
 Improving quality of functional requirements by measuring their functional size

IWSM/MetriKon 2008

Improving quality of functional requirements by measuring their

functional size

Sylvie Trudel
*
 and Alain Abran

†

* CRIM/R&D, Montreal, Canada

† École de Technologie Supérieure – Université du Québec/Dept. of Software Enginee-
ring and Information Technologies, Montreal, Canada

sylvie.trudel@crim.ca, alain.abran@etsmtl.ca

Abstract:

For many years, the software industry has been applying different types of reviews

on their requirements documents to identify and remove defects that would other-

wise propagate in the development life cycle, leading to rework and extra cost to fix

at later phases. An inspection is a review technique known to be efficient at identi-

fying defects but, like any other review technique, it does not guarantee that all de-

fects are found. Requirements documents are also used as input for the measure-

ment of the software size for estimation purposes; when carrying this measurement

process, practitioners have often noticed defects in the requirements.

This paper reports on a research project investigating the contribution of the meas-

urers in finding defects in requirements documents. More specifically, this paper

describes an experiment where the same requirements document was inspected by a

number of inspectors as well as by a number of measurers; the number and types of

defects found by both inspectors and measurers are compared and discussed. For

this experiment, the measurers used the COSMIC – ISO 19761 to measure the func-

tional size and find defects. Results show significant increase in defects identifica-

tion when both inspection and functional size measurement are used to find and re-

port defects.

Keywords

Functional requirements, COSMIC, FSM, Functional size measurement, inspec-

tion, review.

1 Introduction

Software requirements are written to describe software that will be later devel-
oped. Requirements fall usually into two categories: functional requirements and
non functional requirements. The functional requirements describe system func-
tionalities while the non functional ones, also called technical requirements and
quality requirements, describe required system attributes such as performance, se-
curity, and reliability. The focus of the research reported here is on functional re-
quirements.

S. Trudel, A. Abran

 Software Measurement Conference

Requirements impact all phases of the software life-cycle as shown in Figure 1.
Therefore, ambiguous, incomplete and incorrect requirements may negatively im-
pact all phases if not detected early enough to be corrected; when not found, those
will typically require rework to rectify work done in previous phases of the life
cycle.

To minimize rework effort and cost for fixing defects at later phases in the devel-
opment life-cycle, many organizations apply various review techniques on their
requirements documents. Review techniques typically include a set of rules to
help requirements authors and reviewers in achieving quality attributes of their
requirements, such as those stated in the IEEE-Std-830-1998 [1]: “Correct”, “Un-
ambiguous”, “Complete”, “Consistent”, and “Verifiable”.

Requirements

Project

management

Concept of

operations

Architecture

Design

Code

Test

Documentation

Functional

Non functional

Figure 1: Requirements usage in software development life-cycle phases.

An inspection [2] is a review technique known to be efficient at identifying
defects but, like any other review technique, it does not guarantee that all defects
are found. To increase the efficiency and effectiveness for finding defects in
software artefacts, it is recommended that organizations use several verification
techniques.

Review efficiency represents the ability of a software team to identify and remove
defects in an artefact. Review efficiency can be measured in number of defects
found in that artefact at review time compared to the total number of defects
found in the whole software project for which the origin can be traced back to
that same artefact. Review effectiveness corresponds to the average effort spent in
identifying critical defects.

 Improving quality of functional requirements by measuring their functional size

IWSM/MetriKon 2008

In the early phases of the development life cycle, these same requirements
documents are also used as an input for the measurement of the software
functional size, typically for estimation purposes. When carrying this
measurement process for estimation purposes, measurers often observe a number
of defects in the functional requirements.

This contribution of measurers at finding defects in requirements documents has
not been investigated yet and has not been yet documented in the literature as a
review technique, even though it is a current measurers practice.

The use of software measurement as a review technique raises a number of
questions, such as:

1. Is functional size measurement (FSM) more efficient than inspections for
identifying defects in functional requirements?

2. Is functional size measurement (FSM) more effective than inspections for
identifying defects in functional requirements?

3. Would it be of value-added to inspections, either for efficiency or
effectiveness, if a measurer’s role is included?

This paper reports on an experiment carried out to investigate the third question.
The experiment reported here was conducted in November 2007 with both
industry and academic experts participating to the MENSURA-International
Workshop on Software Measurement held in Palma de Majorque (Spain).

For the experiment reported here, the same requirements document was inspected
by three inspectors as well as by four measurers. For this experiment, the
measurers used the COSMIC – ISO 19761 to measure the functional size and find
defects.

1.1 The Inspection Method

The inspection method used in the experiment is an adaptation from Gilb and
Graham’s work [3]1 . This inspection method contains seven steps as shown in
 Figure 2.

1 This inspection method has been applied successfully in a Canadian organization more than 2000 times
over a four years period and numerous times in other Canadian organizations over the last seven years.

S. Trudel, A. Abran

 Software Measurement Conference

1. Plan the inspection

2. Hold a kick-off meeting

3. Perform individual checking

[Document ready for inspection]

[Commitment obtained from participants]

[Defects found]

4. Conduct a logging meeting

[Defects understood by author]

5. Edit document

[Defects fixed]

6. Verify corrections

[No new defects introduced]

[Defects fixed and inspection data collected]

7. Close inspection

Figure 2: Steps of the inspection method.

1.2 The COSMIC Method

Functional size measurement (FSM) is a means for measuring the size of a soft-
ware application, regardless of the technology used to implement it.

The COSMIC functional size measurement method [4] is supported by the Com-
mon Software Measurement International Consortium (COSMIC) and is a recog-
nized international standard (ISO 19761 [5]). In the measurement of software
functional size using COSMIC, the software functional processes and their trig-
gering events must be identified.

The unit of measurement in this method is the data movement, which is a base
functional component that moves one or more data attributes belonging to a sin-
gle data group. Data movements can be of four types: Entry (E), Exit (X), Read
(R) or Write (W). The functional process is an elementary component of a set of
user requirements triggered by one or more triggering events, either directly or
indirectly, via an actor. The triggering event is an event occurring outside the
boundary of the measured software and initiates one or more functional proc-
esses. The sub processes of each functional process constitute sequences of
events, and a functional process comprises at least two data movement types: an
Entry plus at least either an Exit or a Write. An Entry moves a data group, which
is a set of data attributes, from a user across the boundary into the functional
process, while an Exit moves a data group from a functional process across the
boundary to the user requiring it. A Write moves a data group lying inside the
functional process to persistent storage, and a Read moves a data group from per-

 Improving quality of functional requirements by measuring their functional size

IWSM/MetriKon 2008

sistent storage to the functional process. See Figure 3 for an illustration of the ge-
neric flow of data groups through software from a functional perspective.

Software to measure

User or

Engineered

device

Functional

process 1

Functional

process 2

Functional

process n

...

Actors

Write (W)

Read (R)

« Back end »« Front end »

I/O

hardware

Entry (E)

eXit (X)

Entry (E)

eXit (X)

Figure 3: Generic flow of data through software from a functional perspective.

2 The experiment

2.1 Purpose and objective of the experiment

The main objective of the experiment was to assess the efficiency and effective-
ness of the COSMIC method as a method for finding defects in software func-
tional requirements.

The purpose was to perform an experiment involving industry experts, some of
whom would be skilled in measuring functional size with the COSMIC method
and others who would either be skilled in inspecting requirements or be knowl-
edgeable on what is a well written software functional requirement. Special care
was taken to get experienced practitioners in FSM and experienced inspectors
and requirements writers in participating to this experiment.

2.2 The requirements document

The software requirements specification (SRS) document that was chosen for the
experiment was compliant with IEEE-Std-830 for its structure and content. This
SRS was also compliant with UML 2.0 [6] for the use case diagram, the behav-
ioural state machine, and use case details.

S. Trudel, A. Abran

 Software Measurement Conference

1) SRS overview

The SRS was entitled “uObserve Software Specification” [7] and had 16 pages of
descriptive text in English and approximately 2900 words.

Section 1 of the SRS describes the introduction, purpose and scope, project objec-
tives, background information, and references. Section 2 provides a high-level
description of the system to develop, the list of features and functions (included
and excluded), user characteristics, and assumptions, constraints, and dependen-
cies. Section 3 list all specific requirements, beginning with the user interface and
its prototype, the hardware interfaces, followed by functional requirements (sec-
tion 3.2), and quality requirements (section 3.3).

2.3 The participants

1) The inspectors

Three inspectors participated in the experiment. They all cumulate years of indus-
try practice as software practitioners where they had to write and verify software
requirements. The first inspector had 8 years of industry practice, she then worked
3 years in a research facility, and she has been teaching software engineering for 4
years during which she participated in industry research projects. The second in-
spector had over 6 years of industry practice, and has been teaching software en-
gineering for more than 13 years. The third inspector has over 8 years of industry
experience and was registered in Ph.D. program in software engineering.

2) The measurers

Four measurers participated in the experiment. They were all COSMIC Certified
Entry Level practitioners [8] and were experienced in functional size measure-
ment. All of them were active members of the COSMIC Measurement Practice
Committee.

2.4 The experiment steps

The experiment consisted in the following steps applied prior to and during the
experiment.

1) Prepare experiment

a) Prepare material

Prior to the workshop experiment, the chosen SRS was reviewed by a peer to re-
move most spelling and syntax defects that were injected by the translation of the
original requirements document from French to English. Other minor issues were
also identified and fixed.

The inspection training material (e.g. templates and procedures) used in this ex-
periment comes from the industry practice of one of the researcher [9].

 Improving quality of functional requirements by measuring their functional size

IWSM/MetriKon 2008

The experiment material included the chosen SRS, a presentation of the inspec-
tion method, the detailed seven steps method, the inspection form for data collec-
tion, a defined set of rules, a defined set of inspector roles, definitions for defect
and issue types [10] (see Table 1), and definitions for defect categories (see Table
2).

Type Definition

Critical or major Defect that is likely to cause rework, or prevent understanding or
desired functionality.

Minor Information is wrong or incomplete but does not prevent un-
derstanding.

Spelling/Syntax Spelling or syntax error.

Improvement The product can stay as is but would be better if the improvement
suggestion is implemented.

Question Any question to the writer of the product.

Table 1: Definitions for defect and issue types.

Improvement suggestions and questions are considered as issues, not as defects.
However, a question may later be transformed into a critical or minor defect, de-
pending upon the nature of the question and its related answer.

Category Definition

Functional Defect related to functional requirements or functional description
of the system.

Non functional Defect not related to functional requirements or to functional desc-
ription of the system.

Undetermined Defect that cannot be categorized into Functional or Non functio-
nal when first identified.

Table 2: Definitions for defect categories.

S. Trudel, A. Abran

 Software Measurement Conference

Defect categories were defined for analysis purposes, since measurement should
primarily be dealing with the functional description of the system to develop.

b) Call for participation

The Call for participation to the experiment was included within the Call for par-
ticipation to the MENSURA-IWSM-2007, knowing that there was a mix of in-
dustry and academic experts. All participants who volunteered for the experiment
had previously participated in peer reviews.

2) Provide training on the inspection method

A two-hour training session was provided to all participants on the inspection
method, the rules, the roles, and the behaviours to expect and to avoid from in-
spection participants (inspection leader, author, and inspectors).

3) Perform inspection

a) Plan the inspection

For this experiment, the inspection leader was not given any inspector role: the
inspection leader’s role was to make sure the process would be followed.

The required roles were chosen from the list of roles (see Table 3). Assigning sev-
eral inspector roles aims to maximizing defect identification since many perspec-
tives are being applied.

Role Definition

Logic Focus on logical aspects of the product under inspection, making
sure that “everything holds together” (catchall role).

User Focus on the user or customer point of view (checklist or view
point role).

Tester Focus on test considerations (testability, test requirements, order of
testing and order of development for parallel testing, and so on).

Standards Verify conformity to agreed standards (quality assurance role).

Table 3: Required inspector roles and their definition.

The inspection scope was defined as sections 2 and 3 of the SRS, which size was
measured at 2600 words. Thus, planned individual checking effort was set to 1
hour and 45 minutes (105 minutes) based on an inspection rate of 5 pages per
hour (one page=300 words). The source documents were the SRS (section 1 – In-
troduction) itself and applicable standards (IEEE-Std-830 and UML 2.0).

 Improving quality of functional requirements by measuring their functional size

IWSM/MetriKon 2008

Two inspection modes were defined in the inspection method: “parallel” or “se-
rial”. In “parallel” mode, every inspector has his own copy of the artifact to in-
spect and they perform their individual checking at the same time. In “serial”
mode, only one copy of the artifact to inspect is carried from the first inspector to
the last on the inspectors list, allowing inspectors to learn from identified defects
by previous inspectors. Because of time constraints of the workshop experiment,
the “parallel” inspection mode was applied.

The inspection planning was done prior to the workshop session and required 15
minutes of effort.

b) Hold a kick-off meeting

A brief overview of the SRS was provided to the inspectors. Instructions were
given to inspectors to categorize every identified defect into F, N, or U, along
with the defect type (see TABLE I).

The Logic role was assigned to inspector #1. The User role was assigned to in-
spector #2. The Tester and Standards roles were both assigned to inspector #3. All
inspectors agreed to play their assigned roles.

From that moment, measurers were asked to leave the room to provide a quiet en-
vironment to inspectors.

The inspection kick-off duration was 10 minutes with a total of five participants:
three inspectors, one inspection leader, and the writer of the SRS.

c) Perform individual checking

Inspectors performed their individual checking, playing their assigned roles the
best they could. Defects and issues were identified and noted on the copy of the
SRS of each inspector, along with their respective types and categories. Inspec-
tors stopped the checking activity when they were convinced they had completed
the required verification.

Next, each inspector compiled the number of defects per type and reported this
data on the inspection form. They also measured their checking effort and com-
piled it on the inspection form.

d) Perform functional size measurement

The inspection training provided guidance on defect types and categories to
measurers, whom attended the session as well. When the writer of the SRS
handed a printed copy of the SRS to each measurer, measurers were asked to ap-
ply the COSMIC measurement method and to identify any defect and issue, along
with its respective type and category.

While inspectors were checking, measurers began the FSM activity, identifying,
categorizing, and providing a type for any defect and issue, which may have
slowed down measurement.

S. Trudel, A. Abran

 Software Measurement Conference

Each measurer identified functional processes, data groups, and related data
movements. Data movements were added to provide the functional size of every
functional process. Functional size of each functional process was added to pro-
vide the functional size of the system. Once measurers completed the FSM activ-
ity, the following data was reported on their inspection forms: effort to measure
and identified defects, number of defects per type, and software functional size.

e) Conduct a logging meeting

When both inspectors and measurers had completed their activities, a logging
meeting was conducted with the inspection leader, and the inspectors to describe
every identified defect and issue. The objective of the logging meeting was for
the writer of the SRS to understand all these defects and issues to be able, at the
edit phase, to apply an appropriate correction and, if required, a type reclassifica-
tion (e.g. from Question to Minor or Critical).

The logging meeting duration was one hour (60 minutes), during which all in-
spectors explained identified defects, focusing on Critical and Minor defect types.
The Spelling/syntax type was voluntarily skipped since explanation did not seem
relevant. Measurers described only some of their identified defects and the effort
it required was negligeable.

At the end of the logging meeting, all SRS hand-written copies were given to the
author and experimenter. Later, these copies were scanned individually into a
PDF file for verification purposes.

4) Compile experiment data

a) Defects and issues log

Defects and issues were logged on a spreadsheet with the following parameters:

• Location (page #, section #, paragraph #, and line #);

• Description;

• Type (C, M, S, I, or Q);

• Category (F, N, or U);

• Number of inspectors (if more than one identified the same defect or
issue);

• Inspectors initials;

• Number of measurers (if more than one identified the same defect or
issue);

• Measurers initials;

• Status (Open, Fixed, or Closed); and

 Improving quality of functional requirements by measuring their functional size

IWSM/MetriKon 2008

• Comment from the researcher.

When appropriate, the researcher reclassified the defect type and category. When
two participants identified the same defect with a different type, the defect type
that had the most impact was logged (i.e. Critical over Minor).

The spreadsheet allowed filtering data to ease analysis.

b) FSM detailed data

The following FSM detailed data was captured in a spreadsheet:

• Functional process;

• Data groups;

• For each measurer:

i. Data movements per data group;

ii. Size per data group;

iii. Size per functional process;

iv. System functional size.

c) Effort data

Effort spent per participant for the checking activity and the measuring activity
was entered in a spreadsheet. The effort unit of measure was one minute. Effort
spent for the other steps of the inspection method was entered separately.

5) Review experiment data with participants

Individual data were isolated and sent to each participant for review and approval.
Inspectors reviewed their defects and issues log, and the number of defects and
issues per type against the scanned copy of their hand-written commented SRS.
Measurers reviewed the same data as inspectors plus their detailed FSM data.
Data were hidden from one another to avoid any bias or influence. This step was
made to ensure that data analysis would be performed with unbiassed data.

At the time this paper was written, 5 participants out of 7 had sent review feed-
back with either minor changes or no comment.

6) Analyze experiment data

In industry, FSM is more likely to be performed by a single measurer. Therefore,
experimenting with four measurers represents four different experiments.

From the inspection point of view, the industry applies from three to five inspec-
tors for a single inspection of a requirements document. Therefore, data from all
three inspectors was combined in a single set of experiment data.

S. Trudel, A. Abran

 Software Measurement Conference

3 The results

3.1 Inspection results

a) Identified defects

The log per participant contained a total of 227 defects and issues, as shown in
 Table 4.

 Defects Issues

Type C M S Q I

Total

Insp #1 20 24 10 1 5 60

Insp #2 10 28 2 0 6 46

In
sp

ec
to

rs

Insp #3 7 5 0 0 2 14

Meas #1 5 1 8 2 1 17

Meas #2 4 2 5 0 0 11

Meas #3 8 14 6 1 0 29

M
ea

su
re

rs

Meas #4 15 11 20 2 2 50

Total: 69 85 51 6 16 227

Table 4: Number of defects and issues by type per participant,
including duplicates.

Several defects and issues were identified by more than one participant. A total of
191 uniquely identified defects and issues were recorded, as shown in TABLE V,
by both inspectors and measurers.

 Defects Issues

Type C M S Q I

Total

F 37 55 17 5 4 118 Category

N 21 20 19 1 12 73

Total: 58 75 36 6 16 191

Table 5: Number of unique defects and issues by type, by category.

 Table 6 shows the 116 uniquely identified defects and issues found by inspectors.
Measurers also identified 16 of these 116 defects and issues.

 Improving quality of functional requirements by measuring their functional size

IWSM/MetriKon 2008

 Defects Issues

Type C M S Q I

Total

F 19 39 6 1 3 68 Category

N 17 15 6 0 10 48

Total: 36 54 12 1 13 116

Table 6: Number of unique defects and issues by inspectors.

b) Effort spent and effectiveness

Inspectors spent an average of 57 minutes for the checking activity (minimum=55
minutes, maximum=60 minutes). The planned effort per inspector was 105
minutes. Total effort spent by the three inspectors was 170 minutes.

Effort for identifying defects requires not only the checking effort but also effort
from previous steps and the logging meeting step [11]. Table 7 provides a
summary of effort spent by the inspection team to identify defects.

Inspection step Duration # Participants Effort

Plan the inspection 15 min 1 15 min

Hold a kick-off meeting 10 min 5 50 min

Perform individual checking -- 3 170 min

Conduct a logging meeting 60 min 5 300 min

Total: 535 min

Table 7: Effort spent by inspection team.

The effectiveness of an inspection can be calculated as the total effort to identify
defects divided by the number of critical defects. In this inspection, the
effectiveness is 535 minutes / 36 unique critical defects = 15 minutes per critical
defect.

3.2 Measurement results

a) Functional size

Functional size measures in COSMIC Function Point (cfp) showed some
variations among measurers (see Table 8). Some of these variations in the sizes
obtained might be due to defects in the SRS; the sources of these variations will
be analyzed in a later phase of this research project.

S. Trudel, A. Abran

 Software Measurement Conference

Functional

size Average
Standard
deviation

Meas #1 62

Meas #2 55

Meas #3 61

Meas #4 57

59 3.3

Table 8: Functional size per measurer in cfp.

b) Identified defects

Measurers have identified between 9 and 39 functional and non functional defects
and issues that inspectors did not identify, as shown in Table 9, including
duplicates (i.e. defects found by more that one measurer).

 Defects Issues

Type C M S Q I

Total

Meas #1 3 1 5 2 1 12

Meas #2 3 2 4 0 0 9

Meas #3 6 13 4 1 0 24

M
ea

su
re

rs

Meas #4 10 8 17 2 2 39

Table 9: Number of defects and issues found by measurers only.

Nevertheless, it was expected that measurers would find a majority of functional
defects since the FSM activity focuses on functional description of the software.
 Table 10 presents the defects found by the measurers when considering only
functional defects, including duplicates.

 Defects Issues

Type C M S Q I

Total

Meas #1 3 1 4 1 1 10

Meas #2 3 2 3 0 0 8

Meas #3 6 13 3 1 0 23

M
ea

su
re

rs

Meas #4 6 3 6 2 0 17

 Improving quality of functional requirements by measuring their functional size

IWSM/MetriKon 2008

Table 10: Number of functional defects found by measurers only.

Given these figures, what would have been the value-added of individual
measurers over the inspection team?

 Table 11 provides the number of critical and minor defects, as well as critical only
defects, identified by measurers and their relative value-added over the functional
defects found by the inspection team.

Critical

& Minor
Value-
added

Critical
only

Value-
added

Inspection team 58 -- 19 --

Meas #1 4 7% 3 16%

Meas #2 5 9% 3 16%

Meas #3 19 33% 6 32%

Meas #4 9 16% 6 32%

Table 11: Value added of measurers over inspection team.

All four measurers individually added value to the inspection team efficiency. The
increase of defects identification was ranging from 7% to 33% when critical and
minor defects are considered. The value-added was even higher when considering
only critical defects, ranging from 16% to 32%.

c) Effort spent

Measurers have spent an average of 57 minutes for the measurement activity,
including defect identification, as shown in TABLE XII.

FSM
effort Average

Standard
deviation

Meas #1 49

Meas #2 45

Meas #3 60

Meas #4 75

57 13.4

Table 12: Effort spent by measurers in minutes.

S. Trudel, A. Abran

 Software Measurement Conference

On average, a measurer took the same amount of effort for performing FSM and
identifying defects and issues than an inspector for performing the individual
checking step.

In this experiment, the effectiveness of the FSM activity for finding defects
cannot be isolated since the effort was spent focusing on sizing the software
application.

No time limit was imposed on measurers. However, during the measurement
activity, measurers had move to an open space of the conference facility and
complained that the noise level had slowed down their measurement pace.

4 Discussion and future work

FSM results typically provides the functional size of the software, allowing a
development team or project manager to use this input for estimation and
benchmarking purposes. Another important value-added data comes out from this
measurement activity is the identification of defects not found by a team of
inspectors.

The experiment results demonstrated a value-added on inspection efficiency
when having a measurer who raises issues while measuring the functional size.
Adding measurement over inspection allowed identifying from 16% to 32% of
new critical functional defects, in less effort than the planned individual checking
effort. Of course, inspectors do not provide functional size data as it is not part of
an inspection method.

Inspectors spent 54% of the planned effort for their individual checking. If the
planned checking effort would have been spent totally, inspectors might have
found a larger number of defects and issues.

Measurers participating in this experiment may have been over experienced and
other less experienced measurers may lead to different results. This will require
further experimentation to verify this.

Further work includes other experiments with industry requirements documents
that may or may not be compliant with IEEE-Std-830 and UML 2.0.

Acknowledgments

The authors thank participants to the experiment.

The inspectors: Maya Danava, Ph.D., software engineering professor at
University of Twente, Netherlands; Mohamad Kassab, test specialist, Oz
Communication, www.oz.com, and Ph.D. graduate student, Concordia University,

 Improving quality of functional requirements by measuring their functional size

IWSM/MetriKon 2008

Canada; and Olga Ormandjieva, Ph.D., software engineering professor at
Concordia University, Canada.

The measurers: Harold Van Heeringen, measurement expert, Sogeti,
www.sogeti.nl, Netherlands; Luca Santillo, measurement expert, Agile Metrics,
www.agilemetrics.it, Italy; Charles Symons, software measurement expert,
founder and joint project leader COSMIC, England; and Frank Vogelezang,
measurement expert, Sogeti, Netherlands.

References

1. IEEE Computer Society, IEEE-Std-830-1998, IEEE Recommended Practice for
Software Requirements SpeciÞcations, New York, NY, June 1998.

2. K. Wiegers, Peer Reviews in Doftware: A Practical Guide, Boston, MA: Addison-
Wesley, November 2001.

3. T. Gilb and D. Graham, Software Inspections, Addison-Wesley Professional, Decem-
ber 1993, pp. 13-20.

4. A. Abran, et al, COSMIC-FFP Measurement manual: the COSMIC implementation
guide for ISO/IEC 19761:2003, version 2.2, Common Software Measurement Inter-
national Consortium, January 2003.

5. International Organization for Standardization, ISO/IEC 19761:2003, Software engi-
neering -- COSMIC-FFP -- A functional size measurement method, Frbruary 2003.

6. J. Arlow and I. Neustadt, UML 2 and the Unified Process, 2nd edition, Addison-
Wesley, 2005.

7. S. Trudel and J. M. Lavoie, “uObserve Software Specification”, Montreal, Canada:
École de Technologie Supérieure, 2007.

8. GÉLOG, “COSMIC Entry Level Practitioners Certificate Holders”,
http://www.gelog.etsmtl.ca/cosmic-ffp/entry_level_holders.html .

9. S. Trudel, Software Inspections Workshop, CRIM, Montreal, Canada, 2007.

10. Canadian Department of National Defence, “Defect type definitions”, unpublished.

11. R. Stewart and L. Priven, Revitalizing Software Inspections, presented at the Mont-
real Software Process Improvement Network (SPIN), Canada, February 6th, 2008.

S. Trudel, A. Abran

 Software Measurement Conference

