
The COSMIC Functional Size
Measurement Method, Version 3.0

Charles Symons
On behalf of the COSMIC Measurement Practices Committee

IWSM - Mensura 2007 Palma da Mallorca, Spain

2

• Background to the COSMIC method

• Brief overview of the basic measurement
principles

• The ‘unfinished business’ of v2.2

• Version 3.0 The ‘Measurement Strategy’ phase:
identifying which measurement should be made

• Conclusions

Agenda

3

The Common Software Measurement
International Consortium

Result: The COSMIC functional size measurement
method, applicable to:

• business and real-time software and hybrids of
these

• software in any layer of a multi-layer software
architecture

• at any level of decomposition

Aim: To develop, test, bring to market and seek
acceptance of new software sizing methods to support
estimation and performance measurement

4

The COSMIC method has now
existed for nearly eight years

x COSMIC founded

1998 2000 2002 2004 2006 2008

x ‘Field Trial’ COSMIC-FFP v2.0

x v2.1 – ISO 14143/1 conformant

x COSMIC-FFP ISO 19761

x v2.2 – ISO 19761 conformant

x COSMIC v3.0

Development

Refinement

5

The basic measurement principles have
not changed since the first version (2.0)

So what has changed since 1999?
• Refinement of definitions and rules
• Alignment of terminology with ISO standards and

publication of ISO/IEC 19761 for COSMIC
• Name changes in v3.0

– ‘COSMIC-FFP’ to the ‘COSMIC’ method
– Unit of measure name from ‘Cfsu’ to ‘CFP’

• Re-structuring of the documentation
• Separation of a ‘Measurement Strategy’ phase in

the measurement process of v3.0
– Clarification of ‘which’ size is to be measured

6

• Background to the COSMIC method

• Brief overview of the basic measurement
principles

• The ‘unfinished business’ of v2.2

• Version 3.0 The ‘Measurement Strategy’ phase:
identifying which measurement should be made

• Conclusions

Agenda

7

The ‘Generic Software Model’

Functional User
Requirements

Data movement Data manipulation

Sub-process-types

Software
Functional

Process-types

Moves a single data group type
describing a single object of
interest type, with associated

data manipulation

8

The ‘Generic Software Model’
(continued)

Triggering
event

is sensed
by

Triggering
Entry

Boundary

User

Functional
process

9

Boundary

Functional
process

Users

Persistent
storage

Read (R)
1 data group

Entry (E)
1 data group

Exit (X)
1 data group

Write (W)
1 data group

The ‘Generic Software Model’
(continued)

10

The Measurement Principles

The size of

• each Data Movement type in each functional
process type (Entry, Exit, Write and Read) is
assigned one ‘CFP’ (COSMIC Function Point’)

• a Functional Process type is the arithmetic sum of
the number of its Data Movement types (no upper
size limit)

• an item of software is the sum of the size of all its
Functional Process types

11

COSMIC’s ‘principles-based’ approach
ensures the method is future-proof

All rules, guidance and examples must be derivable
from a basic set of software engineering principles

The COSMIC Method:
• ISO standard (v2.1) 17 pages
• Principles (v3.0): 3 pages
• Rules (v3.0): 6 pages
• Basic documents (v3.0): 100+ pages

Contrast the IFPUG ‘rules-based’ method
• ISO standard 342 pages

12

• Background to the COSMIC method

• Brief overview of the basic measurement
principles

• The ‘unfinished business’ of v2.2

• Version 3.0 The ‘Measurement Strategy’ phase:
identifying which measurement should be made

• Conclusions

Agenda

13

Q: Who are the ‘users’ of the embedded
application software of e.g. a printer/copier?

So is the user

• the human operator?

• the engineered hardware devices
of the copier?

• the operating system (if any)?

• peer applications, e.g. if the
printer/copier is networked?

User(s) – ‘any person or thing that interacts with the
software at any time’

14

In v2.2 we introduced two ‘Measurement
Viewpoints’ to solve this problem in real-

time software sizing

Real-time
embedded
application
of a copier

Hardware environment
Human user interface (Start, no. of copies,
magnification, lighter/darker, display, etc)

Paper transport, copy engine, sorter, etc

Paper jam

detectors

Low ink

detector

The human ‘End User’ sees the functionality
available via the human interface

The ‘Developer’ sees all the functionality provided
to all the hardware devices

15

Now apply these two ‘Measurement
Viewpoints’ to a business application

• But what functionality is revealed in the ‘Developer
Measurement Viewpoint’ for a business application?

• And what functionality is seen by the operating
system as a ‘user’ of the application?

• And are these the only two Measurement
Viewpoints?

??????

The ‘End User Measurement Viewpoint’ is clearly OK

16

Summary of ‘unfinished business’

• We know that functional size varies depending on
who you define as the ‘user’

• Also, functional sizing must take account of the
level of decomposition of the software being sized

• And we often need to size requirements before we
have all the detail needed

How do we untangle these concepts?
How do we decide which size to measure, or clarify

which size has been measured?

17

• Background to the COSMIC method

• Brief overview of the basic measurement
principles

• The ‘unfinished business’ of v2.2

• Version 3.0 The ‘Measurement Strategy’ phase:
identifying which measurement should be made

• Conclusions

Agenda

18

COSMIC calls the process of defining
which size to measure:-

‘Setting the Measurement Strategy’

Establish the Purpose of the measurement, which
determines

• The Scope of each piece of software to be
measured

• The Functional Users of the software to be
measured

• The Level of Granularity (LoG) at which the
measurement result is required

This process and the parameters are totally
independent of the COSMIC Method

19

Determining the scope: ‘the set of FUR to
be included in a specific FSM instance’

• (Distinguish the ‘overall scope’ from the scopes of
the individual pieces to be measured)

• Define the level of decomposition of the pieces to be
measured

• Distinguish the types of work needed to deliver the
functionality within the individual scope(s)
– Newly developed functionality
– Changes to existing functionality
– Re-used functionality (existing functionality that

has been re-used, unchanged

20

Setting standard levels of
decomposition is important

Why important? Because the size of a whole piece of
software can only obtained by adding up the sizes of
its components, if the size contributions of inter-
component communications are eliminated

Whole
application

Main-frame
PC front

end
Unix

serverOR

Data
Management

Human /
Computer
Interface

Business
rulesOR

21

But setting standard levels of
decomposition is also difficult

Because widely-used terms have different meanings in
different organizations

Possible standard
Levels of decomposition

Whole application

Major component

Object-class

Single
Platform

Multi-
Platform

Yes

Yes

Yes

Yes

-

-

‘Yes’ = possible functional size measures
that should not be confused

22

We now prefer to use the term the
‘functional user’, rather then ‘user’

Definition: ‘a (type of) user that is a sender or intended recipient of
data in the functional users requirements of the software to be
measured’
(i.e. the ‘FU’ in the ‘FUR’)

Example
Purpose: measure the functional size of the embedded application

software of the copier/printer as input to estimating the
development effort

Solution: measure the FUR that define the functionality provided
to the engineered hardware devices and to any peer
applications, as functional users

(Human operators and the OS will not appear as ‘functional users’
in these FUR of the application.)

23

Generally, the types of functional users
are obvious from the FUR and the

purpose of the measurement

Examples: When the purpose is related to performance
measurement, benchmarking or estimating

If the scope is a

• Business application

• Embedded real-time

• Object-class

• Complex software
architecture component

The functional users will normally be:

Humans and maybe peer applications

Engineered hardware devices and peer apps

Peer object classes

Other peer software components of the
architecture at the same level of granularity

But it ain’t necessarily so! The type of functional users
should always be stated for a given measurement

24

With the concept of ‘functional user’ we
can now improve rules for the
measurement of ‘code tables’

‘Employee type’

Code Description

F Full-time
P Part-time
T Temporary

System Admin
Functional User

CRUD ‘Employee-type’
functional processes

‘Employee type’
is an OOI

Business
Functional User

CRUD ‘Employee’
functional processes

‘Employee type’
is not an OOI

‘CRUD’ = Create, Read, Update and Delete; ‘OOI’ = Object of interest

Example code table

Contrast the IFPUG method rule: ‘Ignore code tables’

25

Definition:

‘Any level of expansion of the description of a single
piece of software (e.g. a statement of its
requirements) such that at each increased level of
expansion the description reveals the software’s
functionality at an increased and comparable level
of detail.

Software can be described and measured
at any ‘level of granularity’ (or ‘LoG’)

26

We are familiar with road-maps at
different LoG’s

The size of a nation’s road system appears to increase
as you zoom-in to lower LoG’s

• Motorways and main roads
• Typical motorists atlas
• Typical street plans

The same is true for software, but with
software we have only one ‘standard’ LoG at

which we can measure – that of the
functional processes

27

Functional sizes should always be
measured at, or scaled to, the LoG of

individual functional processes

This is easy when the functional users are individual
humans, e.g.

Case 1: Amazon web-based ordering application

or when the functional users are individual engineered
hardware devices, e.g.

Case 2: Printer/copier embedded application

28

If we must size the FUR before we have
the detail of the functional processes,

then we use an approximate sizing
approach

• Al FSM Methods have approximate sizing
approaches, e.g.
– IFPUG – ‘quick and easy’
– COSMIC – various approaches

• Example scaling: we might determine that
a Use Case on average comprises 3 functional
processes
a functional process has an average size of 10 CFP
Then 1 x Use Case = 30 CFP

29

Case 3. In a complex software
architecture, it’s not at all clear at which

LoG we should stop zooming in

LNE

SC

SS

(Logical Network
Element)

(Sub-System)

(System
Component)

SC1
SC2

SC3 SC4

SS11

SS12

SS1
3

SS21

SS22

SS23

SS41

SS42

SS43

LNE1

LNE2

LNE3

LNE2

30

In this pure software architecture, functional
users and processes can be recognised at

any level of granularity and/or
decomposition

Level of
Granularity

Functional
Size (CFP)

No. of functional
processes

LNE 1 8

SC 4 20

SS 9 32

A standard LoG for measurements can
only be defined locally

31

Determining the ‘right’ LoG at which to
measure in complex software

architectures requires great care

• Functional users and functional processes can be
defined at any LoG

(since software functional users can be decomposed
to many levels, unlike individual humans or
engineered devices)

• Need to define standard LoG’s locally at which
measurements must be made and can be compared

32

• Background to the COSMIC method

• Brief overview of the basic measurement
principles

• The ‘unfinished business’ of v2.2

• Version 3.0 The ‘Measurement Strategy’ phase:
identifying which measurement should be made

• Conclusions

Agenda

33

The COSMIC method v3.0 represents a
big advance for FSM in general

• The basic functional size measurement
principles and rules are unchanged

• The question of which size to measure is
greatly clarified

• The approach we have adopted is valid
for all FSM methods

34

The FSM community needs to define
standards to ensure functional size

measurements can be compared

• Scope parameters

– Levels of decomposition

– Types of work

• (types of) Functional users

• Levels of granularity

…. with real benefits for more reliable
performance measurement, estimating

and benchmarking

35

A final word

• This presentation may appear to make
functional sizing more difficult

(there are hundreds of possible sizes
resulting from combinations of these
concepts!)

• But in any one organization, only a
limited number of combinations will be
necessary

36

Thank you for your
attention

www.cosmicon.com

www.gelog.lrgl.ca/cosmic-ffp

