
International Workshop on Software Measurement (IWSM’01) 173
Montréal, Québec, Canada – August 28-29, 2001

Functional Complexity Measurement

De Tran-Cao Alain Abran Ghislain Lévesque
de.trancao@lrgl.uqam.ca abran.alain@uqam.ca levesque.ghislain@uqam.ca

Software Engineering Management Research Laboratory
University of Quebec at Montreal (UQAM)

Abstract

The specific analysis of FPA, from a complexity
viewpoint, leads us to propose an initial model of
functional complexity in which software complexity is
a function of component complexity and system
complexity.

In this paper, we will use the next generation of
functional size methods proposed by the COSMIC team
[1][24], and we will look at it from the complexity
perspective to identify some factors that affect
complexity. Based on the analysis of such factors, we
will propose a model for measuring a specific
perspective of software complexity, which we will refer
to as functional complexity.

This model of functional complexity has two parts:
component complexity, that is, the complexity of a
functional process (COSMIC terminology) that comes
from both the data movements and data manipulation;
system complexity, that is, the complexity coming from
relationships between the functional processes like
communication, concurrence and multi-instances.
Measuring these factors independently gives us a set of
indicators or baselines for assessing software
complexity from a functional perspective.

Such a measure of functional complexity will then be
used in the future in empirical studies to investigate its
contribution to the improvements of estimation models
which sometimes fare poorly when based only on
functional size.

1. Introduction

Software size is used as a key factor in the evaluation
of development effort and productivity. Two
approaches widely known in the literature for
estimating software size are a posterior estimation such
as line of code (LOC) [10] and a priori estimation such
as function point analysis (FPA) [7]. FPA quantifies
software size in terms of function points which can be
determined from software artifacts like the requirement
specifications, design specifications, etc. Therefore,

FPA is more useful than LOC for predicting early
development effort [6][15].

However, FPA has also been greatly criticized. FPA is
not widely accepted for measuring the size of some
types of software, such as real-time software and
scientific software, due to some weaknesses such as
not taking into account the complexity of algorithms
and various other characteristics of real-time software
[3][21][26]. It has also been criticized for the weights
of the functional types and the degrees of influence of
the 14 general system characteristics (GSCs) that have
been determined subjectively both in terms of their
calibration scales and in the specific selection of
weights and degrees of influence [4][5][11][23].

The field of research on software complexity
investigates the assumption that the complexity of
software is an important indicator for estimating
software development effort. Some researchers even
postulate that complexity, and not size, may be the
most relevant characteristic in estimating effort [22].
From the perspective of complexity, FPA measures the
size of software by quantifying the complexity of some
base functions (Input, Output, Inquiry, etc.), as well as
of some system complexity factors. This leads
implicitly to two categories of software complexity:
component complexity and system complexity.
Component complexity comes from the components of
the software, and system complexity comes from the
general characteristics of the system. Other researchers
agree that there are two parts to software complexity:
the complexity of the components and the complexity
of the system [9].

In this paper, we use the generic model of software
proposed by the COSMIC team [1][2][24] to develop a
design for a measure of software functional
complexity. This COSMIC model addresses the
component view of the software functional process. On
the one hand, component complexity is defined as the
“internal complexity” of functional processes. System
complexity, on the other hand, is defined as the
complexity in the relationships between the functional
processes. We propose some factors and simple
measures of these factors for quantifying functional
complexity. The proposed measures of these factors

174

will provide baselines for an evaluation of software
complexity. They might also be used for many other
purposes, for example, choosing an environment or a
language for developing software, explaining the
difficulty of different tasks, etc.

2. What is complexity?

The first challenge when talking about measuring
software complexity is to answer the question: “What
is complexity?”

IEEE defines software complexity as “the degree to
which a system or component has a design or
implementation that is difficult to understand and
verify” [14].

Basili defines complexity as a measure of the resources
expended by a system while interacting with a piece of
software to perform a given task. If the interacting
system is a programmer, then complexity is defined by
the difficulty of performing tasks such as coding,
debugging, testing or modifying the software [8].

There is no consensus on how to define software
complexity, and Zuse says that the term complexity
measure is a misnomer: The true meaning of the term
software complexity is the difficulty to maintain,
change and understand software [25].

These definitions associate software complexity with
the difficulty of performing a task on the software. An
implicit assumption is that software complexity
correlates well with the work effort (man-hours)
required to develop or maintain the software. Among
the best known attempts at measuring software
complexity are: Software Science [12] which deals
with the difficulty of code comprehension, the
Cyclomatic Number [20] which deals with the
structure of code, and Information Flow [13] which
deals with the relationship of modules. More recently,
six metrics have been proposed to measure some
baselines in terms of Object Oriented Design, like
Number of Class, Number of Children, Depth of
Inheritance Tree, etc. [18].

The term 'functional complexity' in this paper is
interpreted as a candidate explanatory variable for
investigating the work effort required to develop the
software function, including decomposing and
allocating the functional processes and designing each
functional process to fulfill user needs as stated in the
software specifications.

3. Software model and software
complexity model

In the family of measurement methods based on
software specifications, only COSMIC-FFP [1][2][24]
explicitly proposes a generic software model (Figure 1)
which is based on functional requirements.

Figure 1: COSMIC-FFP generic software model [1]

According to this model, even at the earliest stages of
the software life cycle, software is considered as a set
of functional user requirements (FURs) that are
implemented by a set of functional processes. Each of
these is an ordered set of sub-processes for fulfilling
the functional process. There are two types of sub-
process: data movement type and data manipulation
type.

Figure 2: COSMIC-FFP sub-process types [1]

The COSMIC team has proposed a measurement
method called COSMIC-FFP, in which all data
movements are captured and taken into account
(Figure 2). The method does not deal with data
manipulation for functional size purposes. However,

Functional user
requirements

Functional process
type (1)

Data movement
type (2)

Data manipulation
type (3)

Sub-process

and

Software

(1): A sequence of data movement and transformation sub-process steps, triggered by an
 event external to the software item, which is complete when the data processed is
 consistent with respect to the external triggering event.
(2): A sub-process entering, exiting, reading or writing a data

item.(3): A sub-process transforming a data item to create another one.

USERS

Manipulation

I/O Boundary

Entry Exit

WriteRead

: Data movement types
 sub-processes

Storage Boundary

STORAGE

175

from the COSMIC point of view, a functional process
is activated by one triggering event. When it is
triggered, it receives the input data (Entry, Read),
manipulates data and generates the output data (Write,
Exit).

Here, COSMIC-FFP is not analyzed from its initial
perspective, that of functional size. Instead, we analyze
it from a complexity perspective, that is, in terms of
component complexity and system complexity. Of
course, COSMIC-FFP addresses only a part of
component complexity because it takes into account
only the number of data movements; it deals neither
with data manipulation nor characteristics of the whole
system. Can only data movements indicate the work-
effort required to analyze, design and code a functional
process? Is there any complexity coming from the
relationship between the functional processes?

We begin with some observations on the generic
software model in Figure 1.

3.1. Two types of complexity
From the user’s point of view, software is like an
integrated set of programs, documents and data for
resolving a problem or a set of problems. To the user,
software can be considered as a set of functions.
Indeed, the software specifications must describe all
the features of the software among which is the set of
FURs. This set describes all the functionalities that the
software must perform, but ignores the question of
how to do so. The software product and the set of
FURs are the same when comparing software
functions, but are, of course, expressed differently. The
FURs will be implemented by a set of functional
processes. There are, of course, difficulties in
decomposing or allocating FURs in the functional
processes and in designing each process to meet the
user needs. The former means the complexity in the
relationships between the functional processes and the
latter means the complexity within each functional
process.

3.2. Complexity in relationships between the
functional processes

The allocation of FURs is the decomposition of FURs
into a set of coherent functional processes. This task
determines the function of each of the processes, and
the relationships between them, designed to meet the
FURs. Intuitively, software is not a set of independent
functional processes. In fact, many functional
processes in the system must be well coordinated to
fulfill the user needs. We identify three primary types
of relationships between functional processes:

• Contr ol and data communication: This
relationship addresses the communication between
two processes. Two processes may be located on
the same site or on two different sites. A process
may send a triggering event (with or without
accompanying data) to activate another process.
The former may receive data (feedback) from the
latter (Figure 3). The complexity here is the
difficulty in determining the function of each
functional process and the way in which they
cooperate to fulfill the user needs. It represents the
coupling of two processes. The term coupling was
proposed by Yourdon and Constantine [11], and
refers to the degree of interdependence of modules.
In the glossary of COSMIC-FFP [1], coupling is
defined as a measure of interconnection among
functional processes. Coupling depends on the
complexity of the interface between functional
processes, the point at which entry or reference is
made to a functional process and what data crosses
the interface. Roughly speaking, this term is used to
indicate the degree of interdependence of two
processes. In fact, two processes having control
and/or data communication may be coupled in
many ways, for example: in a communication
protocol or in parallel, or they may be
synchronized. They are also coupled from a
functional point of view because each of them
carries out a part of the work (computational task
or functional user requirement). Control and data
communication could also be associated with some
of the 14 GSCs of FPA, like data communication or
distributed data processing, on-line data entry and a
part of complex processing [6]. It could also be
associated with parallelism and synchronization in
real-time systems [21].

functional
process A

functional
process B

data

triggering event

data

Figure 3: Communication between two processes.

• Concurrence: there is concurrency when more
than one process works in a mutually exclusive
mode but they are triggered simultaneously. Each
group of processes in concurrence needs a special
process to control it or at least a mechanism to deal
with it. This characteristic is very common in
multi-task, multi-user environments and in real-
time systems. This increases the difficulty in
designing, coding and testing the software. Many

176

kinds of concurrency can be observed in the
sharing of resources such as time, processor,
memory, etc. However, whereas they are often
identified in the system design, it is not easy to
identify them from the specifications. In the
specifications, concurrency in the sharing of
process data can sometimes be identified (Figure
4): where two processes simultaneously access one
data group in the mutually exclusive mode, there is
concurrency in accessing data.

functional
process A

functional
process B

Data Group

Mutually exclusive

Figure 4: Concurrence in accessing data

This relationship could be associated with the on-line
update GSCs of the FPA method [6] and to the
concurrency characteristic in Assert-R [21].

• Event or instance handling: from the point of
view of COSMIC-FFP, a process is triggered by an
event. COSMIC-FFP does not deal with how often
the process is triggered. Since the triggering event
of a process may come from many different
sources, the process may have many instances
associated with each event, and the system must at
least have a mechanism to handle these events
(Figure 5).

functional
process

instance 1

functional
process

instance 2

functional
process

.......

functional
process

instance ntriggering event
functional
process

triggering event

triggering event

triggering event

Figure 5: Many instances of a process.

For example, the process for withdrawing money
automatically from a bank machine can be
triggered by many people simultaneously at
different machines. If the system is distributed or
multi-tasked, we can find many instances of the
process. Each instance deals with an event. If the
system is consequent, then there is at least a
mechanism (queuing, for example) to handle these
events. This characteristic can be associated with

the data transaction rate of FPA and the assumption
is that more effort is needed to analyze and design
a mechanism for managing these instances, or for
handling the events. This characteristic is also very
important in real-time systems because the event
must be responded to within specified time
constraints.

In our experience, these relationships are fairly
common, especially in real-time software, and they
increase software functional complexity in terms of the
difficulty in analyzing, designing and implementing
solutions. Therefore, they are worth taking into
account in measuring software complexity.

3.3. Complexity in each functional process
The complexity in each functional process can be
associated with the difficulty related to developing it.
Generically, a process is a black box which receives
input data, manipulates them and produces output data.
Designing a process is determining a set of tasks or
sub-processes which must be executed to complete the
process, and includes some main aspects of the way to
manipulate the input data to produce the expected
output. COSMIC-FFP proposes a process model which
is a set of data movements and data manipulations. On
the one hand, in measuring functional size, the
COSMIC-FFP size model does not take into account
the data manipulations. On the other hand, data
manipulation is a sub-process transforming one data
item into another one; it can be interpreted as related to
algorithm complexity [16] or to a part of processing
complexity [6]. It is worth noting that often little is
known from the specifications document about how
the algorithm manipulates input to produce output.
Some aspects of algorithms can be:

• Different cases determined by the value of input –
output from the specifications: Normally, the
specifications describe not only the input and
output of the process, but also the conditions on
inputs to produce different expected outputs. For
example, the specification for the process that
verifies the user’s identification may be the
following: The user enters his user name and
password from the console. The process tests
whether or not the user name is correct. If the user
name is incorrect, the user is asked for another user
name with an error message “User name is
incorrect.” If it is correct, the process verifies the
password. If the password is correct, the main
menu is triggered to help the user perform the
operations. If not, a message “password is
incorrect” is shown and the user is asked for
another password. If the user fails the verification
process three times, the account is locked. In this

177

case, we have four different outputs depending on
the input values: message “Password is incorrect”,
message “User name is incorrect”, triggering event
for the main menu, and triggering event for locking
the user account. Consequently, the coding effort
(and the number of lines of code) depends on the
number of these cases. If only the input and output
are taken into account, we have the same value for
a process with a few cases as we do for one with
many more cases. Therefore, for complexity
measurement, a measure is proposed based on the
distinct number of cases, rather than on input and
output. Each case may be represented as a decision
rule:

IF (condition on input values) THEN (expected
outputs)

In addition, from the specifications, many constraints
can be specified. There are two types of constraints:
functional constraints like the integrity constraints and
business rules, and non-functional constraints like time
constraints, constraints on the development process,
constraints on standards, etc. A functional constraint
can also be interpreted as a case that is represented as a
decision rule.

Moreover, each condition on inputs can be considered
to represent one state of a functional process. A
functional process may exhibit different behaviors in
reaction to one event. Its behavior depends on its state
at the time of the event. 3D Function Points [26]
suggests that states and transitions are the primary
contributors to complexity. But the difficulty is that the
state diagram is not always available in the
documented software artifacts. Therefore, we must
often measure state and transition via different cases of
functional processes.

• Data movements: Another aspect of the
complexity of a process is the number of data
movements that must be performed in the process.
A data movement may receive data from the user
side (Entry) or from the storage device (Read),
move data to the storage device (Write) and
produce data output to the user side (Exit). Many
methods with a functional approach (FPA, Mark-II,
3D Function Points, COSMIC-FFP, etc.) use the
data movements in the process as a key factor
contributing to the functional size of the software.
The names, definitions and measures of data
movements may vary from method to method, but
in general they take into account the quantity of
data input-output as a representative indicator of
functional size. We therefore propose, similarly,
that data movements be considered as a factor of
complexity since they can be intuitively associated

with the tasks that must be performed in the
process.

At the specification stage, sometimes little is
known about the specifics of an algorithm. What
can be most easily observed, however, about the
algorithm for implementing the process are the
different cases of the process and data movements
in the process. These may be interpreted as the
number of logical steps which the algorithm must
take into account. Hence, the measurement of
these two factors is proposed as two indicators of
component complexity, i.e. the complexity of
functional processes.

Software Functional Complexity

System Complexity
(complexity in relationships between

functional processes)

Number of
internal events +
number of data

groups in
communication

Number of
data groups
accessed in
concurrence

Component Complexity
(complexity of each functional process)

Data and
Control

Communi-
cation

Concurrency
Multi-

instances
Different cases
of Input-Output

Data
movements

Number of
processes

having multi-
instances

Number of
cases

Enties +
Reads +
Writes +

Exits

Figure 6: Software functional complexity model

From the analysis above, a generic model for software
functional complexity can be derived, as illustrated in
Figure 6, in which software complexity is viewed as
the complexity of components and the complexity of
the system itself combined. The complexity of
components is related to the different cases of the
process and to the data movements occurring in the
process. The complexity of the system is related to the
complexity coming from the relationships between the
functional processes of the system. This complexity
can be seen as the work effort required to decompose
the FURs into a set of coherent functional processes to
fulfill the FURs. It is characterized by control and data
communication , concurrency between the processes
and event or instance handling .

4. Measurement methods

Some simple measures are now proposed for assigning
numerical values to the complexity factors proposed
above. These measures will provide indicators of
software functional complexity, defined as a function

178

of five measures of the five factors in Figure 6. The
following definitions are, however, necessary before
proposing specific measures for these factors.

To measure software complexity, we must know
whether something belongs to the software or not. The
boundary of software (or a piece of software that we
want to measure) is the conceptual frontier between the
software and the environment in which it operates. The
boundary distinguishes what belongs to the software
and what does not. In terms of functional processes, we
need to determine which belong to the software. These
functional processes may be located on different sites.
Moreover, a functional process may be installed on
many sites. We do not consider a process installed on
many different sites as a different process, but
something going out from it may increase the
complexity of the system. In this perspective, attention
is paid to the triggering events in the system, rather
than to the number of processes installed for one
logical process.

A functional process, in the COSMIC-FFP
measurement method, is an ordered set of data
movements (Entry, Exit, Read, Write) implementing a
cohesive set of FURs. It is triggered by an event and,
once performed, must leave the software in a coherent
state with respect to the triggering event. A data
movement is a logical task perceived from the user’s
point of view; it is a movement of a data group in or
out of the process. A data group is known as a set of
attributes describing something in the real world (or in
the problem domain). A data movement relates to only
one data group.

A triggering event is an event such that, when it
occurs, the software must do something to respond to
it. A triggering event may occur either outside the
boundary of the software or inside it. For example, a
timing event is a type of event coming from outside the
software (from a timing device); while an event like
“failure to give the correct password three times”
occurs inside the software boundary that is generated
by a process of the software. So, two types of
triggering events are distinguished: external events and
internal events, according to where they come from,
outside or inside the boundary. A triggering event must
be identified in the software specifications. That means
it must be mentioned in the problem domain. One
simple measure for each of the five complexity factors
mentioned in Figure 6 are now proposed.

Control and Data Communication

The communication between two processes is a
concept describing the situation in which a process
sends out a triggering event to activate another process.
The latter may or may not receive data from the

former, and may or may not send the result back to the
former.

For the two communicating processes, a simple
measure is proposed to quantify their complexity: the
number of data groups in communication between
them plus one (+ 1 to take into account the triggering
event). Therefore, the complexity of control and data
communication (CDC) of the software is:

CDC = ∑(number of data groups in communication
between two processes + 1)

The number of data groups communicating between
members of all process pairs are summed in this way.
Thus, the complexity of control and data
communications is defined as the summation of all
internal triggering events and all data groups used for
communications occurring in the system.

Concurrency

Concurrency is a concept describing the situation in
which more than one process may access one data
group simultaneously when they work, in principle, in
a mutually exclusive mode. Logically, each data group
accessed concurrently by many processes needs a
mechanism or a special process (monitor) to control
the concurrency. The principle for resolving the
concurrency may be the same for many different data
groups. But, for each data group in question, there is a
need to analyze and design a mechanism like this; we
therefore propose to select the number of data groups
accessed concurrently as the indicator of the
complexity related to the concurrency between
processes. We denote this complexity as concurrency
complexity (CC).

CC = number of data groups accessed concurrently in
the system

Multi-instance Handling

A functional process may be triggered by many
different triggering events. It can also be triggered
many times by an event at different moments. When
the functional process is working to respond to an
event, another event may occur and request the
response of the process (interrupt). This case at least
needs a mechanism to handle the events or create many
instances of a process to deal with all events. For
simplicity sake, we use the term multi-instance for
both handling events and creating many instances of a
process. For the purpose of measuring this
characteristic, we take into account one for each
process having many instances. The number of these
processes indicates the effort to analyze and design a
mechanism to handle events in the system and then to
implement it. Therefore, how many processes have
events that need handling is an indication of how much

179

effort is needed to deal with them. We denote this
complexity as multi-instance complexity (MIC):

MIC = number of processes having multi-instances

The three measures proposed above can be used to
provide an indication of the difficulty in developing a
system, rather than how large the system is (how many
functions it has). These measures can be used to
explain why real-time or engineering software is
perceived as being “more complex” or “more difficult”
or needing much more effort” than MIS software with
the same size in term of functions.

Different cases of functional process

As already mentioned, a functional process may have
many different cases represented by different input-
output pairs. Each case can be interpreted as a decision
rule:

IF (condition on inputs) THEN (desired outputs)

These cases give an outline concerning the tasks that
must be designed and fulfilled by the algorithm used to
implement the process. So, the number of different
cases is proposed as an indicator of algorithmic
complexity. This number may tell us how many tasks
must be dealt with in the algorithm, the assumption
being that there is a relationship between the number
of tasks and how much effort is required to handle
them. This complexity is referred to as different case
complexity (DCC).

DCC = number of different cases of the process

= number of

IF (condition on inputs) THEN (desired
outputs)

Data movement in the process

A data movement is a logical task in the process.
Generically, a process receives input data, manipulates
them and produces output data. Some logical tasks
may be identifiable and intelligible from the user's
viewpoint (from the specifications or interface design),
such as: Entry, Read, Write, Exit (proposed by
COSMIC-FFP). The number of these tasks has been
defined by consensus within the COSMIC group to
represent the “functional size” of a process. Intuitively,
it indicates how many tasks the process must carry out.
The number of data movements is identified and taken
into account in the same way that COSMIC-FFP does
so. Four types of data movements are identified and
measured, using the definitions and measurement rules
proposed by COSMIC-FFP. This, from a functional
complexity viewpoint, is now defined here as data
movement complexity (DMC)

DMC = number of Entries + number of Exits + number
of Reads + number of Writes

Aggregate results and estimate of software
complexity

In summary, the measures of each of five different
factors of software functional complexity are: control
and data communication, concurrency, multi-instance
handling, different cases of process and data
movements in the process. They are defined as the
indicators of the effort required in different tasks in
software development. They can, of course, be used as
independent measures to describe or quantify the
different aspects of software: for example, CDC may
be used to compare the comp lexity in data
communication of two software products. They can
also be used for choosing the environment or
programming language; for example, if software is
“communication strong”, we might choose an
environment in which communication programming is
well supported.

This paper also proposes that the software functional
complexity (SFC) is a mathematical function of these
five measures.

The investigative work to establish such a function, f,
still has to be performed and will require much more
empirical research.

5. Conclusion

In this paper, software functional complexity was
considered from a generic perspective based on lessons
learned from an idea of Card and Glass [9], from the
FPA method [6][7] and from the COSMIC-FFP
method [1][3]. Two categories of software functional
complexity are proposed: complexity of components
and complexity of the system. The complexity of
components is derived from the components of
software in the software model as modules or
functions. The complexity of the system is derived
from relationships between the components or
characteristics of the software. The software functional
model proposed by the COSMIC team was used as the
basis for studying software functional complexity
within these two categories.

Three factors of system complexity were proposed,
each representing a relationship between the functional
processes of software: control and data
communication, concurrence and multi-instance
handling. These factors are generally, and strongly,
related to some of the 14 GSCs proposed by FPA and
some complexity factors mentioned in Asset-R and 3D

SFC = f(CDC, CC, MIC, DCC, DMC)

180

Function Points, like concurrency and synchronization.
They also are typical characteristics in real-time
systems and engineering systems.

To quantify component complexity, i.e. the comp lexity
in each functional process, two factors were examined:
the different cases of process and the data movements
in the process. We believe that the complexity of the
algorithm used to implement a functional process is
worth studying, but, at the specifications stage, little is
known about how the process manipulates data input
to produce the desired output. What can be learned
about the algorithm in the early phases, such as
analysis and design, are the logical tasks in the process
like data movements (Entry, Read, Write, Exit) and the
different cases dependent on the specification of input
values and desired output pairs. These two factors are,
therefore, to be quantified and used as indicators of the
complexity of functional processes.

In this work, a simple measure has been proposed for
each of the above factors. These measures may be used
independently for different purposes, and also as
parameters for assessing software functional
complexity. However, the main purpose of this work
was to establish and build progressively on a software
functional complexity model rather than a complete
measuring method of the still ill-defined global
concept of software complexity. In the future,
empirical research will be initiated to investigate the
relationships between these factors to derive a unique
measure for software functional complexity.

6. References

[1] Abran, A.; Desharnais, J.-M.; Oligny, S.; St-
Pierre, D.; Symons, C., COSMIC FFP -
Measurement Manual – Field Trials Version,
Montreal, May, 2001.

[2] Abran, A., St-Pierre, D., Oligny, S., Improving
Software Functional Size Measurement, LRGL,
UQAM, 1999.

[3] Abran A., Desharnais J.-M., Maya M., St-Pierre
D., Bourque P., Design of a functional size
measurement for Real-Time Software, research
report No 13-23, 1998.

[4] Abran A., Jacquet J-P, Metric Validation
proposals: A Structured Analysis, Presented at
the 8th International Workshop on Software
Measurement, Magdeburg, Germany,
September, 1998.

[5] Abran, A, Analyse du processus de mesure des
points de fonction, in Département de génie
électrique et de génie informatique. Montréal:

École Polytechnique de Montréal, 1994, pp.
405.

[6] Albrecht A., Gaffney J., Software Function,
Sources Lines of Code, and Development Effort
Prediction: A Software Science Validation,
IEEE Transactions on Software Engineering,
Vol. SE-9, no 6, November 1983.

[7] Albrecht A., Measuring Application
Development Productivity , Present at IBM
Applications Development Symposium, 1979.

[8] Basili V.R., Qualitative software complexity
models: A summary in tutorial on Models and
methods for software Management and
Engineering. IEEE computer Society Press, Los
Alamitos, California, 1980.

[9] Card D.N., Glass R.L., Measuring Software
Design Quality, Prentice Hall, 1990.

[10] Conte, S.D., Dunsmore, H.E., and Shen, V.Y.,
Software Engineering Metrics and Models,
Benjamin/Cummings, Menlo Park, CA, 1986.

[11] Fenton N.E., Pfleeger S.L., Software Metrics: A
Rigorous and Practical Approach, Second
edition, 1997.

[12] Halstead, M.H., Element of Software Science,
New York, Elsevier North-Holland, 1977.

[13] Henry S.M., Kafura D.G., Software Structure
Metric Based on Information Flow, IEEE
Transactions on Software Engineering, Vol. 7,
no 5, September 1981, pp.545-522.

[14] IEEE Computer Society: IEEE Standard
Glossary of Software Engineering Terminology,
IEEE std. 610.12-1990, IEEE.

[15] Jeffery R.D., Low C.G.; Function Points in the
Estimation and Evaluation of Software Process,
IEEE, Vol. 16, no 1, January, 1990.

[16] Jones C., Applied software measurement –
Assuring productivity and quality, New York,
McGraw-Hill Inc, 1991.

[17] Kearney, K.J., Sedmeyer R.L, Thompson W.B,
Gray M.A., Adler M.A., Software Complexity
Measurement, Communications of the ACM,
Vol. 29, no 11, November 1986.

[18] Kemerer, F.C., Chidamber R.S., A Metric Suite
for Object Oriented Design, IEEE transactions
on Software Engineering , Vol. 20, no 6, June
1994.

[19] McCabe T.J., Butler C.W., Design complexity
measurement and testing, Communications of
the ACM, Vol. 32, no 12, 1989.

181

[20] McCabe, T.J., A Complexity Measure, IEEE
Transactions of Software Engineering , Vol. SE-
2, no 4, p. 308-320, December 1976.

[21] Reifer D.J., Assert -R: A Function Point sizing
Tool for scientific and Real-Time Systems ,
Journal of Systems Software, Vol. 11, p. 159-
171, 1990.

[22] Sellers, H., Object-Oriented Metrics –
Measures of Complexity, Prentice Hall, New
Jersey, 1996.

[23] Symons, C., Grant Rule P., One size fits all
‘COSMIC’ – Aims, Design principles and
Progress, Project Control for Software Quality,
ISBN 90-423-0075-2, 1999.

[24] Symons, C., Function Point Analysis:
Difficulties and Improvements, IEEE
Transactions on Software Engineering, Vol. 14,
no 1, January, 1988.

[25] Zuse H., Software Complexity Measures and
Methods, Walter de Gruyter, Berlin – New
York, 1991.

[26] Whitmire, S.A., 3D Function Points: Scientific
and Real-Time Extensions to Function Points,
presented at Pacific Northwest Software Quality
Conference, 1992.

