: Fundamental Design Concepts C.S: Criteria and Specifications
T.T: Theoretical Tools Q.D: Quantitative Data
P.C: Practical Considerations D.I: Design Instrumentalities

Table 1: Analysis of Construction KA using the Vincenti classification

4 Proposed new breakdown

From section 2, and a comparison of Figure 2 with the breakdowns of topics in the other
Knowledge Areas, it can be observed that the Software Construction breakdown of topics
is not as well organised as taxonomy: for instance, there are clearly duplications. It can
also be observed that, on the left-hand side of Figure 2, no distinction is being made
between basic concepts and other concepts, all of them being grouped in a single category
of first level of decomposition of 'Definitions'. In the breakdown proposed next in Figure
3, duplication has been eliminated and the breakdown has been restructured on the basis
of similarity of concepts. This is referred to as an intermediate revised breakdown.

 9

Software Construction

Basic Concepts of
the Software K.A.

Software Construction
and Software Design

Manual and Automated
Construction

Construction Languages

Principles of
Organization

Styles of
Construction

Reduction of Complexity

Anticipation of Diversity

Structuring for Validation

Use of External Standards

Linguistic

Formal

Visual

Key issues of
theSoftware K.A.

The Role of Tools
in Construction

The Role of Integrated
Evaluation in Construction

The Role of Standards
in Construction

Figure 3: Intermediate revised breakdown

As seen in Figure 3, the previous synthesis section has been removed, to eliminate the
duplication in the taxonomy. Also, the previous 'Definitions' topic has been broken down
into two sets of related but distinct topics, that is, basic concepts and key issues (as often
found in the breakdowns in the other Knowledge Areas). Also, Construction Languages
and Programming Languages have been grouped into a single sub-topic as Construction
Languages.

On the basis of the insights gained from the analysis of this Knowledge Area from the
engineering viewpoint selected, further improvements to the breakdown can now be
recommended. The proposed additional changes for a new and improved breakdown of
topics are presented in Figure 4. For instance, Style of Construction, which does not
constitute fundamental knowledge, does not deserve an entire section and we recommend
that it be moved to the first level of decomposition of 'basic concepts'. Also, role of
standards and use of external standards should be grouped together, since there are few
differences between them in the current SWEBOK text.

Furthermore, we recommend that both Software Construction Tools and Integrated
Evaluation be positioned at the first level of decomposition; neither of these topics are
optional when talking about software construction (i.e. coding and generated code) and
both should be further defined as covering the three types of construction, linguistic,
formal and visual:

- Linguistic tools are mostly compilers.
- Formal tools are mostly case tools.
- Visual tools are mostly graphical and integrated development environments.

Of course, Figure 4 should not be considered the definitive taxonomy on this Knowledge
Area and will need further independent review by domain experts.

 10

Software Construction

Basic Concepts of
the Software K.A.

Software Construction
and Software Design

Manual and Automated
Construction

Construction Languages

Principles of
Organization

Integrated
Evaluation

Reduction of Complexity

Anticipation of Diversity

Structuring for Validation

Use of External Standards

Linguistic

Formal

Visual

Software
Construction Tools

Style of Construction

Compilers

Case tools

Integrated
Development
Environments

Figure 4: Final revised breakdown

5 Observations for further work

The Software Construction Knowledge Area of the SWEBOK Guide was analysed to
address the feedback received from its use at NTU.

The results of this analysis have led to a proposal for a revised breakdown of topics for
this Knowledge Area. Such a revised breakdown (Figure 4) is more consistent with the
current content of the chapter, with the breakdown structure of the other chapters and also
reflects more accurately both the current descriptive content of this Knowledge Area and
the quality of their support from an engineering perspective.

Finally, from the insights gained from the use of Vincenti's classification, it can be
observed that we have an absence of quantitative data and the quasi absence of theoretical
tools. This is, of course, quite surprising for an engineering discipline and it provides a
clear indication that much further research work is required for fostering the maturation
of software construction as an engineering knowledge area. Similarly, theoretical tools
must be developed and extensively validated and quantitative data must be progressively
made accessible to the software engineering community.

 11

6 References:

[ABR01] Abran, A., Moore, J.W., Bourque, P., Dupuis, R., Tripp, L. “Guide to the

Software Engineering Body of Knowledge – Trial Version”. IEEE
 Computer Society, Los Alamos, Dec. 2001.

[FRAI02] Frailey, Dennis J. Mason, James. “Using SWEBOK for Education Programs

in Industry and Academia”, Conference on Software Engineering Education
and Training (CSEE&T), Covington, Feb 2002.

[HUN01] Hunt, Andrew., Thomas, David. “The Pragmatic Programmer – from
 Journeyman to Master,” Addison-Wesley,1999.

[MAI00] Maibaum, T. "Mathematical Foundations of Software Engineering: A

Roadmap," in Proceedings of the Conference on the Future of Software
Engineering, Limerick, Ireland, ACM 2000, pp. 161-172.

 [VIN90] Vincenti, G. W. “What Engineers Know and How They Know It – Analytical

Studies from Aeronautical History,” Johns Hopkins University
 Press, 1990.

