
PATTERN-ORIENTED ARCHITECTURE FOR WEB 

APPLICATIONS 

M. Taleb, A. Seffah 
Human-Centred Software Engineering Group Concordia University, Montreal, Quebec, Canada 

Phone: +1 (514) 848 2424 ext 7165 and/or ext 3024 
Fax: +1 (514) 848- 3028  

mtaleb@encs.concordia.ca, Seffah@encs.concordia.ca  

A. Abran 
Software Engineering Department & Information Technology, 

École de Technologie Supérieure (ÉTS), Montréal, Québec, Canada 
Phone: +1 (514) 396-8632 
Fax: +1 (541) 396-8405 
aabran@ele.etsmtl.ca 

Keywords:  Design patterns, Pattern-oriented architecture, Software architecture and Web applications. 

Abstract:   A number of Web design problems continue to arise, such as: (1) decoupling the various aspects of Web 
applications (for example, business logic, the user interface, navigation and information architecture; and 
(2) isolating platform specifics from the concerns common to all Web applications. In the context of a 
proposal for a pattern-oriented architecture for Web applications, this paper identifies an extensive list of 
patterns aimed at providing a pool of proven solutions to these problems. The patterns span several levels of 
abstraction, from information architecture and interoperability patterns to navigation, interaction, 
visualization and presentation patterns. The proposed architecture will show how several individual patterns 
can be combined at different levels of abstraction into heterogeneous structures, which can be used as 
building blocks in the development of Web applications. 

1. INTRODUCTION 

The Internet and its languages offer major 
opportunities for developing a new generation 
architecture for Web software systems, the latest of 
which are highly interactive, platform-independent 
and run on the client Web browser across a network. 
This paper is aimed at providing a pool of proven 
solutions to many recurring Web design problems. 
Examples of such problems include: (1) decoupling 
the various aspects of Web applications such as 
business logic, the user interface, navigation and 
information architecture; and (2) isolating platform-
specific issues from the concerns common to all 
Web applications. 

In this paper, the definition of software architecture 
from (Buschmann, Meunier, Rohnert, Sommerlad, and 
Stal, 1996) is adopted: “the structure of the 
subsystems and components of a software system 

and the relationships between them typically 
represented in different views to show the relevant 
functional and non functional properties.” This 
definition introduces both the main architectural 
elements (for instance, subsystems, components and 
connectors), and covers the ways in which to 
represent them, including both functional and non-
functional requirements, by means of a set of views.  

A pool of proven solutions is proposed here in the 
form of an architecture and the related patterns for a 
pattern-oriented architecture for Web applications to 
address solving these problems. These individual 
patterns can then be combined at different levels of 
abstraction into heterogeneous structures, which can 
be used as building blocks in the development of 
these applications.  

This paper is organized as follows: section 2 
introduces related work on pattern-oriented 
architectures in general, such as the Model-View-



 

Controller model (3-tier architecture), the Core J2EE 
pattern model (5-tier architecture) and the Zachman 
model (multi-tier architecture); section 3, based on 
Zachman’s work, primarily describes the pattern-
oriented architecture proposed here and some 
patterns which we have identified and formalized; 
finally, section 4 presents a summary and directions 
for future work. 

2. RELATED WORK 

2.1. MVC Model 

The basic architecture we considered as a starting 
point is the Model-View-Controller (MVC) pattern, 
which is commonly used to structure Web 
applications that have significant processing 
requirements. This makes them easier to code and 
maintain. MVC is used here to describe the core 
components of Web application architectures, as it is 
a 3-tier architecture that is often used by Web 
application designers to maintain multiple views of 
the same data. At the design level, the MVC pattern 
features a clean separation of three types of objects: 

• Model: for maintaining data; 
• View: for displaying all or a portion of the 
data; 

• Controller: for handling events that affect 
the model or view(s). 

Other patterns may apply in the construction of these 
components. For example, in MVC, the views are 
tightly coupled with the control. Some authors have 
suggested using the “Command Action pattern” to 
ensure the separation of views and controls. 

In Web applications design, several aspects need to 
be considered separately, including dialogs, 
persistence, site management and error handling.  By 
itself alone on its own, the MVC architectural 
pattern is does not a sufficient solution that fully 
addresses these issues.  Other patterns are also 
required to:   

• Encourage the designer to consider other 
aspects of the dialog which are very important 
to the user, such as assistance or error 
management; 

• Facilitate the use for the interface 
descriptions, which are highly important to 
the designer (Booch, Rumbaugh and Jacobson, 
1999), (Myers, 1986), (Myers and Buxton, 1986) 
and  (Meyer, 1990). 

2.2. More advanced architecture: 
Modeling Core J2EE patterns 

Building on the MVC pattern, the Java Sun team has 
proposed a 5-tier architecture (from Web site 
www.developpez.com) to model the Core J2EE 
Pattern Architecture (from Web site www.sun.com). 
Java also provides support for the implementation of 
the MVC architecture using the Observer Interface 
and the Observable Classes that together implement 
the observer pattern. The Observable Class 
represents an observable object, or "data" in the 
model-view paradigm. It can be “sub-classed” to 
represent an object that the application wants to have 
observed. An observable object can have one or 
more observers. An observer may be any object that 
implements the Observer Interface. The core J2EE 
Patterns-oriented Web software architecture 
proposed in Web site www.sun.com. 

It can be observed that Web architecture needs to 
operate at six different levels, which are listed in 
Table 1. 

Table 1: Six architectural levels of a Web architecture 

Architectural 

Level 

Function 

1. Navigation Provides proven techniques 
for navigation 

2. Interaction Provides dialog styles to 
perform tasks  

3. Presentation Provides solutions for how 
to visually organize the 
contents or the related 
services into working areas, 
the effective layout of 
multiple data and the 
relationship between them 

4. Visualization Provides different visual 
representations/metaphors 
for grouping and displaying 
a large set of data into 
cognitively accessible 
chunks 

5. Interoperability Provides mechanisms for 
decoupling the various 
layers of a Web application 
into particular information 
categories (content) and 
within the four higher levels 
listed above 



 

6. Information Provides conceptual models 
and architectures for 
organizing the underlying 
content across multiple 
pages, servers, databases 
and computers 

To understand and define these levels in greater 
detail, we use the Zachman model, which is a multi-
layer architectural framework.  

2.3. Zachman Model as the basis for a 
multi-layer architecture 

(Zachman, 1987) and (Sowa and Zachman., 1992) 
proposed a multi-tier architecture which was an 
Enterprise Architecture schema depicting two 
distinct dimensions in a matrix. The columns 
classify answers to questions such as What (Data), 
How (Function), Where (Network), Who (People), 
When (Time) and Why (Motivation). The rows 
classify the audience’s perspectives: scope, owner, 
designers, builder, trades and functioning 
organization. This gives 36 cells that uniquely 
classify portions of the organization. The columns in 
the Zachman framework represent different areas of 
interest for each perspective and describe the 
dimensions of the systems development effort. 

3.  THE PROPOSED 

ARCHITECTURE 

3.1. Overview  

To tackle some of the weaknesses identified in 
related work, the Zachman theory, or set of 
concepts, proposes a 6-tier architecture of a pattern-
oriented generic classification schema for Web 
software architecture. We use the matrix 
classification proposed by Zachman, according to 
which the columns constitute the questions and the 
rows represent the six levels defined in Table 2. 

Table 2: Pattern-oriented generic classification schema for 
a Web software architecture 

 

 

 

 WHAT 
(Data) 

HOW  
(Function) 

WHERE 
 (Network) 

WHO 
 (People) 

WHEN 
 (Time) 

WHY 
(Motivation)

Navigation � �  �  � 

Interaction  � � � � � 

Presentation � �    � 

Visualization � �  �  � 

Interoperability � � � � � � 

Information � � � � � � 

3.2. Pattern taxonomy 

A taxonomy of patterns is proposed next. Examples 
of patterns are also presented to illustrate the need to 
combine several types of patterns to provide 
solutions to complex problems at the six 
architectural levels. This list is not exhaustive: there 
is no doubt that more patterns are needed, and that 
others have yet to be discovered. 

A number of Web pattern languages have been 
suggested; for example, Van Duyne’s The Design of 
Sites (Duyne, Landay, and Hong, 2003), Welie’s 
Interaction Design Patterns (Welie, 1999) and 
Tidwell’s UI Patterns and Techniques (Tidwell, 
1997) play an important role, and specific languages, 
such as Laakso’s User Interface Design Patterns 
(Laakso, 2003) and the UPADE Web Language 
(Engelberg and Seffah, 2002), have been proposed as 
well. Various specific pattern collections have been 
published, including patterns for Web page layout 
design (Tidwell, 1997), (Coram and Lee, 1998) and 
(Welie, 1999), for navigation around large 
information architectures, as well as for visualizing 
and presenting information.  

In our work, we investigate how these existing 
collections of patterns can be used as building 
blocks within the context of the proposed six-layer 
architecture. Which patterns at which level solve 
which problem is the question we try to answer. 

An informal survey conducted in 2004 by the HSCE 
Research Group at Concordia University identified 
at least six types of Web patterns that can be used to 
create a pattern-oriented Web software architecture. 
Table 3 illustrates these levels, and gives examples 
of patterns. 

 

 

 



 

Table 3: Pattern-oriented taxonomy schema for a Web 
software architecture 

Architectural Level and  

Category of Patterns 

Examples 

of Patterns 

Navigation 

Navigation Patterns 

This category of patterns 
implements proven techniques for 
navigating within and/or between a 
set of pages and chunks of 
information. 

- Shortcut 
pattern 
- 
Breadcrumb 
pattern 
- Index 
Browsing 
pattern 

Interaction 

Interaction Patterns 

This category of patterns focuses 
on the interaction mechanisms that 
can be used to achieve tasks and 
the visual effects they have on the 
scene, and, as such they relate 
primarily to graphical and 
rendering transforms. 

- Search 
pattern 
- Executive 
Summary 
pattern 

Presentation 

Presentation Patterns 

This category of patterns provides 
solutions for how the contents or 
the related services are visually 
organized into working surfaces, 
the effective layout of multiple 
information spaces and the 
relationship between them. These 
patterns define the physical and 
logical layout suitable for specific 
Web pages such as home pages, 
lists and tables 

- Home 
Page pattern 
- List pattern 
- Table 
pattern 
 

Visualization 

Visualization Patterns 

This category of patterns suggests 
different visual representations and 
metaphors for grouping and 
displaying information in 
cognitively accessible chunks. 
They mainly define the format and 
content of the visualization, i.e. the 
graphical scene, and, as such, 
relate primarily to data and 
mapping transforms. 

- Favourite 
Collectio
n pattern 

- Bookmar
k pattern 

- Frequentl
y Visited 
Page 
pattern 

-   
Navigatio
n Space 
Map 
pattern 

Interoperability 

Interoperability Patterns 

This category of patterns is aimed 
at decoupling the layers of a Web 
application; in particular, between 
the content, the dialog and the 
views or presentation layers. These 
patterns are generally extensions of 
the Gamma design patterns, such 
as MVC (Model, View and 
Controller) observer and command 
action patterns. Communication 
and interoperability patterns are 
useful patterns to facilitate the 
mapping of design between 
platforms. 
 

- Adapter 
pattern 
- Bridge 
pattern 
- Builder 
pattern 
- Decorator 
pattern 
- Façade 
pattern 
- Factory 
pattern 
- Method 
pattern 
- Mediator 
pattern 
- Memento 
pattern 
- Prototype 
pattern 
- Proxy 
pattern 
- Singleton 
pattern 
- State 
pattern 
- Strategy 
pattern 
- Visitor 
pattern 

Information 

Information Patterns 

This category of patterns describes 
different conceptual models and 
architectures for organizing the 
underlying content across multiple 
pages, servers and computers. Such 
patterns provide solutions to 
questions such as which 
information can be or should be 
presented on which device 

- Sequence 
pattern 
- Hierarchy 
pattern 
- Grid 
pattern 

Some examples of proposed categories of patterns 
are presented below.  

3.3. Information patterns 

This category shows the need to combine several 
types of patterns to provide solutions to complex 
problems. Here again, the list of patterns is not 
exhaustive: there is no doubt that more patterns still 
need to be documented, and that others have yet to 
be discovered.  



 

3.4. Navigation patterns 

Navigation patterns are fundamental in Web design, 
since they help the user move easily and in a 
straightforward manner between information chunks 
and pages. They can obviously reduce the user’s 
memory load (Nielsen, 1999) and (Lynch and Horton, 
1999). See also (Tidwell, 1997), (Welie, 1999), 
(Engelberg and Seffah, 2002) and (Garrido., Rossi, and 
Schwabe, 1997) for an exhaustive list of navigation 
patterns. 

3.5. Interaction patterns 

A critical design issue for resource-constrained 
(small) devices is how long it takes to determine 
whether or not a document contains relevant 
information. The search pattern with the complicity 
of the “Executive Summary pattern” (a page-layout 
pattern), provides users with a preview of underlying 
information before spending time downloading, 
browsing and reading large amounts of information 
included in subsequent pages.  

3.6. Visualization patterns 

Information overload is another fundamental issue to 
tackle through Web software architecture. Web 
applications, especially large Web portals, can 
provide access to millions of documents. The 
designer must consider how best to map the contents 
into a graphical representation that conveys 
information to the user while facilitating the 
exploration of the content of a large site. In addition, 
the designer must provide dynamic actions that limit 
the amount of information the user receives, while at 
the same time keeping the user informed about the 
content as a whole.  

Information visualization patterns can be used to 
solve another complex design problem, which is to 
provide a comprehensive map for a large amount of 
content that cannot be reasonably presented in a 
single view. They are generally combined in such a 
way that the underlying content can be organized 
into distinct conceptual spaces or working surfaces 
which are semantically linked to one another.  

3.7. Presentation patterns 

The presentation patterns define the appearance and 
the form of presentation of the application on the 
Web page. These patterns provide solutions for how 
the contents or the related services can be visually 

organized into working surfaces, the effective layout 
of multiple information spaces and the relationship 
between them. They define the physical and logical 
layout suitable for specific Web pages such as home 
pages, lists and tables.  

3.2.6. Interoperability pattern 

The communication and interoperability patterns are 
useful for facilitating the mapping of a design 
between platforms. Examples of patterns that can be 
considered to ensure the interoperability of Web 
applications include all Web patterns of 
Interoperability patterns. 

4. SUMMARIES AND FUTURE 

WORK 

In this paper, we have identified and proposed six 
categories of patterns, providing examples, for a 
pattern-oriented architecture for Web applications to 
resolve many recurring Web design problems, 
examples of which include: (1) decoupling the 
various aspects of Web applications such business 
logic, the user interface, navigation and information 
architecture; (2) isolating platform-specific problems 
from the concerns common to all Web applications. 
Our discussion has focused on the way to specify a 
pattern-oriented architecture using particular 
patterns. 
Future work will require the classification of each 
pattern and the illustration of each of them in UML 
class and sequence diagrams. Next, some 
relationships will have to be defined between 
patterns so that they can be combined to create 
models based on the resulting patterns. 

5. REFERENCES 

Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P. 
and Stal, I., 1996. A System of Patterns: Pattern-Oriented 
Software Architecture. West Sussex, England, John Wiley 
& Sons 
Zachman, John A., 1987. A Framework for Information 
Systems Architecture. IBM Systems Journal, vol. 26, no. 
3, IBM Publication G321-5298 
Sowa, J.F. and Zachman, John A., 1992. Extending and 
Formalizing the Framework for Information Systems 
Architecture. IBM Systems Journal, vol. 31, no. 3. IBM 
Publication G321-5488 



 

 
Architecture multi-tiers. Retrieved 2006, [Online] 
available at: http://java.developpez.com/archi_multi-
tiers.pdf 
Duyne, D. K. van, Landay, J. A. and Hong, J. I., 2003. 
The Design of Sites: Patterns, Principles, and Processes 
for Crafting a Customer-Centered Web Experience. 
Addison-Wesley 
Welie, M.V., 1999. The Amsterdam Collection of 
Patterns in User Interface Design, 
http://www.cs.vu.nl/~martijn/patterns/index.html 
Tidwell, J. Common Ground, 1997. A Pattern Language 
for Human-Computer Interface Design, 
http://www.mit.edu/~jtidwell/common_ground.html 
Engelberg, D. and Seffah, A., 2002. Design Patterns for 
the Navigation of Large Information Architectures, 11th 
Annual Usability Professional Association Conference, 
Orlando, Florida, July 8-12, 2002 
Laakso, Sari A., 2003. Collection of User Interface 
Design Patterns University of Helsinki, Dept. of 
Computer Science, September 16, 2003. 
http://www.cs.helsinki.fi/u/salaakso/patterns/ 
Coram, T. and Lee, J., 1998. Experiences – A Pattern 
Language for User Interface Design, at 
http://www.maplefish.com/todd/papers/experiences 
Lynch, P.J. and Horton, S, 1999. Web Style Guide: Basic 
Design Principles for Creating Web Sites. New Haven 
and London: Yale University Press 
Nielsen, J., 1999. Designing Web Usability: The Practice 
of Simplicity. New Riders 
Garrido, A., Rossi, G. and Schwabe, D., 1997. ‘Pattern 
Systems for Hypermedia’, Pattern Language of 
Programming Conference 
Booch, G., Rumbaugh, J. and Jacobson, I., 1999. The 
Unified Modeling Language User Guide, Addison-
Wesley 
Myers, B. A., 1986. Visual programming, programming 
by example, and program visualization: A taxonomy. In 
Proceedings of the ACM CHI’86 Conference on Human 
Factors in Computing Systems; ACM New York, pp. 271-
278; April 1986 
Myers, B. A. and Buxton, W., 1986. Creating highly-
interactive and graphical user interfaces by 
demonstration, International Conference on Computer 
Graphics and Interactive Techniques, Proceedings of the 
13th annual conference on Computer graphics and 
interactive techniques, Pages: 249 – 258 
Meyer, B., 1990. Conception et programmation par objets 
pour du logiciel de qualité, Inter-Éditions, Paris 
Core J2EE Patterns, Retrieved 2006, [Online] available 
at:http://java.sun.com/blueprints/corej2eepatterns/Patterns
/index.html 

 


