
Adapting Function Points
to Real-Time Software

1997 IFPUG Fall Conference

Software Engineering Management Research Laboratory
Software Engineering Laboratory in Applied Metrics (SELAM)

In collaboration with

Nortel
Bell Canada

Hydro-Québec
Japanese Industrial Partner

Denis St-Pierre
Marcela Maya

Alain Abran
Jean-Marc Desharnais

Copyright © 1997 Software Engineering Management Laboratory and Software Engineering Laboratory in Applied Metrics 2
IFPUG Fall Conference 1997

TABLE OF CONTENTS

1. INTRODUCTION..3

2 REAL-TIME SOFTWARE LIMITATIONS OF FPA4

2.1 Data limitations .. 4

2.2 Transaction limitations .. 4

3. REAL-TIME EXTENSION...5

3.1 FFP Function Types... 6

4. FFP PRACTICE FEEDBACK ..9

4.1 Ease of understanding ... 9

4.2 Counting effort... 10

4.3 Importance of documentation ... 10

4.4 Early FFP counts.. 10

5. SUMMARY..10

REFERENCES ...12

Copyright © 1997 Software Engineering Management Laboratory and Software Engineering Laboratory in Applied Metrics 3
IFPUG Fall Conference 1997

1. Introduction

Given its increasing importance in products and services, software has become a major
component of corporate budgets. Like any other budget component, it is important to
control these expenses, to analyze the performance of the amounts allocated to software
development and to benchmark against the best in the field. To do so, measures and
models using these measures are needed. Measures are needed for analyzing both the
quality and the productivity of development and maintenance. Technical measures are
needed to measure the technical performance of products or services, from a developer’s
view point. Technical measures will be used for efficiency analysis to, for example,
improve the performance of the designs.

On the other hand, functional measures are needed to measure the performance of products
or services from a user’s perspective, and they are needed for productivity analysis.
Functional measures must be independent of technical development and implementation
decisions. They can then be used to compare the productivity of different techniques and
technologies.

Such a functional measurement technique, Function Point Analysis (FPA), is available for
the MIS domain where it has been used extensively in productivity analysis and estimation
(Abran, 1996; Desharnais, 1988, Jones, 1996; Kitchenham, 1991). It captures the specific
functional characteristics of MIS software well.

However, FPA has been criticized as not being universally applicable to all types of
software (Conte, 1986; Galea, 1995; Grady, 1992; Hetzel, 1993; Ince, 1991; Jones, 1988;
Jones, 1991; Kan, 1993; Whitmire, 1992). Here is how D.C. Ince describes the Function
Point (FP) scope issue:

“A problem with the function point approach is that it assumes a limited band of
application types: typically, large file-based systems produced by agencies such
as banks, building societies and retail organizations, and is unable to cope with
hybrid systems such as the stock control system with a heavy communication
component.” (Ince, 1991, page 283)

A number of academic papers have been published on the statistical accuracy of FPA
(Abran, 1994; Desharnais, 1988; Kemerer, 1993) based mostly on historical databases
from the MIS domain. However, FPA does not capture all functional characteristics of
real-time software. When FPA is applied to such software, it does, of course, generate
counts, but the counts do not constitute an adequate size measurement. Therefore, there is
currently no FPA equivalent for real-time software that would allow meaningful
productivity benchmarking and development of estimation models based on the functional
full size of real-time software.

Copyright © 1997 Software Engineering Management Laboratory and Software Engineering Laboratory in Applied Metrics 4
IFPUG Fall Conference 1997

This report describes work done by the Software Engineering Management Research
Laboratory at the Université du Québec à Montréal and its industrial research partner
SELAM to adapt FPA to real-time software. Section 2 identifies some real-time
limitations of FPA. Next, in section 3, the proposed extension is presented. The practical
aspects of counting applications with the extension are addressed in section 4.

2 Real-time software limitations of FPA

2.1 Data limitations

There are two kinds of control data structure: multiple occurrence groups of data and
single occurrence groups of data. Multiple occurrence groups of data can have more than
one instance of the same type of record1. Single occurrence groups of data have one and
only one instance of the record. Real-time software typically contains a large number of
single occurrence groups of data that are difficult to group into ILFs or EIFs. An extension
of the ILF/EIF rules is necessary to adequately measure single occurrence groups of data.

2.2 Transaction limitations

Real-time software processes have a specific transactional characteristic in common: the
number of their sub-processes varies a great deal. A real-time functional measurement
technique has to take into account that some processes have only a few sub-processes,
while others have a large number of sub-processes. To illustrate this phenomenon,
consider the following two examples:

Example 1 - An engine temperature control process (process with a few sub-processes)

The main purpose of this process is to turn on a cooling system when necessary. A
sensor enters the temperature in the application (sub-process 1). The temperature is
compared to the overheating threshold temperature (sub-process 2). Finally, a turn-on
message could be sent to the cooling system if needed (sub-process 3).

In this example, the temperature control process has 3 sub-processes (see Table 1).
This process is not an application; it is only one of the many processes of an engine
control application. The application is not in a consistent state until all sub-processes
of the temperature control process are completed. Therefore, there is only 1
elementary process (IFPUG, 1994).

1 For example, an engine control application could have a group of control data containing information on
each cylinder (cylinder number, ignition timing, pressure, etc.). Such a group of data has a multiple
occurrence structure (one record for each cylinder). In other words, the cylinder record is repeated
more than once.

Copyright © 1997 Software Engineering Management Laboratory and Software Engineering Laboratory in Applied Metrics 5
IFPUG Fall Conference 1997

Process Sub-process description # of sub-processes
Engine control Temperature entry 1

Read threshold for comparison 1
Send turn-on message 1
Total 3

Table 1 - Sub-processes of example 1

According to standard FPA rules, only one transactional function would be identified,
because there is only 1 elementary process.

Example 2 - An engine diagnostic process (process with many sub-processes)

The main purpose of this process is to turn on an alarm when necessary. Fifteen
engine sensors (all different) send data to the diagnostic process (15 sub-processes, 1
unique sub-process for each kind of sensor). For each sensor, the set of external data
received is compared to threshold values read from an internal file, one unique file for
each kind of sensor (15 other sub-processes, 1 unique sub-process for each kind of
sensor). Depending on a number of conditions, an alarm on the dashboard may be
turned on (1 sub-process).

In this example, the engine diagnostic process consists of 31 sub-processes (see Table
2). This process is not an application; it is only one of the many processes of an
engine control application. The application is not in a consistent state until all sub-
processes of the diagnostic process are completed.

Process Sub-process description # of sub-processes
Engine diagnostic Sensor data entry 15

Read thresholds for comparison 15
Send alarm message 1
Total 31

Table 2 - Sub-processes of example 2

According to standard FPA rules, only a few transactional points would be counted
because transactional functions are based on elementary processes rather than on sub-
processes. Therefore, examples 1 and 2 would have approximately the same number
of points related to transactions with current IFPUG counting procedures.

3. Real-time extension

Full Function Points (FFP) is a functional measure based on the standard FPA technique. It
was designed for both MIS and real-time software. Since FFP is an extension of the
standard FPA technique, all IFPUG rules are included in this new measurement technique,

Copyright © 1997 Software Engineering Management Laboratory and Software Engineering Laboratory in Applied Metrics 6
IFPUG Fall Conference 1997

the small number of subsets of IFPUG rules dealing with control concepts having been
expanded considerably. The control aspect of real-time software is addressed by new
function types.

3.1 FFP Function Types

To measure the characteristics of a variable number of sub-processes adequately, it is
necessary to consider not only processes as defined in FPA (elementary processes), but
sub-processes as well. In addition, the particular structure of typical control data must be
considered. Consequently, FFP introduces additional data and transactional function types.

The two new Control Data Function Types have a structure similar to that of the IFPUG
Data Function Types:

Updated Control Group (UCG): A UCG is a group of control data updated by the
application being counted. It is identified from a functional perspective2. The
control data live for more than one transaction3.

Read-only Control Group (RCG): An RCG is a group of control data used, but not
updated, by the application being counted. It is identified from a functional
perspective. The control data live for more than one transaction4.

The four new Control Transactional Function Types address the sub-processes of real-time
software:

External Control Entry (ECE): An ECE is a unique sub-process. It is identified
from a functional perspective5. An ECE processes control data coming from
outside the application’s boundary. It is the lowest level of decomposition of a
process acting on one group of data. Consequently, if a process enters two
groups of data, there are at least 2 ECEs. ECEs exclude the updating of data.
The updating functionality is covered by another Control Function Type
(Internal Control Write).

In the engine diagnostic (example 2), 15 sensors send data to the application
(control data cross the application boundary). Since there is a unique sub-
process for each sensor, there are 15 ECEs.

2 This means that the group of data appears in the requirements of the application, assuming they are
complete.

3 In example 2 of section 2, the sensor data entered live only for one transaction, since after the
diagnostic process, the system doesn't remember them. In contrast, the thresholds are reused for each
new entry, and consequently live for more than one transaction.

4 UCG and RCG rules are different from the FPA ILF and EIF rules, in order to allow FFP to measure the
data aspect of real-time software. ILF and EIF rules seem to be oriented toward typical MIS corporate
data structures.

5 This means that the sub-process is referenced in the requirements of the application, assuming they are
complete.

Copyright © 1997 Software Engineering Management Laboratory and Software Engineering Laboratory in Applied Metrics 7
IFPUG Fall Conference 1997

External Control Exit (ECX): An ECX is a unique sub-process. It is identified
from a functional perspective. An ECX processes control data going outside
the application boundary. It is the lowest level of decomposition of a process
acting on one group of data. Consequently, if a process exits two groups of
data, there are at least 2 ECXs. ECXs exclude the reading of data. The reading
functionality is covered by another Control Function Type (Internal Control
Read).

In the engine diagnostic (example 2), the sub-process that sends a message to
the dashboard (control data sent outside the application boundary) is an ECX.

Internal Control Read (ICR): An ICR is a unique sub-process. It is identified from
a functional perspective. An ICR reads control data. It is the lowest level of
decomposition of a process acting on one group of data. Consequently, if a
process reads two groups of data, there are at least 2 ICRs.

In the engine diagnostic (example 2), the sub-processes that read the threshold
values are ICRs. In this example, 15 unique sub-processes read different kinds
of threshold values at different times for comparison purposes. Therefore,
there are 15 ICRs.

Internal Control Write (ICW): An ICW is a unique sub-process. It is identified
from a functional perspective. An ICW writes control data. It is the lowest
level of decomposition of a process acting on one group of data. Consequently,
if a process writes on two groups of data, there are at least 2 ICWs.

As a writing sub-process example, the engine diagnostic is extended with the
following functionality: "The 15 sets of control data are stored. They are all
stored separately at different times in different files (15 different sub-
processes)." Since there are fifteen kinds of sensor control data updated at
different times (15 unique sub-processes), there are 15 ICWs with the new FFP
measurement technique.

Copyright © 1997 Software Engineering Management Laboratory and Software Engineering Laboratory in Applied Metrics 8
IFPUG Fall Conference 1997

Here is how the Control Transactional Functions are related to control processes:

Figure 1 - Diagram of Control Transactional Functions

As with FPA, all new function types are based on the functional perspective of the
application, rather than on the technical perspective. The difference between the standard
FPA technique and the proposed extension (FFP) is therefore the additional function types
(UCG, RCG, ECE, ECX, ICW and ICR). These new function types are only used to
measure control data and control processes. The other types of data and processes, called
management data and processes here, are counted with the standard FPA technique (see
Figure 2 and Table 3).

 FFP Management Function Types:
Internal Logical File (ILF) exists in FPA, unchanged in FFP
External Interface File (EIF) exists in FPA, unchanged in FFP
External Input (EI) exists in FPA, unchanged in FFP
External Output (EO) exists in FPA, unchanged in FFP
External Inquiry (EQ) exists in FPA, unchanged in FFP

 FFP Control Function Types:
Updated Control Group new function type, similar to ILF
Read-only Control Group new function type, similar to EIF
External Control Entry new function type, similar to a subset of EI
External Control Exit new function type, similar to a subset of EO/EQ
Internal Control Read new function type, similar to a subset of EI/EO/EQ
Internal Control Write new function type, similar to a subset of EI

Table 3: List of FFP Function Types

Control Process
ECE

ICR

ECX

ICW

Copyright © 1997 Software Engineering Management Laboratory and Software Engineering Laboratory in Applied Metrics 9
IFPUG Fall Conference 1997

Figure 2 - Diagram of FFP Function Types

Thus, the unadjusted count of an application using the proposed extension (FFP) can be
expressed as follows:

FFP= Management FP + Control FP
= (FPA - Control information) + Control FP

4. FFP practice feedback

This report has presented an overview of FFP concepts and definitions, together with two
examples. We now discuss some practical aspects of counting FFP. A number of
industrial real-time applications have already been counted with FFP. Feedback from
these field tests is reported here.

4.1 Ease of understanding

All FFP counts were done with the support of real-time application experts (industry
people familiar with the application being counted). Once the application experts had
understood the definitions of the Control Function Types, they had no problem in
identifying them. In fact, after a full day of FFP counting, the application experts were able
to count with little assistance from functional size experts familiar with FFP.

User 1
 (Person or application)

User 2
(Person, application or

mechanical device)

Management
Processes

Control
Processes

ILF UCG RCG

EIF

Boundary

E
I

E
O

E
Q

EC
E

EC
X

ICW ICR ICR

ECE: External Control Entry
ECX: External Control Exit
EI: Enternal Input
EIF: External Interface File
EO: External Output
EQ: External Inquiry
ICR: Internal Control Read
ICW: Internal Control Write
ILF: Internal Logical File
UCG: Updated Control Group
RCG: Read-only Control Group

: Process
: Group of data

: User

Copyright © 1997 Software Engineering Management Laboratory and Software Engineering Laboratory in Applied Metrics 10
IFPUG Fall Conference 1997

4.2 Counting effort

Based on the counting field tests carried out, the FFP counting effort is similar to the FPA
one. On the one hand, more functions have to be identified with FFP; on the other hand,
being simpler6, the new Control Transactional Functions are more quickly identified.
Besides, application experts seem to require less counting assistance from functional size
experts, again because Control Transactional Functions are simpler to deal with.

4.3 Importance of documentation

An adequate source of functional information must be available to count an application.
This functional information is provided by application experts or by application
documentation. Like FPA, FFP is dependent on the quality of the functional information.
Based on the counting field tests carried out, the functional information typically available
in industry is adequate for counting FFP.

4.4 Early FFP counts

It is possible to count control function types at an early stage of development provided that
the functional requirements are documented. Despite additional function types, the FFP
level of detail is similar to the FPA one. To use FPA at an early stage of development, one
must usually approximate the count because not all functional information is available.
Over the years, a number of FPA early count approximation methods have been developed;
similar approximation methods could be developed for FFP7.

5. Summary

The development of a real-time software functional measure is an important challenge to
meet. Such a measure should allow meaningful productivity benchmarking and the
development of estimation models based on functional size. One of the first steps in
achieving real-time software benchmarking and estimation models is to have measurement
specialists working with the same set of rules. To some extent, this would allow
measurement specialists to build on what has been achieved by others, rather than to start
from scratch with their own rules or interpretations of existing rules. In a way, this is what
happened with Function Points for MIS applications. Since Albrecht published the initial
structure of Function Points in 1984 (Albrecht 1984), many people have worked with this
measure. Indeed, a number of project databases8 are based on this set of rules which has
been significantly refined by IFPUG over the past 10 years. Hopefully, once the industry

6 Control Transactional Function Types are simpler because they are associated with only one sub-
process. Management Transactional Function Types may comprise many sub-processes, and grouping
them into elementary processes may take time.

7 Of course, one should not expect, at this point, that FFP approximation methods be as mature as FPA
ones.

8 For example: Gartner Group, International Software Benchmarking Standards Group, Howard Rubin
Associates, Software Productivity Research.

Copyright © 1997 Software Engineering Management Laboratory and Software Engineering Laboratory in Applied Metrics 11
IFPUG Fall Conference 1997

agrees on a set of rules to measure the functionality of real-time software, it will become
possible to create better productivity and estimation models for this type of software.

This report has presented a summary of the first public release of FFP, and the authors
recognize that there is room for improvement.

A public report on FFP detailed counting rules and procedures based on the IFPUG
framework is available at the following addresses:
http://www.lmagl.qc.ca/rtreport.pdf
or
http://saturne.info.uqam.ca/Labo_Recherche/Lrgl/publi/treports/LRGL-1997-015.pdf

We are positive that this FFP measurement technique will expand the domain of
applicability of Function Points and increase its relevance in industry. We are open to
collaboration with corporations and measurement associations to produce the next release
of FFP.

Copyright © 1997 Software Engineering Management Laboratory and Software Engineering Laboratory in Applied Metrics 12
IFPUG Fall Conference 1997

References

Abran, A., Analysis of the measurement process of Function Points Analysis, Ph.D. Thesis, Département
de génie électrique et de génie informatique, École Polytechnique de Montréal, 1994, 405 pages.

Abran, A., and Robillard, P. N., Function Point Analysis, An Empirical Study of its Measurement
Processes IEEE Transactions on Software Engineering, vol. 22, no. 12, pp. 895-909, Dec. 1996.

Albrecht, A.J., AD/M Productivity Measurement and Estimate Validation, IBM Corporate Information
Systems, IBM Corp., Purchase, N.Y., May 1984.

Conte, S.D., Shen, V.Y., and Dunsmore, H.E., Software Engineering Metrics and Models, Benjamin
Cummins Publishing, 1986, 396 pages.

Cooling, J. E., Software Design for Real-Time Systems, Chapman and Hall, 1991.

Desharnais, J. M., Statistical Analysis on the Productivity of Data Processing with Development
Projects using the Function Point Technique. Université du Québec à Montréal. 1988.

Galea, S., The Boeing Company: 3D Function Point Extensions, V2.0, Release 1.0, Boeing Information
and Support Services, Research and Technology Software Engineering, June 1995.

Grady, R. B., Practical software metrics for project management and process improvement Prentice
Hall, New Jersey, 1992, 270 pages.

Hetzel, B., Making Software Measurement Work, QEB Publishing Group, 1993, 290 pages.

IEEE, IEEE Standard Computer Dictionary: A compilation of IEEE Standard Computer Glossaries,
IEEE Std 610-1990, The Institute of Electrical and Electronics Engineers, Inc., New York, NY, 1990.

IFPUG (1994). Function Point Counting Practices Manual, Release 4.0, International Function Point
Users Group - IFPUG, Westerville, Ohio, 1994.

Illingworth, V., (1991) (editor), Dictionary of Computing, Oxford University Press, 3rd edition, 1991,
510 pages.

Ince, D. C., History and industrial applications, in Fenton, N.E., Software Metrics: A Rigorous
Approach, Chapman & Hall, UK, 1991, 337 pages.

Jones, C., A Short History of Function Points and Feature Points, Software Productivity Research, Inc.,
Cambridge, Mass, 1988.

Jones, C., Applied Software Measurement - Assuring Productivity and Quality, McGraw-Hill, 1991,
493 pages.

Jones, C., Applied Software Measurement - Assuring Productivity and Quality, McGraw-Hill, 1996,
618 pages.

Kan, S. H., Metrics and Models in Software Quality Engineering, Addison-Wesley, 1993, 344 pages.

Copyright © 1997 Software Engineering Management Laboratory and Software Engineering Laboratory in Applied Metrics 13
IFPUG Fall Conference 1997

Kemerer, C. F., Reliability of function point measurement: a field experiment, Communications of the ACM, vol.
36, pp. 85-97, 1993.

Kitchenham, B., Making Process Predictions, in Fenton, N.E., Software Metrics: A Rigorous Approach,
Chapman & Hall, UK, 1991, 337 pages.

Laplante, P., Real-Time Systems Design and Analysis: An Engineer’s Handbook, The Institute of
Electrical and Electronics Engineers Inc., New York, NY, 1993, 339 pages.

Stankovic, J. A. and Ramamritham, K., Tutorial Hard Real-Time Systems, IEEE Computer Society Press,
Washington D.C., 1988, 618 pages.

Whitmire, S. A., 3-D Function Points: Scientific and Real-Time Extensions to Function Points,
Proceedings of the 1992 Pacific Northwest Software Quality Conference, 1992.

Copyright © 1997 Software Engineering Management Laboratory and Software Engineering Laboratory in Applied Metrics 14
IFPUG Fall Conference 1997

For more information on FFP:

Denis St-Pierre M.Sc., C.F.P.S. Denis.St-Pierre@CRIM.CA
Marcela Maya M.Sc., C.F.P.S. Maya.Marcela@uqam.ca
Alain Abran Ph.D. abran.alain@uqam.ca
Jean-Marc Desharnais M.Sc., C.F.P.S. Desharnais.Jean-Marc@uqam.ca

