
Functional Complexity
Measurement

Presented at IWSM’2001
By

De Tran-Cao, PhD. candidate, UQAM
Alain Abran, professor, UQAM

Ghislain Lévesque, professor, UQAM
August, 29

Agenda

• Introduction
• What is the complexity?
• Software model and software

complexity model
• Measurement methods
• Conclusion

Introduction
• To estimate software development

effort:
– How big the task is?
– How difficult the task is?

• Software size: LOC, FPA
• FPA is more useful than LOC in

predicting early development effort.
• FPA have also some weakness

– not taking into account the complexity of
algorithms and some characteristics of real-
time software.

– subjectivity in determining scale and the
weights / degrees of influence.0

FPA review

– Identify software functionalities.
– Classify them in five functional types and three

level of complexity.
– Weight the functionalities on basic of their

complexity è UFP
– Determine the degree of influence of 14 GSCs

on a scale of six levels: 0..5
– Sum the degrees of influence è VAF
– FP = UFP x (0.65 + 0.01 x VAF)

Lesson learned

• FPA measures software size via the complexity
of basic functional types and the complexity of
system (14GSCs). That implicitly propose two
types of complexity: component complexity
and system complexity.

• Card (90) argues: component complexity and
system complexity.
• Basili (96): a system is characterized by its
elements and the relationships between them.

èIdentify elements of software and
relationships between them.

Research direction
• The COSMIC software model identifies the

software component as a functional process.

èsoftware complexity: complexity in each
functional process and the complexity in the
relationships between processes

What is complexity?
• IEEE (90): the degree to which a system or

component has a design or implementation that
is difficult to understand and verify

• Basili (80): complexity as a measure of the
resources expended by a system while
interacting with a piece of software to perform a
given task. If the interacting system is a
programmer, then complexity is defined by the
difficulty of performing tasks such as coding,
debugging, testing or modifying the software

• Zuse (91) says that the term complexity measure
is a misnomer: The true meaning of the term
software complexity is the difficulty to maintain,
change and understand software.

What is complexity?
• These definitions associate software complexity

with the difficulty of performing a task on the
software. An implicit assumption is that software
complexity correlates well with the work effort
(man-hours) required to develop or maintain the
software.
è higher complexity, more effort needed.

• The term 'functional complexity' is interpreted as
a candidate explanatory variable for investigating
the work effort required to develop the software
function, including decomposing and allocating
the functional processes and designing each
functional process to fulfill user needs as stated
in the software specifications.

Software model

Functional user
requirements

Functional process
type (1)

Data movement
type (2)

Data manipulation
type (3)

Sub-process

and

Software

(1): A sequence of data movement and transformation sub-process steps, triggered by an
 event external to the software item, which is complete when the data processed is
 consistent with respect to the external triggering event.
(2): A sub-process entering, exiting, reading or writing a data

item.(3): A sub-process transforming a data item to create another one.

COSMIC-FFP generic software model

Software model (cont.)

USERS

Manipulation

I/O Boundary

Entry Exit

WriteRead

: Data movement types
 sub-processes

Storage Boundary

STORAGE

COSMIC-FFP sub-process types

Software complexity model
• What are the relationships between the functional

processes?

• What are the tasks carried out by a process?

Three types of relationships:
– Control and data communication
– Concurrency
– Multi-instances

– Different cases:
If (condition on input) Then (expected output)

– Data movements: entry, read, write, exit

Software complexity model
Software Functional Complexity

System Complexity
(complexity in relationships between

functional processes)

Number of
internal events +
number of data

groups in
communication

Number of
data groups
accessed in
concurrence

Component Complexity
(complexity of each functional process)

Data and
Control

Communi-
cation

Concurrency Multi-
instances

Different cases
of Input-Output

Data
movements

Number of
processes

having multi-
instances

Number of
cases

Enties +
Reads +
Writes +

Exits

Control and data communication

functional
process A

functional
process B

data

triggering event

data

CDC = ∑(number of data groups in communication
between two processes + 1)

- FPA: data communication, distributed data
processing, on-line data entry, complex processing

- Asset-R: parallelism and synchronization.

Concurrency

functional
process A

functional
process B

Data Group

Mutually exclusive

CC = number of data groups accessed concurrently in
the system

- FPA: on-line update

- Asset-R: Concurrency

More than one
process access
simultaneously
one data group in
the mutually
exclusive mode

Multi-instances

functional
process

instance 1

functional
process

instance 2

functional
process

.......

functional
process

instance ntriggering event
functional
process

triggering event

triggering event

triggering event

MIC = number of processes having multi-instances

- A functional process may be triggered by many different
triggering events from the different resources or triggered
many times by an event at different moments. When the
functional process is working to respond to an event, another
event may occur and request the response of the process
(interrupt).

- Multi-instances may express a part of complex processing
proposed by FPA.

Different cases of a functional
process
• A process may have many variances (or

“states”). A functional process may exhibit
different behaviours in reaction to one event.
Each of them can be interpreted as a case of
process.
IF (condition on input values) THEN (expected outputs)

• Assumption: not only the number of inputs, outputs makes
difficulty in designing the process but also the number of
cases.

• DCC= number of cases or number of
IF (condition on inputs) THEN (desired outputs)

Data movements
• Data movements are a factor of complexity

since they can be intuitively associated with
the tasks that must be performed in the
process. They indicate how many tasks
must be done in the process.

DMC = number of Entries + number of Exits
+ number of Reads + number of Writes

Estimating of software
complexity
• Five simple measures of the five factors

proposed above are used as the indicators of
the effort required in different tasks in software
development. We propose

SFC = f(CDC, CC, MIC, DCC, DMC)

• Each of these can be used as independent
measures to describe or quantify the different
aspects of software

Conclusion
• A simple measure has been proposed for each of

the factors. These measures may be used
independently for different purposes, and also
used as parameters for assessing software
functional complexity.

• The main purpose of this work was to establish
and progressively build on a software functional
complexity model rather than a complete
measuring method of the still ill-defined global
concept of software complexity.

• More empirical research is need to investigate the
relationships between these factors to derive a
unique measure for software functional
complexity.

About us
• De Tran-Cao, PhD. candidate, UQAM

de.trancao@lrgl.uqam.ca
• Alain Abran, professor, UQAM

abran.alain@uqam.ca
• Ghislain Lévesque, professor, UQAM

levesque.ghislain@uqam.ca

Software Engineering Management Research
Laboratory (LRGL). The University of Quebec at
Montreal (UQAM)
www.lrgl.uqam.ca

Conclusion
• Generic model: complexity of components and

complexity of the system.
• The software functional model proposed by the

COSMIC team was used as the basis for studying
software functional complexity.
– Component complexity: complexity in a functional

process characterized by different cases of the
functional process and data movements in the process.

– System complexity: complexity in relationships between
the functional processes characterized by control and
data communication, concurrency and multi-instance.

