
 1

Experimental Support Analysis of the Software Construction
Knowledge Area in the SWEBOK Guide (Trial Version 1.0)

Witold Suryn, François Robert, Alain Abran, Pierre Bourque, Roger Champagne
École de Technologie Supérieure

September 28, 2002

Abstract

The editorial team of the SWEBOK Guide received feedback about its
use at the National Technological University (NTU), confirming the
usefulness of the Guide with the exception of chapter four, Software
Construction, which did not map easily either to industry practices or
to current academic curricula.

An initial analysis of this specific SWEBOK chapter enabled us to
propose an initial revision of the structure of topics in this knowledge
area.

In addition, we conducted a review, presented here, of the chapter to
identify the level of experimental support for each topic mentioned in
this chapter. In order to classify the level of support, the classification
in twelve experimental methods for validating technology by Zelkowitz
and Wallace is used. It permits the identification of some of its
weaknesses and provides further guidance on content improvements of
the chapter.

 2

1 Introduction

The SWEBOK project was established with five objectives:

1. Characterise the contents of the software engineering discipline.
2. Provide a topical access to the Software Engineering Body of Knowledge.
3. Promote a consistent view of software engineering worldwide.
4. Clarify the place, and set the boundary, of software engineering with respect to

other disciplines such as computer science, project management, computer
engineering and mathematics.

5. Provide a foundation for curriculum development and individual certification
material.

It must be emphasised that the product of the SWEBOK project is not the Body of
Knowledge itself, but rather a guide to this knowledge. The knowledge already exists; the
purpose of the project is to gain consensus on a characterisation of that knowledge which
illuminates the nature of the software engineering discipline and explains what
knowledge is generally accepted.

In May 2001, trial version 0.95 of the Guide to the Software Engineering Body of
Knowledge (SWEBOK) [ABR01] was released in a web format and, in December 2001,
it was published in book format. The guide is the result of more than three years of
review by over five hundred members of the software engineering community. Two
important principles guided the review process: transparency and consensus.
- Transparency: the development process is itself documented, published and

publicised so that important decisions and status are visible to all concerned parties;
- Consensus: the only practical method for legitimising a statement of this kind is

through broad participation and agreement by all significant sectors of the relevant
community.

The guide is now ready for a trial period of two years by its target audiences:

• Private and public organisations desiring a consistent view of software
engineering for the purpose of defining education and training requirements,
classifying jobs and developing performance evaluation policies;

• Practising software engineers;
• Makers of public policy regarding licensing and professional guidelines;
• Professional societies defining accreditation and certification policies for

university curricula and guidelines for professional practice;
• Educators and trainers defining curricula and course content;
• Students of software engineering.

The feedback collected during the trial period will be analysed and will serve as the basis
for further improvements to the Guide. During the fall of 2001, the SWEBOK editorial
team received feedback on the use of the Guide by the National Technological University
[FRAI01] as the neutral basis for the evaluation of software engineering courses offered
by various universities. Feedback received confirmed the usefulness of the Guide for all
documented Knowledge Areas, with the exception of the Software Construction chapter

 3

because its content did not map easily to industry practices or actual academic
curriculum.

The purpose of this study is to analyse, from an engineering perspective, the content of
one Knowledge Area of this Guide: Software Construction - chapter 4, with the
classification of experimental validation methods by Zelkowitz and Wallace [ZEL01].

The current breakdown of topics in this Knowledge Area is reviewed in section 2,
followed in section 3 by a description of the twelve experimental validation methods of
Zelkowitz and Wallace. Section 4 presents the analysis of chapter four – Software
Construction. A summary concludes the paper.

2 Breakdown of topics

2.1 Current breakdown representation
At the beginning on our analysis, we observed that the breakdown of topics, as presented
on pages 4 to 10 of the SWEBOK Guide and reproduced here in Figure 1, did not
correspond to the actual structure of the chapter itself. In fact, the content of Figure 1
corresponds only to the text in section 3.3 of chapter 4. It is not an accurate
representation of the full chapter, as it deals with only a subset of the content of the whole
chapter, and some elements of knowledge, or topics, are not included in the breakdown.
In addition, there are significant duplications in the figure itself. By comparison, in the
other chapters of the SWEBOK Guide, all topics have been included in the taxonomies
(or breakdowns) of the respective Knowledge Areas.

Software Construction

Reduction of
Complexity

Anticipation of
Diversity

Structuring for
Validation

Use of External
Standards

Linguistic

Formal

Visual

Linguistic

Formal

Visual

Linguistic

Formal

Visual

Linguistic

Formal

Visual

Figure 1: Breakdown of topics as represented in the SWEBOK Guide (trial version 1.0)

2.2 Initial revised breakdown representation
To facilitate analysis of this Knowledge Area, we redrafted the representation of the
breakdown of topics on the basis of the full set of concepts as actually described textually

 4

in the chapter. The corrected breakdown representation is presented in Figure 2. In later
steps, on the basis of our analysis from the two selected viewpoints, we propose further
improvements to this initial revision. In “A Technical Review of the Software
Construction Knowledge Area in the SWEBOK Guide” [FRO01] we proposed a further
set of improvements to this structure, on the basis of Vincenti's classification of
engineering knowledge types.

Software Construction

Definitions of the
Software K.A.

Breakdown of
Topics

Software Construction
and Software Design

The Role of Tools
in Construction

The Role of Integrated
Evaluation in Construction

The Role of Standards
in Construction

Construction Languages

Programming Languages

Principles of
Organization

Styles of
Construction

Linguistic
Formal
Visual

Reduction of Complexity

Anticipation of Diversity

Structuring for Validation

Use of External Standards

Synthesis

Reduction of Complexity

Anticipation of Diversity

Structuring for Validation

Use of External Standards

Linguistic
Formal
Visual

Linguistic
Formal
Visual

Linguistic
Formal
Visual

Linguistic

Formal

Visual

Manual and Automated
Construction

Figure 2: Revised breakdown of topics on the basis of the actual text in this SWEBOK
chapter

3 Experimental validation method classification

The content of the SWEBOK Guide was written initially by individual authors with
expertise in the respective Knowledge Areas, and then widely reviewed by independent
experts. While the content of each Knowledge Area is derived from the consensual view
of the authors and of the extensive number of reviewers, with the support of references
where they could be identified and agreed upon, the whole review process was still based
on expert opinion. From an engineering perspective, it is important to know the level of
experimental support within each of the respective Knowledge Areas.

Of course, there are multiple types of experimental validation methods, with
corresponding strengths and weaknesses. Zelkowitz and Wallace [ZEL01] have identified

 5

and classified twelve experimental methods for validating technology in software
engineering. We will use their classification of experimental methods to characterise the
experimental foundation and the validity of software engineering statements made in this
chapter, from an engineering perspective. This classification and the twelve validation
methods within are:

Observational methods

1. Project monitoring
2. Case study
3. Assertion
4. Field study

Historical Methods

5. Literature search
6. Legacy data
7. Lessons learned
8. Static analysis

Controlled Methods

9. Replicated (e.g. Replication of results)
10. Synthetic
11. Dynamic analysis
12. Simulation

Observational methods refers to methods that collect data during the development of the
project. It includes Project monitoring, Case studies, Assertion and Field studies. Project
monitoring refers to data collected during development, but with no specific goals. The
case study is an in-depth monitoring of the project. By contrast to project monitoring,
data are collected with specific goals and serve some type of predefined analysis. The
field study extends the case study by comparing different projects simultaneously.
Assertion, on the other hand, refers to the absence of a “true experimentation” in light of
“good scientific principles” or the absence of experimentation at all. An assertion is an
affirmation by an expert that only relies on his own experience or with potentially biased
experiments done with the goal of proving that his technology is superior, rather then
comparing different approaches.

Historical methods refers to all methods based on data collection of completed projects.
This group includes Literature search, Legacy data, Lessons-learned and Static analysis.
Literature search refers to the review of results of published papers and other public
documents. Legacy data refers to the analysis of data left by a completed project such as
source program, specification document, design document, test plan, etc. It is a form of
software archaeology. Lessons-learned refers to lessons-learned documents generally
produce after a large industrial project is completed. Static analysis refers to structural
analysis performed on a completed product. Such analysis includes, for instance, software
complexity and data flow analysis.

 6

Controlled methods refers to methods that use multiple instances of an observation in
order to provide for statistical validity of the results. This group includes Replicated
experiments, Synthetic environment, Dynamic analysis and Simulation. Replicated
experiments refers to a controlled environment where the same task is performed by
different teams or a different task is performed by the same team, or ideally both, in order
to provide a statistically valid basis of comparison. Synthetic environment refers to
experiments done in an artificial setting that mimics a larger system for economical or
other reasons. Dynamic analysis refers to methods that use a controlled environment to
execute a given product under specific conditions. Rather than reproducing the product at
a smaller scale, the complete product is put under specific experimentation by applying
externally given conditions. This includes applying scenarios and benchmarking
products. Simulation refers to the usage of a model representing the real environment.
Contrary to the dynamic analysis, it does not use the real product and contrary to
Synthetic environment, it does not use the real environment.

 7

4 Analysis of experimental support

For the classification of the experimental methods supporting each topic of the Software
Construction Knowledge Area, each of the references listed in the SWEBOK 'Matrix of
Topics vs. Reference Material' (SWEBOK, Chapter 4, section 4) was reviewed and
analysed. The experimental methods used for each topic are listed in Table 2. For each
specific sub-topic, the assignment of a specific experimental method type was based on
the text within the SWEBOK Guide, texts of referred documents (seminal references) and
the assessment of the empirical methods used by authors referenced.

4.1 Method used

Knowledge topic Method used
2.0 Definition
2.1 Software construction and software design Assertion
2.2 The role of tools in construction Field Studies
2.3 The role of integrated evaluation in construction Assertion
2.4 The role of standards in construction not applicable
2.5 Manual and automated construction Assertion
2.6 Construction Langages Assertion
2.7 Programming Languages not applicable
3.0 Breakdown
3.1 Principle of organisation
3.1.1 Reduction in complexity Field Studies
3.1.2 Anticipation of diversity Assertion
3.1.3 Structuring for validation Case Studies
3.1.4 Use of external standards not applicable
3.2 Style of construction
3.2.1 Linguistic not applicable
3.2.2 Formal not applicable
3.2.3 Visual not applicable

Table 2: Types of experimental method support for each knowledge sub-topic

It can be observed that almost every subtopic in this chapter, software construction, is
based on assertions. This clearly points to a possible lack of validated scientific
knowledge in the domain of software construction. The literature review has revealed
only three topics that were based on some form of experimental studies.

For the topic role of tools, Steve McConnell, in his book “Code Complete” [MCC01],
makes reference to two studies:

• A field study by Barry Boehm, concluding that only twenty (20) percent of tools
account for eighty (80) percent of tools usage;

• A survey, reported by Don Reifer, on the effectiveness of CASE tools.

 8

The topic reduction of complexity contains many references to studies ranging from the
effect of the level of code cohesion on error rate to the ease of modification on modular
program.

In the third topic, structuring for validation, many field studies also support the topic.
They are mostly, but not exclusively, reported by Steve McConnell in “Code Complete”
[MCC01].

5 Summary

The Software Construction Knowledge Area of the SWEBOK Guide was analysed with
the classification of experimental methods described by Zelkowitz and Wallace [ZE001].

From the insights gained from the identification of the experimental validation methods
supporting each sub-topic discussed, we find that most of the knowledge comes from
assertions by experts, and not from structured studies. This clearly points to the need for
much stronger and unambiguous empirical evidence to ensure that this Knowledge Area
develops progressively into a mature engineering discipline.

This analysis has revealed significant areas for improvement, from an engineering
perspective, in this Knowledge Area. Sound and robust experimental methods must
replace 'assertions' for most, if not all, of the topics in this Knowledge Area.

6 References:

[ABR01] Abran, A., Moore, J.W., Bourque, P., Dupuis, R., Tripp, L. “Guide to the

Software Engineering Body of Knowledge – Trial Version”. IEEE Computer
Society, Los Alamos, 2001.

[FRAI01] Frailey, Dennis J. Mason, James. “Using SWEBOK for Education Programs in

Industry and Academia”. Conference on Software Engineering Education and
training (CSEE&T), Covington, Feb 2002.

[FRO01] F. Robert, A. Abran, P Bourque, "A Technical Review of the Software

Construction Knowledge Area in the SWEBOK Guide " Software Technologie
and Engineering Practice Conference (STEP), Montreal, Quebec, October
2002.

[MCC01] McConnell, Steve. “Code Complete – A Practical Handbook of Software

Construction.” Microsoft Press, 1993.

[ZEL01] Zelkowitz, Marvin V., Wallace, Dolores R. “Experimental Models for

Validating Technology.” IEEE Computer, May 1998, pp. 23-31.

