
FULL FUNCTION POINTS:
FUNCTION POINTS EXTENSION FOR REAL-TIME SOFTWARE,

CONCEPTS AND DEFINITIONS

Software Engineering Management Research Laboratory
Software Engineering Laboratory in Applied Metrics (SELAM)

Technical Report 1997-03

In collaboration with

Nortel
Bell Canada

Hydro-Québec
Japanese Industrial Partner

Prepared by

Denis St-Pierre
Marcela Maya
Alain Abran

Jean-Marc Desharnais

March 1997

2

TABLE OF CONTENTS

1. INTRODUCTION ...3

2. FPA OVERVIEW..4

3. REAL-TIME SOFTWARE ..5

4. REAL-TIME SOFTWARE LIMITATIONS OF FPA ..6

4.1 Data limitations ... 6

4.2 Transaction limitations.. 7

5. REAL-TIME EXTENSION..8

5.1 FFP Function Types .. 8

5.2 Point assignment...11

6. FFP PRACTICE FEEDBACK ..13

6.1 Ease of understanding ..13

6.2 Counting effort ...13

6.3 Importance of documentation..13

6.4 Early FFP counts ..14

7. SUMMARY...14

GLOSSARY ..15

REFERENCES..16

3

1. Introduction

Given its increasing importance in products and services, software has become a major
component of corporate budgets. Like any other budget component, it is important to
control these expenses, to analyze the performance of the amounts allocated to software
development and to benchmark against the bests in the field. To do so, measures and
models using these measures are needed.

Measures are needed for analyzing both the quality and the productivity of development and
maintenance. Technical measures are needed to measure the technical performance of
products or services, from a developer’s view point. Technical measures will be used for
efficiency analysis to for example, improve the performance of the designs.

Functional measures are needed to measure the performance of products or services from a
user’s perspective, and they are needed for productivity analysis. Functional measures must
be independent of technical development and implementation decisions. They can then be
used to compare the productivity of different techniques and technologies.

Such a functional measurement technique, Function Point Analysis (FPA), is available for
the MIS domain where it has been used extensively in productivity analysis and estimation
(Abran, 1996; Desharnais, 1988, Jones, 1996; Kitchenham, 1991). It captures the specific
functional characteristics of MIS software well. However, FPA has been criticized as not
being universally applicable to all types of software (Conte, 1986; Galea, 1995; Grady,
1992; Hetzel, 1993; Ince, 1991; Jones, 1988; Jones, 1991; Kan, 1993; Whitmire, 1992).
Here is how D.C. Ince (Ince, 1991) describes the Function Point (FP) scope issue:

“A problem with the function point approach is that it assumes a limited band of
application types: typically, large file-based systems produced by agencies such as
banks, building societies and retail organizations, and is unable to cope with
hybrid systems such as the stock control system with a heavy communication
component.” page 283

A number of scientific papers have been published on the statistical accuracy of FPA
(Abran, 1994; Desharnais, 1988; Kemerer, 1993). No published papers mention pure real-
time software data. In fact, FPA does not capture the functional characteristics of
processor-intensive applications well, such as the dynamics and the control functions of
real-time software. When FPA is applied to such software, they do, of course, generate
counts, but the counts do not constitute an adequate size measurement. Therefore, there is
currently no FPA equivalent for real-time software that would allow meaningful
productivity benchmarking and development of estimation models based on the functional
size of real-time software.

This report describes work done by the Software Engineering Management Research
Laboratory at the Université du Québec à Montréal and SELAM to adapt FPA to real-time
software. In section 2, we present a short description of FPA as defined by the

4

 International Function Point Users Group (IFPUG) version 4.0 (1994). Next, in section 3,
definitions of real-time software are presented. In the fourth section, we present some real-
time limitations of FPA. The fifth section presents the proposed extension. The practical
aspects of counting applications with the extension are addressed in the sixth section. We
conclude our report with comments on future standards and research directions.

2. FPA overview

Function Point Analysis, developed by Allan Albrecht of IBM, was first published in 1979,
and, in 1984, the International Function Point Users Group was set up to clarify the rules,
set standards and promote its use and evolution. Since then, four major releases of the rules
and standards have been published. In this report, all references to FPA definitions and
measurement rules will be based on the most recent publication, that of 1994.

The first step in calculating FPA is to identify the counting boundary, that is, the border
between the application or project being measured and the external applications or the user
domain. A boundary establishes which functions are included in the function point count.
Figure 1 illustrates the boundary between an application and the user. The next step
consists in determining the unadjusted function point (UFP) count, which reflects the
specific countable functionality provided to the user by the project or application.
Calculation of the UFP begins with the counting the five function types of a project or
application: two data function types and three transactional function types. The five
function types counted are (Figure 1):

User

Boundary

User

ILF
EIF

Inquiries

Outputs

Inputs

Measured
application

Other
applications

Figure 1 - FPA components

Data function types:

Internal Logical File (ILF): a user identifiable group of logically related data or
control information maintained within the boundary of the application.

5

External Interface File (EIF): a user identifiable group of logically related data or
control information referenced by the application, but maintained within the
boundary of another application. This means that an EIF counted for an
application must be an ILF in another application.

Transactional function types:

External Input (EI): An EI processes data or control information that comes from
outside the application’s boundary. The external input itself is an elementary
process1.

External Output (EO): An EO is an elementary process that generates data or
control information sent outside the application’s boundary.

External Inquiry (EQ): An EQ is an elementary process made up of an input-output
combination that results in data retrieval. The output side contains no derived
data2. No ILF is maintained during processing.

These five function types are then ranked according to their complexity: low, average or
high, using a set of prescriptive standards. After classifying each of the five function types,
the UFP is computed using pre-defined weights for each function type.

The last step involves assessing the environment and processing complexity of the project
or application as a whole. The impact of fourteen general system characteristics is rated on
a scale from 0 to 5 in terms of their likely effect on the project or application. We obtain
the value adjustment factor that will adjust the UFP by a maximum of ±35% to produce the
Adjusted Function Points (AFP).

A complete description of FPA, including definitions, procedures, counting rules and
examples, may be found in the Function Point Counting Practices Manual, Release 4.0,
published by IFPUG (IFPUG, 1994).

3. Real-time software

There are a number of definitions of “real-time software” in the literature:

Stankovic and Ramamritham (1988):
‘Real-time systems are defined as those systems in which the correctness of the
system depends not only on the logical result of computation, but also on the
time at which the results are produced.’

1 Elementary process: the smallest unit of activity that is meaningful to the end user in the business. This
elementary process must be self-contained and leave the business of the application being counted in a
consistent state.

2 Derived data: data that requires processing other than direct retrieval and editing of information from ILFs
and/or EIFs.

6

Cooling (1991) and Laplante (1993):
‘Should computer responses exceed these time bounds then performance
degradation and/or malfunction results.’

IEEE (1990):
‘A system in which computation is performed during the actual time that an
external process occurs, in order that the computation results can be used to
control, monitor or respond in a timely manner to the external process.’

The Oxford Dictionary of Computing (Illingworth 1991):
‘Any system in which the time at which the output is produced is significant.
This is usually because the input corresponds to some movement in the physical
world, and the output has to relate to that same movement. The lag from input
time to output time must be sufficiently small for acceptable timeliness.’

In the last two definitions, two important aspects of real-time software are addressed:
timing and interaction with external entities. The purpose of this interaction is to obtain
information and/or to control external entities. This interaction takes place with tight
constraints on the choice and on the timing of tasks. Real-time software is different because
of the explicit constraints on timing. Such software incorporates dedicated components to
manage these constraints; failure to achieve the timing constraints may result in a
malfunction. Consequently, for real-time software, correctness of the result is linked to
timing.

4. Real-time software limitations of FPA

4.1 Data limitations

There are two kinds of control data structure: multiple occurrence logical group and single
occurrence logical group. Multiple Occurrence Logical Groups can have more than one
instance of the same type of record3. Single Occurrence Logical Groups have one and only
one instance of the record. Real-time software typically contains a large number of Single
Occurrence Logical Groups which are difficult to group into ILFs or EIFs. An extension of
the ILF/EIF rules is necessary to measure adequately Single Occurrence Logical Groups.

3 For example, an engine control application could have a group of control data containing information on
each cylinder (cylinder number, ignition timing, pressure, etc.). Such a group of data has a multiple
occurrence structure (one record for each cylinder). In other words, the cylinder record is repeated more
than once.

7

4.2 Transaction limitations

Real-time software processes have a specific transactional characteristic in common: the
number of their sub-processes varies a great deal. A real-time functional measure has to
take into account that some processes have only a few sub-processes, while others have a
large number of sub-processes. To illustrate this phenomenon, consider the following two
examples:

Example 1 - An engine temperature control process (process with a few sub-processes)

The main purpose of this process it to turn on a cooling system when necessary. A
sensor enters the temperature in the application (sub-process 1). The temperature is
compared to the overheating threshold temperature (sub-process 2). Finally, a turn-on
message could be sent to the cooling system if needed (sub-process 3).

In this example, the temperature control process has 3 sub-processes (see Table 1).
This process is not an application; it is only one of the many processes of an engine
control application. The application is not in a consistent state until all sub-processes
of the temperature control process are completed. Therefore, there is only one
elementary process (IFPUG, 1994).

Process Sub-process description # of sub-processes
Engine control Temperature entry 1

Read threshold for comparison 1
Send turn-on message 1
Total 3

Table 1 - Sub-processes of the engine temperature control process, example 1

According to standard FPA rules, only one transactional function would be identified,
because there is only one elementary process.

Example 2 - An engine diagnostic process (process with many sub-processes)

The main purpose of this process it to turn on an alarm when necessary. Fifteen engine
sensors (all different) send data to the diagnostic process (15 sub-processes, one
unique sub-process for each kind of sensor). For each sensor, the set of external data
received is compared to threshold values read from an internal file, one unique file for
each kind of sensor (15 other sub-processes, one unique sub-process for each kind of
sensor). Depending on a number of conditions, an alarm on the dashboard may be
turned on (1 sub-process).

8

In this example, the engine diagnostic process consists of 31 sub-processes (see Table
2). This process is not an application; it is only one of the many processes of an engine
control application. The application is not in a consistent state until all sub-processes
of the diagnostic process are completed.

Process Sub-process description # of sub-processes
Engine diagnostic Sensor data entry 15

Read thresholds for comparison 15
Send alarm message 1
Total 31

Table 2 - Sub-processes of the engine temperature control process, example 2

According to standard FPA rules, only a few transactional points would be counted
because transactional functions are based on elementary processes rather than on sub-
processes. Therefore, examples 1 and 2 would have approximately the same number of
points related to transactions.

5. Real-time extension

Full Function Points (FFP) is a functional measure based on the standard FPA technique. It
was designed for both MIS and real-time software. Since FFP is an extension of the
standard FPA technique, all IFPUG rules are included in this new measurement technique
except for a few rules related to control. The control aspect of real-time software is
addressed by new function types.

5.1 FFP Function Types

To measure the characteristics of a variable number of sub-processes adequately, it is
necessary to consider not only processes as defined in FPA (elementary processes), but sub-
processes as well. In addition, the particular structure of typical control data must be
considered. Consequently, FFP introduces additional data and transactional function types.

Here are the two new Control Data Function Types. They are similar to the IFPUG Data
Function Types.

Internal Control Logical Group (ICLG): An ICLG is a group of logically related
control data updated by the application being counted. It is identified from a
functional perspective4. The control data live for more than one transaction5.

4 This means that the group of data appears in the requirements of the application, assuming they are
complete.

5 In example 2 of section 4, the sensor data entered live only for one transaction, since after the diagnostic
process, the system doesn't remember them. In contrast, the thresholds are reused for each new entry, and
consequently live for more than one transaction.

9

External Control Logical Group (ECLG): An ECLG is a group of logically related
control data used, but not updated, by the application being counted. It is
identified from a functional perspective. The control data live for more than one
transaction6.

Here are the four new Control Transactional Function Types. They address the sub-
processes of real-time software.

External Control Entry (ECE): An ECE is a unique sub-process. It is identified
from a functional perspective7. An ECE processes control data coming from
outside the application’s boundary. It is the lowest level of decomposition of a
process acting on one group of data. Consequently, if a process enters two
groups of data, there are at least two ECEs. ECEs exclude updating data. The
updating functionality is covered by another Control Function Type (Internal
Control Write).

In the engine diagnostic example (example 2 section 4), 15 sensors send data to
the application (control data cross the application boundary). Since there is a
unique sub-process for each sensor, there are 15 ECEs.

External Control Exit (ECX): An ECX is a unique sub-process. It is identified
from a functional perspective. An ECX processes control data going outside the
application boundary. It is the lowest level of decomposition of a process acting
on one group of data. Consequently, if a process exits two groups of data, there
are at least two ECXs. ECXs exclude reading data. The reading functionality is
covered by another Control Function Type (Internal Control Read).

In the engine diagnostic example, the sub-process that sends a message to the
dashboard (control data sent outside the application boundary) is an ECX.

Internal Control Read (ICR): An ICR is a unique sub-process. It is identified from
a functional perspective. An ICR reads control data. It is the lowest level of
decomposition of a process acting on one group of data. Consequently, if a
process reads two groups of data, there are at least two ICRs.

In the engine diagnostic example, the sub-processes that read the threshold
values are ICRs. In this example, 15 unique sub-processes read different kinds
of threshold values at different times for comparison purposes. Therefore, there
are 15 ICRs.

Internal Control Write (ICW): An ICW is a unique sub-process. It is identified
from a functional perspective. An ICW writes control data. It is the lowest level
of decomposition of a process acting on one group of data. Consequently, if a
process writes on two groups of data, there are at least two ICWs.

6 These are different from the FPA rules, in order to allow FFP to measure the embedded data aspect of real-
time software. FPA rules seem to be oriented toward typical MIS corporate data structures.

7 This means that the sub-process is referenced in the requirements of the application, assuming they are
complete.

10

As a writing sub-process example, the engine diagnostic is extended with the
following functionality: "The 15 sets of control data are stored. They are all
stored separately at different times in different files (15 different sub-processes)."
Since there are 15 kinds of sensor control data updated at different times (15
unique sub-processes), there are 15 ICWs.

Here is how the Control Transactional Functions are related to control processes:

 Figure 2 - Diagram of Control Transactional Functions

As with FPA, all new function types are based on the functional perspective of the
application, rather than on the technical perspective. The difference between the standard
FPA technique and the proposed extension (FFP) is therefore the additional function types
(ICLG, ECLG, ECE, ECX, ICW, ICR). These new function types are only used to
measure control data and control processes. The other types of data and processes, called
management data and processes here, are counted with the standard FPA technique (see
Figure 3 and Table 3).

 FFP Management Function Types:
Internal Logical File (ILF) existing in FPA, unchanged in FFP
External Interface File (EIF) existing in FPA, unchanged in FFP
External Input (EI) existing in FPA, unchanged in FFP
External Output (EO) existing in FPA, unchanged in FFP
External Inquiry (EQ) existing in FPA, unchanged in FFP

 FFP Control Function Types:
Internal Control Logical Group new function type, similar to ILF
External Control Logical Group new function type, similar to EIF
External Control Entry new function type, similar to a subset of EI
External Control Exit new function type, similar to a subset of EO/EQ
Internal Control Read new function type, similar to a subset of EI/EO/EQ
Internal Control Write new function type, similar to a subset of EI

Table 3 - List of FFP Function Types

Control Process
ECE

ICR

ECX

ICW

11

Figure 3 - Diagram of FFP Function Types

Thus, the unadjusted count of an application using the proposed extension (FFP) can be
expressed as follows:

FFP= Management FP + Control FP
= (FPA - Control information) + Control FP

5.2 Point assignment

The previous section described how to identify function types. The next step is to assign
points to each function identified in the measured application.

5.2.1 Point assignment for IFPUG Function Types

For the IFPUG Function Types (ILF, EIF, EI, EO and EQ: Table 3), the point assignment
procedure is unchanged in FFP. Thus, the IFPUG (IFPUG, 1994) point assignment
procedure is applicable as is.

User 1
 (Person or application)

User 2
(Person, application or

mechanical device)

Management
Processes

Control
Processes

ILF ICLG

ECLG

EIF

Boundary

E
I

E
O

E
Q

E
C

E

E
C

X

IC
W

IC
R

ICR

EI: Enternal Input
EO: External Output
EQ: External Inquiry
ILF: Internal Logical File
EIF: External Interface File
ECE: External Control Entry
ECX: External Control Exit
ICR: Internal Control Read
ICW: Internal Control Write
ICLG: Internal Control Logical Group
ECLG: External Control Logcial Group

: Process

: Group of data

: User

12

5.2.2 Point assignment for Control Function Types

5.2.2.1 Point assignment for Control Data Function Types

5.2.2.1.1 Multiple Occurrence Logical Group

Multiple Occurrence Logical Groups (see Section 4.1) have the same structure as ILFs and
EIFs in FPA. Consequently, they are counted in exactly the same way as these two FPA
function types, that is, using the number of Data Element Types (DETs) and Record
Elements Types (RETs) and the corresponding complexity matrix (see IFPUG 1994 for
definitions and matrices).

5.2.2.1.2 Single Occurrence Logical Group

The number of points assigned to a Single Occurrence Logical Group (see Section 4.1)
depends only on the number of DETs. Once it is determined, the number of points is
calculated as the integer part of ((number of DETs / 5) + 5)8 for ICLG. For ECLG, the
formula is integer(number of DETs/5). These formulas are designed to keep the size of
single occurrence groups as aligned as possible with the size of ILFs and EIFs of FPA. The
following tables present examples of the formulas:

Single occurrence ICLG point assignment examples: Integer((number of DETs / 5) + 5):

Number of DETs: 10 DETs 35 DETs 50 DETs
Points: 7 12 15

Single occurrence ECLG point assignment examples: Integer(number of DETs/5):

Number of DETs: 10 DETs 35 DETs 50 DETs
Points: 2 7 10

5.2.2.2 Point assignment for Control Transactional Function Types

The number of points assigned to Control Transactional Functions Types (ECE, ECX, ICW
and ICR) depends on the number of DETs9. Once the number of DETs is determined, the
following table is used to translate DETs into points10:

8 A Single Occurrence Logical Group comprises all single control values (from a functional perspective) of
the application being measured. Since it contains all single values of the application, there can be only one
of them in an application. In typical real-time applications, the number of such values varies from a few
up to hundreds. That is why a formula is used rather than a 3-level table like the standard FPA technique.
It allows FFP to consider a large range of Single Occurrence Logical Groups.

9 DET: A unique user recognizable, nonrecursive field (IFPUG 94, glossary) that is either entered, exited,
read or written depending the function type.

10 In the engine diagnostic example, the sub-process that sends the alarm message to the dashboard has 2
DETs (number of the button, action code: turn-on), the number of points is therefore 1 (column “1 to 19
DETs” Table 4).

13

DETs: 1 to 19 DETs 20 to 50 DETs 51 + DETs
Points: 1 2 3

 Table 4 - Control Transactional Function Type Translation Table

These range boundaries (1 to 19, 20 to 50, 51+) were chosen in order to bring the size of
Control Transactional Function Types in as close alignment as possible with FPA.

6. FFP practice feedback

This report has presented FFP definitions and examples. We now discuss the practical
aspects of counting FFP. A number of industrial real-time applications have already been
counted. Feedback from these field tests is reported below.

6.1 Ease of understanding

All FFP counts were done with the support of real-time application experts (industry people
familiar with the application being counted). Once the application experts had understood
the definition of the Control Function Types (after a few hours), they had no problem in
identifying them. In fact, after a full day of FFP counting, the application experts were able
to count with little assistance from functional size experts familiar with FFP.

6.2 Counting effort

Based on the counting experiments carried out, the FFP counting effort is similar to the
FPA one. On the one hand, more functions have to be identified with FFP; on the other
hand, being simpler11, the new Control Transactional Functions are more quickly identified.
Besides, application experts seem to require less counting assistance from functional size
experts, again because Control Transactional Functions are simpler to deal with.

6.3 Importance of documentation

An adequate source of functional information must be available to count an application.
This functional information is provided by application experts or by documentation of the
application. Like FPA, FFP is dependent on the quality of the functional information.
Based on the counting experiments carried out, the quality of the functional information
typically available is adequate for counting FFP.

11 Control Transactional Function Types are simpler because they are associated with only one sub-process.
Management Transactional Function Types may comprise many sub-processes, and grouping them into
elementary processes may take time.

14

6.4 Early FFP counts

It is possible to count control function types at an early stage of development (feasibility for
example). Despite additional function types, the FFP level of detail is similar to the FPA
one. To use FPA at an early stage of development, one must usually approximate the count
because not all functional information is available. Over the years, a number of FPA early
count approximation methods have been developed. Similar approximation methods can be
applied to FFP. Of course, one should not expect, at this point, that FFP approximation
methods will be as mature as FPA ones.

7. Summary

The development of a real-time software functional measure is an important research
challenge. Such a measure should allow meaningful productivity benchmarking and the
development of estimation models based on functional size. One of the first steps in
achieving real-time software benchmarking and estimation models is to have measurement
specialists working with the same set of rules. To some extent, this would allow
measurement specialists to build on what has been achieved by others, rather than to start
from scratch with their own rules or interpretations of existing rules. In a way, this is what
happened with Function Points for MIS applications. Since Albrecht published the current
structure of Function Points in 1984 (Albrecht 1984), many people have been working with
this measure. In fact, a number of project databases12 are based on this set of rules which
has been significantly refined by IFPUG over the past 10 years. Hopefully, once the
industry agrees on a set of rules to measure the functionality of real-time software, it will
become possible to create better productivity and estimation models for this type of
software.

This report has presented the first version of FFP, and the authors recognize that there is
room for improvement. Among other things, the weights may need to be re-calibrated.

In addition, we are currently working on detailed counting rules and procedures based on
the framework developed by IFPUG. Version 1.0 of the counting rules and procedures is
now being tested at industrial sites.

We would like FFP to evolve in ways that are aligned as much as possible with the standard
FPA technique (IFPUG, 1994). We are open to collaboration with corporations and
measurement associations to produce the next version of FFP.

12 For example: Gartner Group, International Software Benchmarking Standards Group, Howard Rubin
Associates, Software Productivity Research.

15

Glossary

The following definitions should be used for FFP, in addition to the IFPUG (IFPUG, 1994)
glossary.

Control data: Data used by the application to control directly or indirectly the behavior of
an application or a mechanical device.

Control event: An event that triggers processing from a functional perspective.

Control process: Process that controls directly or indirectly13 the behavior of an application
or a mechanical device. It comprises all sub-processes associated with a control event.

Data function type: The functionality provided to the user to meet internal and external
data requirements. Data types are defined as ICLG, ECLG, ILF and EIF.

Functional perspective: Point of view is of the functionality delivered by the application; it
excludes technical and implementation considerations.

Management data: Data used by the application to support a user in managing
information, particularly business and administrative information.

Management process: Process the purpose of which is to support the user in managing
information, particularly business and administrative information.

MIS applications: Applications produced to support information, business and
administrative operations.

Process: In the context of this report, a process is all processing associated with a control
event.

Sub-process: In the context of this report, it is the smallest processing step identifiable from
a functional perspective as either an entry, exit, read or write.

Transaction: All processing associated with an occurrence of an external trigger. For
example, in a transaction file, each record acts as trigger when the file is processed by
an application.

Transactional function type: The functionality provided to the user by an application to
process data. Transactional function types are defined as ECE, ECX, ICR, ICW, EI,
EO and EQ.

Update: The ability to modify data.

User: In FFP, the IFPUG definition of “user” has been extended to include not only human
beings, but also applications and mechanical devices.

13 For example, a diagnostic process that reports to a human being is not directly controlling an application
or mechanical device but it is a control process.

16

References

Abran, A., Analysis of the measurement process of Function Points Analysis, PhD. Thesis, Département de
génie électrique et de génie informatique, École Polytechnique de Montréal, 1994, 405 pages.

Abran, A., and Robillard, P. N., Function Point Analysis, An Empirical Study of its Measurement Processes
IEEE Transactions on Software Engineering, vol. 22, no. 12, pp. 895-909, Dec. 1996.

Albrecht, A.J., AD/M Productivity Measurement and Estimate Validation, IBM Corporate Information
Systems, IBM Corp., Purchase, N.Y., May 1984.

Conte, S.D., Shen, V.Y., and Dunsmore, H.E., Software Engineering Metrics and Models, Benjamin
Cummins Publishing, 1986, 396 pages.

Cooling, J. E., Software Design for Real-Time Systems, Chapman and Hall, 1991.

Desharnais, J. M., Statistical Analysis on the Productivity of Data Processing with Development Projects
using the Function Point Technique. Université du Québec à Montréal. 1988.

Galea, S., The Boeing Company: 3D Function Point Extensions, V2.0, Release 1.0, Boeing Information and
Support Services, Research and Technology Software Engineering, June 1995.

Grady, R. B., Practical software metrics for project management and process improvement Prentice Hall,
New Jersey, 1992, 270 pages.

Hetzel, B., Making Software Measurement Work, QEB Publishing Group, 1993, 290 pages.

IEEE, IEEE Standard Computer Dictionary: A compilation of IEEE Standard Computer Glossaries, IEEE
Std 610-1990, The Institute of Electrical and Electronics Engineers, Inc., New York, NY, 1990.

IFPUG (1994). Function Point Counting Practices Manual, Release 4.0, International Function Point Users
Group - IFPUG, Westerville, Ohio, 1994.

Illingworth, V., (1991) (editor), Dictionary of Computing, Oxford University Press, 3rd edition, 1991, 510
pages.

Ince, D. C., History and industrial applications, in Fenton, N.E., Software Metrics: A Rigorous Approach,
Chapman & Hall, UK, 1991, 337 pages.

Jones, C., A Short History of Function Points and Feature Points, Software Productivity Research, Inc.,
Cambridge, Mass, 1988.

Jones, C., Applied Software Measurement - Assuring Productivity and Quality, McGraw-Hill, 1991, 493
pages.

Jones, C., Applied Software Measurement - Assuring Productivity and Quality, McGraw-Hill, 1996, 618
pages.

Kan S. H., Metrics and Models in Software Quality Engineering, Addison-Wesley, 1993, 344 pages.

17

Kemerer, C. F., Reliability of function point measurement: a field experiment, Communications of the ACM, vol. 36, pp. 85-
97, 1993.

Kitchenham B., Making Process Predictions, in Fenton, N.E., Software Metrics: A Rigorous Approach,
Chapman & Hall, UK, 1991, 337 pages.

Laplante, P., Real-Time Systems Design and Analysis: An Engineer’s Handbook, The Institute of Electrical
and Electronics Engineers Inc., New York, NY, 1993, 339 pages.

Stankovic, J. A. and Ramamritham, K., Tutorial Hard Real-Time Systems, IEEE Computer Society Press,
Washington D.C., 1988, 618 pages.

Whitmire, S. A., 3-D Function Points: Scientific and Real-Time Extensions to Function Points Proceedings
of the 1992 Pacific Northwest Software Quality Conference, June 1, 1992.

18

For more information on FFP, here is how to contact the authors of the report:

Alain Abran Ph.D.

Software Engineering Management Research Laboratory
Departement d'informatique
Universite du Quebec a Montreal
C.p. 8888 succursale centre-ville
Montreal (Quebec) Canada H3C 3P8

Telephone: 514 - 987-3000 (8900)
Fax: 514 - 987-8477

E-mail: abran.alain@uqam.ca
Web site: http://saturne.info.uqam.ca/Labo_Recherche/lrgl.html

Jean-Marc Desharnais M.Sc.A., C.F.P.S.

Software Engineering Laboratory in Applied Metrics
7415 Beaubien East suite 509
Anjou (Quebec) Canada H1M 3R5

Telephone: 514 - 355-2872
Fax: 514 - 355-3600

E-mail: Desharnais.Jean-Marc@uqam.ca
Web site: http://www.lmagl.qc.ca

Marcela Maya M.Sc.A., C.F.P.S.

Software Engineering Management Research Laboratory
Departement d'informatique
Universite du Quebec a Montreal
C.p. 8888 succursale centre-ville
Montreal (Quebec) Canada H3C 3P8

Telephone: 514 - 987-3000 (6647)
Fax: 514 - 987-8477

E-mail: Maya.Marcela@uqam.ca
Web site: http://saturne.info.uqam.ca/Labo_Recherche/lrgl.html

Denis St-Pierre M.Sc., C.F.P.S.

Software Engineering Laboratory in Applied Metrics
7415 Beaubien East suite 509
Anjou (Quebec) Canada H1M 3R5

Telephone: 514 - 355-2872
Fax: 514 - 355-3600

E-mail: Denis.St-Pierre@CRIM.CA
Web site: http://www.lmagl.qc.ca

