

Model-Driven Architecture for Web Applications

Mohamed Taleb1, Ahmed Seffah2 and Alain Abran3
1 Human-Centered Software Engineering Group, Concordia University

Montreal, Quebec, Canada
Telephone: +1 514 848 2424 ext. 7165

mtaleb@encs.concordia.ca

2 Human-Centered Software Engineering Group, Concordia University
Montreal, Quebec, Canada

Telephone: +1 514 848 2424 ext. 3024
seffah@encs.concordia.ca

3 Software Engineering Department & Information Technology, École de Technologie
Supérieure (ÉTS),

Montreal, Quebec, Canada
Telephone: +1 514 848 2424 ext. 3024

seffah@encs.concordia.ca

Abstract. A number of Web design problems continue to arise, such as: (1)
decoupling the various aspects of Web applications (for example, business logic, the
user interface, navigation and information architecture) and (2) isolating platform
specifics from the concerns common to all Web applications. In the context of a
proposal for a model-driven architecture for Web applications, this paper identifies
an extensive list of models aimed at providing a pool of proven solutions to these
problems. The models span several levels of abstraction such as business, task,
dialog, presentation and layout. The proposed architecture show how several
individual models can be combined at different levels of abstraction into
heterogeneous structures which can be used as building blocks in the development
of Web applications.

Keywords: Models, Model-Driven architecture, Software engineering, Web
applications, MDA, architecture

1. Introduction

The concept of the model has become a major paradigm in software engineering, and its
use represents a significant projection?? in terms of level of abstraction, endurance??,
generality and the capacity to evolve, among others. New issues are arising, however,

Formatted: Highlight

Formatted: Highlight

Deleted: ;

Deleted: will

related to the rebuilding of software engineering activities around this new approach
(model-driven architecture). These issues are associated with the more traditional issues
based on the concepts of the model and meta-model themselves, as well as on their
construction and validation (model architecture) (Is this what you mean? – ch).

The Internet and its languages offer major opportunities for developing new-generation
architectures for Web software systems, the latest of which are highly interactive and
platform-independent, and run on the client Web browser across a network. This paper is
aimed at providing a pool of proven solutions to many recurring Web design problems.
Examples of such problems include: (1) decoupling the various aspects of Web
applications such as business logic, the user interface, navigation and information
architecture; and (2) isolating platform-specific issues from the concerns common to all
Web applications.

In this paper, software architecture is defined as in [1]: “the structure of the subsystems

and components of a software system and the relationships between them typically

represented in different views to show the relevant functional and non functional

properties.” This definition introduces both the main architectural elements (for instance,
subsystems, components and connectors), and covers the ways in which to represent them,
including both functional and non-functional requirements, by means of a set of views.

In order to address these problems, a pool of proven solutions is proposed here in the
form of an architecture and the related models for a model-driven architecture for Web
applications. These individual models can be combined at different levels of abstraction
into heterogeneous structures which can then be used as building blocks in the
development of these applications.

This paper is organized as follows: section 2 introduces related work on model-oriented
architectures in general, such as the model driven architecture (MDA); section 3 primarily
describes the MDA proposed here, as well as some models which we have identified and
formalized; finally, section 4 presents a summary and directions for future work.

2. Related Work

The concept of the model plays a central role in the majority of scientific disciplines. In
some of them, it is considered to represent the "confluence" of the sciences. Models have
always been used in the computer sciences, but for a long time they were relegated to the
background relative to the source code, which still plays a dominant role in industry.
There is a growing tendency towards a reversal of these roles, however, and the concept
of the model is moving from “contemplative” mode (interpreted by humans) to
“productive” mode (interpreted by processors). Moreover, whereas the models have, until
recently, been used only in the design phase, and lately in the development phase, they
must from now on be embedded in the software itself to allow it to evolve dynamically.
The use of systematic, dynamic and well-equipped?? models is leading to the
consideration of model-driven architecture as a major paradigm in software engineering.

Formatted: Highlight

Deleted: of

2.1. MDA model

Models are commonly used to flexibly represent complex systems. They can be viewed at
many levels of abstraction, and complementary model views can be combined to give a
more intelligible and more accurate view of a system than a single model alone. Meservy
and Fensternacher [2] claim that many software development experts have long advocated
using models to help in understanding the problem that a system seeks to address; yet
development teams commonly employ models only in the early stages of design. Often,
once construction begins, teams leave models behind and never update them to reflect
their changing designs of the software.

Most software developers would agree that modeling should play a role in every
project [2]. However, there is no clear consensus on what that role should be, how
developers should integrate modeling with other development activities, and who should
participate in the modeling process [2].

In 2001, the Object Management Group introduced the MDA initiative as an approach
to system specification and interoperability based on the use of formal models (i.e.
definite and formalized models) [3; 4; 5; 6; 7]. The main idea behind MDA is to represent
business logic in the form of abstract models. These models are then mapped (partly
automatically) to different platforms according to a set of transformation rules. The
models are usually described by UML in a formalized manner which can be used as input
for tools to perform the transformation process.

The main benefit of MDA is that it clearly separates the fundamental logic behind a set
of specifications from the characteristics of the particular middleware that implements it.
In other words, the MDA approach distinguishes between the specifications of the
operation of a system from the details of the way that the system uses the capabilities of
its platform. This architectural separation of concerns constitutes the foundation of MDA,
and was created with a view to achieving three main goals: portability, interoperability
and reusability [8, 9, 10].

The MDA approach comprises three main steps:
• Specification of the system independently of the platform that supports it
• Specification of target platforms
• Transformation of system specifications into the specifications for a particular

platform
In short, MDA makes a sharp distinction between models of:

• the business model (the Computation-Independent Model, or CIM), sometimes
called a domain model,

• the business model in a specific technology context (PIM), and
• a model that is tied to the business and uses platform-specific code (PSM).

There are two others steps which can be integrated into MDA process development:
• Capture of requirements in a CIM. The Computation-Independent Model

captures the domain without reference to a particular system implementation

Deleted: modeling

Deleted: conceptions

Deleted: project

or technology; the CIM would remain the same even if the systems were
implemented mechanically, rather than in computer software, for example;

• Deployment of the system in a specific environment. The issue here is the
deployment of the system in several specific platforms and environments.

2.2. Compositional Structured Component Model

The authors have previously presented the CSCM model [11], which is designed to allow
the construction of software components with variable lists of functionalities selected
according to components’ composition descriptor instances at runtime. The capability
offered by CSCM components to select the required functionalities tackles the issue of an
excessive number of unwanted functionalities. Furthermore, CSCM can significantly ease
and simplify software maintenance, modification and reuse.

According the authors, the power of CSCM components [11] can be efficiently
accessed in the development of software application families. Such families are most
likely to reuse coarse- to large-grained software components across families of
applications with different functional configuration and capabilities.

3. The Proposed Architecture

3.1. Overview

To tackle some of the weaknesses identified in related work, set of concepts,? we propose
a 5-tier architecture of model-driven generic classification schema for a Web software
architecture.

3.2. Model taxonomy

A taxonomy of models is proposed below. As well, examples of models are presented to
illustrate the need to combine several types of models to provide solutions to complex
problems at the five architectural levels. This list is not exhaustive, as there is no doubt
that more models are needed and that others have yet to be discovered.

A number of Web models have already been suggested; for example, the OMG’s
Model-Driven Architecture [3, 4, 5, 6, 7], Si Alhir’s Understanding the Model Driven
Architecture (MDA) [8], Methods & Tools [8], Paternò’s Model-Based Design and
Evaluation of Interactive Applications [9], Vanderdonckt’s Task Modelling in Multiple
Contexts of Use [10], Msheik’s Compositional Structured Component Model: Handling

Comment [L1]: The relevance
of this section is not clear to the
readers. More context-rationale is
required

Comment [L2]: In the sentence
just before in 3.1, you talk about a
5-tier arcthitecure, and then you
switch to a ‘taxomony’. However,
this is not really a ‘taxomomy’.
Most probably you should drop
taxonomy throughout the text, and
stick with the 5-tier architecture.
Also, in the abstract, you talk
about an architecture, and not
about a taxonomy.

Comment [L3]: This
contradicts the Abstract which says
that the list is exhaustive.!!

Selective Functional Composition [11] and Puerta’s Modeling Tasks with Mechanisms
[12].

In our work, we investigate how these existing collections of models can be used as
building blocks in the context of the proposed five-layer architecture. Which models solve
which problems and at what level is the question we try to answer.

An informal survey conducted in 2004 by the HSCE Research Group at Concordia
University identified at least five types of Web model that can be used to create a model-
oriented Web software architecture.

The following are examples of the models in our taxonomy:???

3.3. Domain model

The domain model, sometimes, called a business model, encapsulates the important
entities of an application domain along with their attributes, methods and relationships
[13]. Within the scope of user interface development, it defines the objects and
functionalities accessed by the user via the interface. Such a model is generally developed
using information collected at the business and functional requirements consideration
stage. It defines the list of data and features or operations to be performed in a different
manner, i.e. by different users on different platforms. The first model-based approaches
used a domain model to drive the user interface at runtime. These domain models describe
the application in general, and include some specific information for the user interface.
For example, the domain model [13] includes:

• a class hierarchy of the objects in the application,
• the properties of the objects,
• the actions that can be performed on the objects,
• units of information (parameters) required by the actions, and
• pre- and post-conditions for the actions.

In their basic form, domain models should represent the important entities along with
their attributes, methods and relationships. This kind of a domain model corresponds to
the object model of recent object-oriented software development methodologiess.

Consequently, the way to integrate user interface and system development is with the
simultaneous use of the data model. This is why recent model-based approaches include a
domain model known from software engineering methodologies. Four other models are
then derived from this model: the task, dialog, presentation and layout models.

3.4. Task model

With the task model, the way in which activities can be performed to reach the user’s
goals for an interactive system [9] can be described. Designers can use them to develop
integrated descriptions of the system from a functional and interactive point of view. They

Formatted: Highlight

Comment [L4]: The structure
of this paragraph is unusual. It is
essential to the understanding of
the paper? If not, it can be deleted.

Comment [L5]: This is a weak
rational – approach. I would
suggest to delete this. It is not
essential.

Deleted: only real

Comment [L6]: In the
subsequent section, you say the
opposite: that the domain model is
derived from the other ones!!!

Is ‘derived’ the correct term?

Deleted: is

typically decompose, hierarchically, tasks and subtasks into atomic actions [10]. In
addition, the relationships between tasks are described in correlation with the execution
order or dependencies between peer tasks. Tasks may contain attributes about their?
importance, duration of execution and frequency of use.

For our purposes, we must revisit the following definition:
A task is a goal which, along with the ordered set of tasks and actions, would
satisfy that goal in the appropriate context [13].

This definition explains the intertwined nature of tasks and goals: actions are required
to satisfy goals. Furthermore, the definition allows tasks to be decomposed into sub-tasks,
and there exists some ordering among the sub-tasks and actions. In order to complete this
definition we need to define also goal, action and artifact:

A goal is an intention to maintain or change the state of an artifact (based on
[13]).

An action is any act that has the effect of maintaining or changing the state of
an artifact (based on [13]).

An artifact is an object that is essential to a task. Without this object, the task
cannot be performed. Moreover, the state of this artifact is usually changed in
the course of performance of the task. Artifacts are real things that exist in the
context of task performance, e.g. the business. Artifacts are modeled as objects
and represented in the business model. This implies a close relationship
between the task model and the business model.

With these definitions, we can derive the information necessary to represent them in a
task model. According to [13], one task description includes:

• a goal,
• a non-empty set of actions or other tasks that are necessary to achieve the goal,
• a plan of how to select actions or tasks, and
• a model of an artifact, which is influenced by the task.

Consequently, the development of the task model and the development of the domain
model are interrelated. One of the goals of model-based approaches is to support user-
centered interface design. Therefore, they must enable the user interface designer to create
the various task models. One other model is then derived from this model: the domain
model.

3.5. Dialog model

This model makes it possible to provide dialog styles to perform tasks and to provide
proven techniques for conducting the dialog. The dialog model defines the navigational
structure of the user interface. It is a more specific model and can be derived in large part
from the more abstract task, user and business object models.

A dialog model is used to describe the human-computer conversation. It specifies when
the end-user can invoke commands, functions and interaction media, when the end-user

Formatted: Highlight

Deleted: can rethink

Deleted: .

can select or specify inputs, and when the computer can query the end-user and present
information [14]. In other words, the dialog model describes the sequencing of input
tokens, output tokens and the way in which they are interleaved. It describes the
syntactical structure of human-computer interaction. The input and output tokens are
lexical elements. Therefore, this model specifies, in particular, the user commands,
interaction techniques, interface responses and command sequences permitted by the
interface during user sessions. Two other models are then derived from this model: the
domain and task models.

3.2.6. Presentation model

The presentation model describes the visual appearance of the user interface [13]. This
model exists at two levels of abstraction: abstract and concrete. In fact, it defines the
appearance and the form of presentation of the application on the Web page. This model
provides ways in which the contents or the related services can be visually organized onto
working surfaces, the effective layout of multiple information spaces and the relationship
between them. It defines the physical and logical layout suitable for specific Web pages,
such as home pages, lists and tables.

A presentation model describes the constructs that can appear on an end-user’s display,
their layout characteristics and the visual dependencies among them. The displays of most
applications consist of a static part and a dynamic part. The static part includes the
presentation of the standard “widgets” like buttons, menus and list boxes. Typically, the
static part remains fixed during the runtime of the interactive system, except for state
changes like enable/disable, visible/invisible. The dynamic part displays application-
dependent data which typically change during runtime (e.g. the application generates
output information; the end-user constructs application-specific data).

The former provides an abstract view of a generic interface, which represents a
corresponding task and dialog models. Three other models are then derived from this
model: the domain, task and dialog models.

3.2.7. Layout model

The layout model is realized as a concrete instance of an interface. It consists of a series
of user interface components which define the visual layout of the user interface and the
detailed dialogs for a specific platform and its context of use. There may be many
concrete instances of a layout model that can be derived from the presentation and dialog
models.

The layout model makes it possible to provide conceptual models and architectures for
organizing the underlying content across multiple pages, servers, databases and
computers. This model is concerned with the "Look & Feel" of Web applications and with
the construction of a general drawing area (e.g. Canvas widget), and all the output inside a

Formatted: Highlight

Formatted: Highlight

canvas must be programmed using a general-purpose programming language and a low-
level graphical library. Four other models are then derived from this model: the domain,
task, dialog and presentation models.

4. Summary and Future Work

In this paper, we have identified and proposed five categories of models, and provided
examples of them, for a model-driven architecture for Web applications to resolve many
recurring Web design problems, examples of which include: (1) decoupling the various
aspects of Web applications such business logic, user interface, navigation and
information architecture; and (2) isolating platform-specific problems from the concerns
common to all Web applications. Our discussion has focused on the way to specify a
model-driven architecture using particular models such as the domain, task, dialog,
presentation and layout models.

Future work will require the classification of each model and the illustration of each of
them in UML class and sequence diagrams. Next, some transformation rules will have to
be defined, as will some of the relationships between the models, so that they can be
combined to define the new methodology for software development based on the resulting
pattern categories that we have defined and formalized in our previous work and on the
various models proposed and defined in this paper.

5. References

1. Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., Stal, M.: A System of Patterns:
Pattern-Oriented Software Architecture. West Sussex, England, John Wiley & Sons (1996)

2. Thomas O. Meservy, Kurt D. Fensternacher.: ‘Transforming Software Development: An MDA
Road Map,’ IEEE Computer, Vol. 38, No. 8, pp. 52-58 (2005)

3. An ORMSC White Paper, ormsc/05-04-01.: ‘A Proposal for an MDA Foundation Model,’ V00-
02, OMG Group, [Online] available at: http://www.omg.org/docs/ormsc/05-04-01.pdf (2005)

4. Desmond Dsouza, Kinetium: ‘Model-Driven Architecture and Integration Opportunities and
Challenges,’ OMG Group, [Online] available at: ftp://ftp.omg.org/pub/docs/ab/01-03-02.pdf
(2001)

5. Richard Soley and the OMG Staff Strategy Group.: ‘Model-Driven Architecture,’ OMG Group,
[Online] available at: ftp://ftp.omg.org/pub/docs/omg/00-11-05.pdf (2000)

6. Dr. Jishnu Mukerji.: Document number ormsc/2001-07-01, Architecture Board, ORMSC, ‘Model
Driven Architecture (MDA) – Technical Perspective,’ OMG Group, [Online] available at:
http://www.omg.org/docs/omg/01-07-01.pdf (2001)

7. J. Miller, J. Mukerji.: ‘MDA Guide Version 1.0.1,’ OMG doc.omg/2003-06-01, [Online]
available at: http://www.omg.org/docs/omg/03-06-01.pdf (2003)

Formatted: Highlight

Comment [L7]: It will not be
clear to the readers what pattenrs
has to do here

8. Sinan Si Alhir.: ‘Understanding the Model Driven Architecture (MDA),’ Methods & Tools, Vol.
11, No.3, pp. 17-24, [Online] available at:
http://www.methodsandtools.com/archive/archive.php?id=5 OR
http://home.comcast.net/~salhir/UnderstandingTheMDA.PDF (2003)

9. F. Paternò.: ‘Model-Based Design and Evaluation of Interactive Applications,’ Springer (2000)
10. Vanderdonckt, J., Q. Limbourg and N. Souchon.: ‘Task Modelling in Multiple Contexts of Use,’

In Proceedings of DSV-IS 2002, 2002, Rostock, Germany, pp. 77-95 (2002)
11 Hamdan Msheik, Alain Abran, Eric Lefebvre.: ‘Compositional Structured Component Model:

Handling Selective Functional Composition’, IEEE 30th EUROMICRO Conference, pp. 74-81
(2004)

12. Puerta A.R., Tu S.W., Musen M.A.:‘Modeling Tasks with Mechanisms.’ International Journal of
Intelligent Systems, Vol. 8 (1993)

13. Egbert Schlungbaum.: ‘Model-based User Interface Software Tools Current state of Declarative
Models,’ Technical Report 96-30, Graphics, Visualization and Usability Center, Georgia
Institute of Technology, CADUI’96 workshop in Namur, Belgium (1996)

14. Puerta A.R.: ‘Model-Based Interface Development Environment’, IEEE Software 14, 41-47
(1997)

