

Improving quality of functional requirements by measuring their functional size Sylvie Trudel, M.Ing., CRIM Alain Abran, Ph.D., ÉTS

IWSM – Metrikon 2008, Munich November 2008 Improving quality of functional requirements by measuring their functional size CRIM Content

- Introduction
- Description of experiment
- Experiment results
- Discussion and future work
- References

Introduction

Inspection and FSM with COSMIC

CRIM Importance of software requirements

CRIM Requirements review mechanisms in industry

- Used to identify and fix defects in requirements
- Usually performed by individual or groups (MIL Std 2167A, ISO/IEC 12207)
- Peer reviews (inspections)
 - Introduced by Fagan in 1976
 - Several methods available
 - Some measures and indicators available
 - Effectiveness = effort / defect
 - Efficiency =
 - # defects found and fixed in inspection / # total defects
 - Defect density = # defects / size
- Assumption:
 - Would it be of value-added to inspections, either for efficiency or effectiveness, if a measurer's role is included?

CRIM Inspection method used in experiment

6

© CRIM 2008 7

Description of experiment

Step by step

CRIM Purpose and objective

- Objective:
 - Assess the efficiency and effectiveness of the COSMIC method as a method for finding defects in software functional requirements
- Purpose:
 - Perform an experiment involving industry experts
 - Some of whom would be skilled in measuring functional size with the COSMIC method
 - Others who would either be skilled in inspecting requirements or be knowledgeable on what is a well written software functional requirement
 - Special care was taken to get experienced practitioners in FSM and experienced inspectors and requirements writers in participating to this experiment

CRIM The requirements document

- SRS Document structure compliant to IEEE-830
- Requirements compliant to UML 2.0
- Usability testing application being described
 - Was actually implemented following the writing of the SRS in 2004
- SRS was 16 pages, 2900 words

CRIM The participants

- 4 FS expert measurers
 - All of them have participated on the COSMIC committee
- 3 inspectors with relevant industry practice in SW development and now teaching SW to undergraduate and graduate students
 - Respectively 8/15, 6/19, and 8/8 years of industry experience/total years of experience

CRIM The experiment steps

- 1. Prepare experiment
 - a. Prepare material
 - b. Call for participation
 - c. Provide training on specific inspection method
- 2. Perform inspection
 - a. Plan the inspection
 - b. Hold a kick-off meeting
 - c. Perform individual checking
 - d. Perform functional size measurement
 - e. Conduct a logging meeting

- 3. Compile experiment data
 - a. Defects and issues log
 - b. FSM detailed data
 - c. Effort data
- 4. Review experiment data with participants
- 5. Analyze experiment data

Experiment results

From inspectors and measurers

© CRIM 2008 13

CRIM Inspection results: total defects collected

Number of defects and issues by type per participant, including duplicates

		Defects			Issues		Total
Туре		С	Μ	S	Q	I	
Inspectors	Insp #1	20	24	10	1	5	60
	Insp #2	10	28	2	0	6	46
	Insp #3	7	5	0	0	2	14
Measurers	Meas #1	5	1	8	2	1	17
	Meas #2	4	2	5	0	0	11
	Meas #3	8	14	6	1	0	29
	Meas #4	15	11	20	2	2	50
Total:		69	85	51	6	16 (227

14

CRIM Inspection results: unique defects

Number of unique defects and issues by type, by category

(IN)	S	pectors	and	me	easurers	
•		-				

		De	5	Issues		Total	
Туре		С	Μ	S	Q	Ι	
Category	F	37	55	17	5	4	118
	Ν	21	20	19	1	12	73
Total:		58	75	36	6	16	191

Number of unique defects and issues found by inspectors

	_	Defects			lss	Total	
Туре		С	M	S	Q	I	
Category	F	19	39	6	1	3	68
	Ν	17	15	6	0	10	48
Total:	(36	54	12	1	13	116

CRIM Inspection results: **Effort spent and effectiveness**

Inspection step	Duration	# Participants	Effort
Plan the inspection	15 min	1	15 min
Hold a kick-off meeting	10 min	5	50 min
Perform individual checking		3	170 min
Conduct a logging meeting	60 min	5	300 min
Total:			535 min

Effectiveness = 535 minutes / 36 unique critical defects \rightarrow 14.9 minutes per critical defect

CRIM Measurement results: functional size in *cfp*

	Functional size	Average	Standard deviation
Meas #1	62		
Meas #2	55	50	2.2
Meas #3	61	59	3.3
Meas #4	57		

CRIM Measurement results: defects found

Number of defects and issues found by measurers only

		Defects			lssu	Total	
Туре		С	Μ	S	Q	I	
Measurers	Meas #1	3	1	5	2	1	12
	Meas #2	3	2	4	0	0	9
	Meas #3	6	13	4	1	0	24
	Meas #4	10	8	17	2	2	39

Number of <u>functional</u> defects found by measurers only

	Defects			Issues		Total	
Туре		С	Μ	S	Q	I	
Measurers	Meas #1	3	1	4	1	1	10
	Meas #2	3	2	3	0	0	8
	Meas #3	6	13	3	1	0	23
	Meas #4	6	3	6	2	0	17

18

Measurement results: Value added of measurers over inspection team

	Critical & Minor	Value- added	Critical only	Value- added
Inspection team	58		19	
Meas #1	4	7%	3	16%
Meas #2	5	9%	3	16%
Meas #3	19	33%	6	32%
Meas #4	9	16%	6	32%

Measurement results: CRIM Effort spent in minutes

	FSM effort	Average (min)	Standard deviation	Unique critical functional defects	Effectiveness (min/defect)
Meas #1	49			3	16.3
Meas #2	45	57	12 /	3	15
Meas #3	60	57	13.4	6	10
Meas #4	75			6	12.5

Effectiveness (on average) = <u>13.5 minutes per critical functional defect</u> (only found by measurers)

Discussion and future work

CRIM FSM: what it provided

- Functional size
 - For benchmarking and estimation
- Identification of defects not found by a team of inspectors
- A value-added on inspection efficiency & effectiveness
 - Between 16% to 32% of new critical functional defects
 - Effectiveness is 13.5 min/defect (on average) with measurement, compared to 14.9 min/defect in inspection
- But...
 - Measurers may have been over experienced
 - Other less experienced measurers may lead to different results
 - This will require further experimentation to verify

CRIM Further work...

- Other experiments with industry requirements documents
 - That may or may not be compliant with
 - IEEE-Std-830
 - UML 2.0
- Gain better understanding of specific defect types that may be found related to the measurement activity

References

CRIM References

- 1. IEEE Computer Society, IEEE-Std-830-1998, IEEE Recommended Practice for Software Requirements SpeciPcations, New York, NY, June 1998.
- 2. K. Wiegers, Peer Reviews in Doftware: A Practical Guide, Boston, MA: Addison-Wesley, November 2001.
- 3. T. Gilb and D. Graham, Software Inspections, Addison-Wesley Professional, December 1993, pp. 13-20.
- 4. A. Abran, et al, COSMIC-FFP Measurement manual: the COSMIC implementation guide for ISO/IEC 19761:2003, version 2.2, Common Software Measurement International Consortium, January 2003.
- International Organization for Standardization, ISO/IEC 19761:2003, Software engineering -- COSMIC-FFP -- A functional size measurement method, Frbruary 2003.
- 6. J. Arlow and I. Neustadt, UML 2 and the Unified Process, 2nd edition, Addison-Wesley, 2005.
- 7. S. Trudel and J. M. Lavoie, "uObserve Software Specification", Montreal, Canada: École de Technologie Supérieure, 2007.
- 8. GÉLOG, "COSMIC Entry Level Practitioners Certificate Holders", <u>http://www.gelog.etsmtl.ca/cosmic-ffp/entry_level_holders.html</u>.
- 9. S. Trudel, Software Inspections Workshop, CRIM, Montreal, Canada, 2007.
- **10**. Canadian Department of National Defence, "Defect type definitions", unpublished.
- 11. R. Stewart and L. Priven, Revitalizing Software Inspections, presented at the Montreal Software Process Improvement Network (SPIN), Canada, February 6th, 2008.