
The quality concepts and subconcepts in SWEBOK

113

The quality concepts and subconcepts in SWEBOK:

An ontology challenge

Cornelius Wille+, Alain Abran, Jean Marc Desharnais, Reiner R. Dumke+

École de Technologie Supérieure - ETS
1100 Notre-Dame Ouest, H3C 1K3 Montréal Québec , Canada,

(aabran,jmdeshar)@ele.etsmtl.ca
+Otto-von-Guericke-University of Magdeburg, Faculty of Computer Science,

Postfach 4120, 39016 Magdeburg, Germany,
(dumke,wille)@ivs.cs.uni-magdeburg.de

Abstract: The Guide to the Software Engineering Body of Knowledge
(SWEBOK) has been developed to represent an international consensus formed
through broad public participation in the review process and is now close to
final approval as ISO/IEC TR 19759. This guide constitutes an integrated
structuring of a large set of software engineering concepts developed
individually over the past forty years from a large number of distinct viewpoints.
The absence of a recognized consensus on software engineering terminology has
been a challenging task in building the SWEBOK Guide, and in achieving an
international consensus. While major consensus has been reached at the broad
taxonomy level of SWEBOK, some work remains to increase terminology
consistency at a more detailed level. This paper briefly presents SWEBOK and
related terminology issues. We then present the ontology approach to building
domain-specific ontologies and show how it can be used to build the SWEBOK
ontology and to increase its internal consistency and clarity. A specific example
of the benefits of an ontology is presented, along with an analysis of the use of
the term 'quality' in the current version of the SWEBOK Guide.

Keywords: Software Engineering Body of Knowledge, SWEBOK, ISO/IEC TR
19759, Ontology, quality, software quality

1 SWEBOK

Articulating a Software Engineering Body of Knowledge (SWEBOK), and
gaining the widest possible consensus on its content, is an essential step toward
developing a profession because SWEBOK will represent broad agreement on
what a software engineering professional should know. Without such a
consensus, no licensing examination can be validated, no curriculum can prepare
an individual for an examination and no criteria can be formulated for
accrediting a curriculum. The IEEE-Computer Society has championed the
development of such an international consensus on a compendium and guide to
the body of knowledge that has been developing and evolving over the past four

 C. Wille, A. Abran, J. M. Desharnais, R. R. Dumke

114

decades: the Guide to the Software Engineering Body of Knowledge
(SWEBOK) project1
[1].

SWEBOK knowledge is subdivided into ten Knowledge Areas (KAs) – see
Figure 1. To provide a topical access to the knowledge, each Knowledge Area is
further broken down into topics and sub-topics, and identifies as well the related
seminal reference material and a matrix linking the reference material to the
topics listed. In the OO paradigm, the 10 Knowledge Areas could be considered
as subclasses of the SWEBOK super class. Every concept about software
engineering would be a subclass of one or more of the Knowledge Areas. That
means that a concept should be a subclass of the super class and have relations
to different knowledge areas. But super classes and subclasses, as well as the
definitions of the concepts, represent only a first step. A SWEBOK user is not
only interested in the definitions of the concepts, but also in much more detailed
information about the topics that are important to him. In SWEBOK this
detailed level of information is not in the Guide itself, but in its internationally
approved list of references.

Figure 1: Knowledge Areas of the Software Engineering Body of Knowledge

The authors and hundreds of reviewers from 42 countries have contributed to
SWEBOK and, in parallel, the document is being reviewed by national software
engineering standardization committees with a view to becoming an
internationally accepted document at the ISO level, that is, ISO/IEC TR 19759.

Because many authors have contributed to the initial versions of the SWEBOK
Guide, it is necessary to verify the coherency and clarity of the terminology used
within each chapter and across all chapters. For instance, in the SWEBOK

1 The SWEBOK project has received support from the following organizations: Boeing,
Raytheon, The MITRE Corporation, National Institute of Standards & Technology (USA),
CONSTRUX Software, Rational Software, SAP Lab. Canada, NRC, and Canadian Council of
Professional Engineers.

The quality concepts and subconcepts in SWEBOK

115

Guide (Trial Version 1.00), the term quality is used 340 times and the word
software quality 104 times.

Terms such as 'quality', 'measurements', 'process' are used extensively in the
SWEBOK Guide, but each of these terms might refer to many concepts used in
different contexts and at different conceptual levels. This makes it challenging
for beginner users of the Guide to recognize whether or not different
subconcepts are being discussed when they are not identified as such by the use
of distinct terms or expressions. It is therefore necessary to verify the precise
interpretation of each of these terms throughout the text and to ensure that they
are adequately identified in order to improve the understandability of the
SWEBOK Guide at a detailed level.
Even though the SWEBOK Guide has already been reviewed extensively, and is
going through another major review cycle during the summer of 2003, up to
now no special techniques have been used to detect such terminology issues.
We illustrate this terminology issue in section 2, with an inventory of the uses of
the term 'quality' in the SWEBOK guide, then in section 3 we propose a
structuring of the quality knowledge embedded in this Guide. In section 4, the
generic domain of ontologies is presented, and in section 5 a method of using an
ontology for SWEBOK is proposed. Finally, in section 6, recommendations are
given for building automated support for the construction of a full SWEBOK
ontology.

2 The 'quality' terminology in SWEBOK

The concept of quality, together with its set of multiple subconcepts, is used in
all Knowledge Areas of SWEBOK, as illustrated by the number of entries of the
term 'quality' in each of the SWEBOK chapters (Table 1). In this section, we
analyze how the term 'quality' and its related subconcepts are used in the context
of the SWEBOK Guide – Trial Version 1.00.

Table 1: 'Quality' in the 10 SWEBOK Knowledge Areas

Knowledge Area The Number of times 'quality' is
mentioned

Software Requirements 60
Software Design 21
Software Construction 9
Software Testing 16
Software Maintenance 22
Software Configuration Management 19
Software Engineering Management 32
Software Engineering Process 16
Software Engineering Tools and Methods 4
Software Quality 187
Appendix and Introduction 58

 C. Wille, A. Abran, J. M. Desharnais, R. R. Dumke

116

Table 2 presents a more detailed inventory of the statements in which the term
'quality' appears in the Testing chapter. On the left-hand side, the section of the
chapter is mentioned, and in the middle column we have indicated whether the
term 'quality' has been used alone, or as part of a related expression containing
the 'quality' term. This Table 2 illustrates how the two authors of this chapter
have used 'quality' and its subconcepts, both in a generic meaning of quality and
also in the particular context of software engineering, that is, 'software quality'.
Another, more extensive illustration of the use of quality-related statements in
the Requirements chapter is presented in the Appendix.

Quality and its subconcepts in the generic sense are defined in multiple sources
[2]. Often when quality is used in SWEBOK, the particular meaning is software
quality. In this paper, whenever we find a term (or an expression) which has a
different contextual meaning (even though the same term is used), we will refer
to this as a distinct 'concept'. For the sake of clarity and consistency, it will
therefore be necessary to find out which concepts are used in SWEBOK and
how they have been defined in particular contexts.

Table 2: Inventory of quality concepts in the SWEBOK chapter on Testing

Software Testing Expression SWEBOK Statements
Introduction (p. 5-1) product

quality
Testing is an important, mandatory part of
software development; it is a technique for
evaluating product quality and also for
indirectly improving it, by identifying defects
and problems.

Introduction (p. 5-1) quality As more extensively discussed in the
Software Quality chapter of the Guide to the
SWEBOK, the right attitude towards quality
is one of prevention; it is obviously much
better to avoid problems than to repair them.

Introduction (p. 5-1) quality
product

It is perhaps obvious, but worth stating, that,
even after successfully completing an
extensive testing campaign, the software
could still contain faults; also, defect-free
code is not a synonym for product quality.

Introduction (p. 5-1) quality
analysis

In the Software Quality (SQ) chapter of the
Guide to the SWEBOK already referred to,
activities and techniques for quality analysis
are categorized into: static techniques (no
code execution) and dynamic techniques
(code execution).

Introduction (p. 5-1) product
quality

Although this chapter focuses on testing, that
is, dynamic techniques, static techniques are
equally important for the purposes of
evaluating product quality and finding
defects.

The quality concepts and subconcepts in SWEBOK

117

Breakdown of Topics for
the Software Testing
Knowledge Area (p. 5-7)

quality
analysis

However, a comprehensive view of the
Knowledge Area of Software Testing as a
means for evaluating quality must include
other, equally important testing objectives,
e.g. reliability measurement, usability
evaluation, contractor’s acceptance, for
which different approaches would be taken.

Breakdown of Topics for
the Software Testing
Knowledge Area (p. 5-
11)

software
quality

It is also informative to consider testing from
the point of view of software quality analysts,
users of CMM and Cleanroom processes,
and of certifiers.

Breakdown of Topics for
the Software Testing
Knowledge Area (p. 5-
11)

quality
analysis

Measurement is instrumental in quality
analysis.

Breakdown of Topics for
the Software Testing
Knowledge Area (p. 5-
11)

quality
measurement

Wider coverage of the topic of quality
measurement, including fundamentals,
measures and techniques for measurement,
is provided in the Software Quality chapter of
the Guide to the SWEBOK.

Breakdown of Topics for
the Software Testing
Knowledge Area (p. 5-
11)

quality
prediction

This information can be very useful in
making quality predictions as well as for
process improvement.

Breakdown of Topics for
the Software Testing
Knowledge Area (p. 5-
12)

software
quality

These (what?) should foster a common
culture towards software quality, by which
early failure detection becomes an objective
for all those involved, not only testers.

Breakdown of Topics for
the Software Testing
Knowledge Area (p. 5-
13)

quality
assurance

Execution of tests is generally performed by
testing engineers with oversight by quality
assurance personnel and, in some cases,
customer representatives.

The term ‘quality’ is therefore quite extensively referenced in the SWEBOK
Guide, from numerous viewpoints, to represent various facets (concepts and
related subconcepts) of quality. However, are these distinct facets of quality
labeled distinctly and unambiguously, or are their interpretations highly
textually dependent? How can we ensure in particular that beginner users of this
Guide properly recognize such distinct facets when they are not properly
labeled?

This issue of consistency of terminology is particularly important in the
development of international standards, and specific techniques have been
developed to improve the consistency of the terminology within each standard.
For instance, it is mandatory in a standard to provide, in a predetermined
section, all definitions, carefully crafted, and to allow no redefinition within the
body of the text. During the review cycles of the draft versions of these
standards, experienced reviewers have developed a few verification criteria,
such as: for each term defined in the official definition section, there must be no

 C. Wille, A. Abran, J. M. Desharnais, R. R. Dumke

118

further 'is defined' within the main body of the standard, and: no such term can
be further redefined within the text through related expressions like 'is…', 'is
used to…', 'uses…', 'is defined as…'. To improve consistency, redefinitions
within the text must be withdrawn if they correspond exactly to the official
definition, or be relabeled as distinct expressions if they convey a distinct
concept or subconcept not specifically stated in the official definition.

This practitioner's approach to standards development and review is modeled in
Figure 2, and was used in the initial iteration of our inventory of the term quality
in the SWEBOK Guide. However, this approach was not used initially to
improve the consistency of the SWEBOK Guide, but for another purpose, which
was to identify, and recognize, the full set of concepts and sub-concepts about
quality in the SWEBOK Guide. Indeed, since the SWEBOK had already been
extensively been reviewed chapter by chapter by world experts, we were not
specifically searching for duplication or inconsistencies, but rather to identify,
and inventory, all the distinct viewpoints of quality being presented and
discussed.

Figure 2: Practitioners’ approach to recognizing distinct uses of subconcepts

about a single concept

Figure 3 and 4 presents both the results of our inventory, and partial structuring,
of the quality concepts identified within the whole SWEBOK Guide using the
approach illustrated in Figure 2. Figure 3 lists all concepts and sub-concepts
identified for the term ‘quality’ in the generic sense, and Figure 4 for the term in
the particular context of 'software quality'.

The quality concepts and subconcepts in SWEBOK

119

The view in Figure 3 shows that software quality (bottom center) is one
particular subconcept of quality. Four other subconcepts of quality have their
own subconcepts; for example, process quality is associated with the subconcept
process quality assessment (similarly for: document quality, quality analysis and
product quality). Three subconcepts have no referenced parents in the Guide
(bottom right-hand side of Figure 4): quality evaluation tools, quality
improvement paradigm and construction quality assurance.

Figure 4 shows the subconcepts of software quality. Software quality has nine
subconcepts and this is many fewer than quality by itself in the generic sense.

Of course, the structuring of concepts and sub-concepts in Figure 3 and 4 is only
preliminary. Further work will be required later on to improve and optimize this
initial structuring; it should, however, be useful in the current review cycle of
the SWEBOK Guide. In Figure 4 we illustrate also an initial structuring of
multiple inheritances in this area: for example, “software quality assurance”
would be subconcepts of both “quality assurance” and “software quality”.

Figure 3: Initial structuring of subconcepts of quality used in SWEBOK

 C. Wille, A. Abran, J. M. Desharnais, R. R. Dumke

120

Figure 4: Subconcepts of 'software quality' used in SWEBOK

In the inventory and analysis of the SWEBOK Guide, it was observed that
sometimes expressions used in a particular sense were being replaced by generic
expressions, leaving the reader to figure out from the context that the expression
was being used in the particular sense. One example is the use of the
subconcepts quality attributes and software quality attributes; both appear in
SWEBOK. ‘Quality attributes’ is used 15 times and ‘software quality attributes’
twice. Table 3 shows that their meanings are often the same.

Table 3: Context of use of 'quality attributes' and 'software quality attributes' in
SWEBOK

Number id. Chapter Statements in the SWEBOK Guide text

1 Introduction While a whole Knowledge Area is devoted to
software quality, this sub-area presents the topics
more specifically related to software design. These
aspects are quality attributes, quality analysis and
evaluation tools and measures.

2 Software
Requirements

Of particular interest are issues of software quality
attributes and measurement, and software process
definition.

3 Software
Engineering
Management

Quality management – quality is defined in terms of
pertinent attributes of the specific process/project
and any associated product(s), perhaps in both
quantitative and qualitative terms. (These quality
attributes will have been determined in the
specification of detailed requirements.)

The quality concepts and subconcepts in SWEBOK

121

4 Software
Quality

The software engineer, in discussing software
quality attributes and the processes necessary to
ensure their presence, should keep in mind the
value of each attribute and the sensitivity of the
value of the product to changes in it.

5 Software
Quality

Quality attributes may be present or absent, or
may be present to a greater or lesser degree, with
tradeoffs among them, and with practicality and cost
as major considerations.

6

Software
Quality

Terminology for quality attributes differs from one
taxonomy or model of software quality to another;
models may have different numbers of hierarchical
levels and different total numbers of attributes.

3 SWEBOK terminology and ontology

Detailed analysis of the SWEBOK text reveals (as previously illustrated with the
term 'quality') that terms and expressions (concepts and related subconcepts) are
often used in chapters with both similar and dissimilar meanings. Of course, this
is only one example; we also analyzed the terms 'measurement', 'defect',
'validation' and 'verification' with the same results.

For users (humans or machines), different interpretations in distinct contexts
sometimes make the meanings of terms confusing and ambiguous, while a
coherent terminology adds clarity and facilitates understanding. “People can’t
share knowledge if they don’t speak a common language” [4]. “[The need to
define] domain-specific vocabulary is a major barrier to knowledge base
construction” [17].

The development, and evolution, of an international consensus on a topical
access to the existing knowledge of software engineering is one of the five
objectives of the SWEBOK project, and the basic need for the construction of
SWEBOK. Readers are reminded that such knowledge about software
engineering has been developed by a large number of researchers and
practitioners, from multiple viewpoints, initially without commonalities in
terminology across topics and subtopics within this domain of knowledge.

A terminology, as a general term for all kinds of controlled vocabularies, can
help to clear up ambiguities in the terms used in the context of software
engineering. Of course, the IEEE has its own Standard Glossary of Software
Engineering Terminology, and other terminologies also exist in the area of
Computer Science [8] [9]. Ontologies define a common vocabulary for
researchers who need to share information in a domain [15]. For researchers, an
ontology will also include machine-interpretable definitions of basic concepts in
the domain and the relations among them. The ontology approach seems a
promising path to follow to tackle terminology issues at lower levels of detail,
since an ontology provides a standard terminology for a specific context.

 C. Wille, A. Abran, J. M. Desharnais, R. R. Dumke

122

In recent years, the development of ontologies has been moving from the realm
of Artificial-Intelligence laboratories to the desktops of domain experts. Many
disciplines now develop standardized ontologies that domain experts can use to
share and annotate information in their fields. Medicine for example, has
produced large, standardized and structured vocabularies, and there is also
evidence of emerging ontologies in the field of software engineering [3]. For
Gruber, “an ontology is a specification of a conceptualization” [6].

An ontology is also a specification of some topic [17]. It is a formal and
declarative representation which includes the vocabulary required for referring
to the concepts in that subject area and the logical statements that describe what
the concepts are, how they are related, and can be related, to one another.
Ontologies therefore provide a vocabulary for representing and communicating
knowledge about some topic and a set of relationships which hold among the
concepts in that vocabulary.

Some of the reported benefits of ontologies are that they [15]:
Enable a new and effective way to reuse knowledge;
Help us use, and understand, some area of knowledge better;
Separate fundamental knowledge from operational knowledge;
Help us analyze the structure of knowledge;
Help us reach a consensus on our understanding of some area of knowledge;
Help us share a common understanding of the structure of information, among
people or software agents;
Enable a machine to use the knowledge in some application.

In addition, a SWEBOK ontology could help to separate software engineering
knowledge from other operational knowledge. In this way, general statements
could be consciously delimited. For example, every product has quality
attributes, however the ontology shows that quality attributes in the context of
software (software quality attributes) are different from quality attributes for
other products.

An internationally recognized software engineering ontology, when and if one
becomes available, would make it easier to carry out changes in the knowledge
and to teach this new knowledge to software engineers. In addition, explicit
specifications of software engineering knowledge are useful for new researchers
who will learn the meaning of concepts in the domain.

Ontology development is necessarily an iterative process. Concepts in the
software engineering ontology should be close to objects of interest (physical or
logical) and to the relationships between them.

The quality concepts and subconcepts in SWEBOK

123

4 Design of a SWEBOK ontology

The first challenge in developing an ontology for SWEBOK is to define what
the ontology should contain and what it should be used for.

Of course, the SWEBOK Ontology should include all the important concepts
about software engineering. These concepts should be supported by widely
accepted definitions, facilitating common understanding by all users in this
domain of knowledge. Concurrently, an ontology should provide a necessary
delimitation with respect to other domains of knowledge. In practice, developing
an ontology also includes defining classes within the ontology and arranging the
classes in a taxonomic (subclass–super class) hierarchy. The structure of
knowledge provided in the SWEBOK Guide provides a starting point for the
design of a software engineering ontology.
SWEBOK is the super class of the ontology. The ten Knowledge Areas are the
subclasses of the super class and represent specialized views of parts of the
software engineering knowledge. Each Knowledge Area is represented by a
structured set of concepts and corresponding definitions. All concepts are
subclasses of the super class and they can also be subclasses of one or more
Knowledge Areas.
A second important aspect in the design of an ontology is that much of the
knowledge of software engineering in the SWEBOK Guide is represented by
links to internal and external references. To model such links, we need more
than only the unidirectional HTML links. In the current book format of the
SWEBOK Guide, it is not possible for the user to access a single (and unique)
reference for a concept. In future versions of the Guide, the user should ideally
be provided with a quick way to find either a reference or a concept by means of
the SWEBOK ontology, as well as additional information about his search.

Figure 5: Different types of links between concepts and SWEBOK Knowledge

Areas

 C. Wille, A. Abran, J. M. Desharnais, R. R. Dumke

124

Bidirectional and multidirectional links allow information-sharing in both
directions, which means that every concept can by referenced in one or more
ways. Also, the path from the reference to the concept is available, as illustrated
in Figure 6 for the testing concept and some of the relevant references.

Figure 7: Example of a link structure with internal and tool-supported external
sources

An ontology with bidirectional and multidirectional links would make it possible
for every user (as well as applications and agents) to have very fast access to the
corresponding details of high-level knowledge.
By contrast to other ontologies, such as in the medical field, the structure of a
software engineering ontology will be relatively flat. Under the root element,
there will be different Knowledge Areas and different concepts. In other
domains, an electronic marketplace, for example, the structure would be much
deeper.

The SWEBOK structure will contain many different links to help the user find
knowledge quickly, and most of these links will point to external references (see
Figure 8).

The quality concepts and subconcepts in SWEBOK

125

Figure 9: Design of a software engineering ontology with different levels of
knowledge

Only a few links are illustrated in Figure 9, out of a much larger number of
available references. All concepts are subclasses of SWEBOK and also
subclasses of one or more Knowledge Areas. Every concept has a definition and
one or more internal or external references. To find the knowledge he is looking
for, the user can use various views. For example, he can navigate from
Knowledge Areas through to concepts with their definitions and references. He
also can search from the perspective of all the concepts in SWEBOK. In the
future, if bidirectional links are available, users will also be able to navigate
from a reference to a Knowledge Area or to other references.

An initial example of a data structure for a software engineering ontology is
presented in Figure 10. Under the root element (SWEBOK) are the Knowledge
Areas with their names and a list of all the concepts used in each of the
corresponding Knowledge Areas. Also under the root element are all the
concepts used in all the Knowledge Areas. These concepts have the following
attributes: 'name', 'is_defined_as', 'is_used' and 'uses'. The definition of the
concept gives information about the source of the definition. The expression
'is_used' represents a list of all the Knowledge Areas that use the concept, and
'uses' represents a list of references outside SWEBOK which are supported by
tools.

 C. Wille, A. Abran, J. M. Desharnais, R. R. Dumke

126

Figure 10: Structure for a software engineering ontology

Concepts can also have associated subconcepts. These subconcepts are also
concepts, and have the same structure. For example: software quality is a
subconcept of quality, and design quality is also a subconcept of quality.

Various technologies are available for developing a SWEBOK ontology [3] [16]
[18]. All are based on the Extensible Markup Language (XML) a simple, very
flexible text format derived from the Standard Generalized Markup Language
(SGML) [10].

5 Conclusions and Future Work

Under the leadership of the IEEE-Computer Society, a compendium and guide
to the software engineering body of knowledge has been developed and should
be approved as ISO/IEC TR 19759 by the end of 2003. A very detailed
inventory of terms and expressions used in the SWEBOK Guide indicates,
however, a need to improve the consistency of the terminology. The current
Trial version of the guide represents a large number of viewpoints in a domain
where there is not yet a consensus on a single set of software engineering terms.
Through an example with the use of the term ‘quality’ (or quality) in the 2001
version of the SWEBOK Guide, we have illustrated the need to improve the
coherency of the terminology.
The design of a software engineering ontology could help improve the
consistency of the terminology in the SWEBOK Guide. An ontology is a
flexible and useful way to define terms, their concepts and subconcepts, and
show how they are related to one another in the context of domain knowledge.

The quality concepts and subconcepts in SWEBOK

127

An ontology is also a conceptualization, and presents domain knowledge and its
structure in a general manner.

In this paper, we presented a candidate approach for the design of an ontology
for SWEBOK. Various languages are available to create an ontology, and all are
based on the Extensible Markup Language (XML). To decide which is the best
one to use is not a simple question, because ontologies and their languages are
just in the beginning stages of development, as are their technologies. A critical
step in creating a SWEBOK ontology will be to establish which technology will
best support it.

To help the developers of the ontology, research tools are currently being
developed to help create the data structure. It will be very useful, for instance, to
identify fundamental terms and concepts and to have available text extraction
and rule extraction tools to facilitate the process. Research is progressing well
on knowledge extraction tools (inference engine) to help in the design of an
ontology based on the SWEBOK knowledge and in finding new knowledge.

 References

[1] A. Abran, J. Moore, P. Bourque, R.L. Dupuis, L. Tripp, Guide to the

Software Engineering Body of Knowledge – SWEBOK, Trial Version 1.0,
IEEE-Computer Society Press, May 2003, URL: http://www.swebok.org

[2] ANSI/IEEE STD 1061, IEEE Standard for a Software Quality Metrics
Methodology, IEEE Computer Society Press, New York 1998.

[3] The DARPA Agent Markup Language Homepage, July 2003, URL:
http://www.daml.org/

[4] T. H. Davenport, L. Prusak, Working Knowledge: How organizations
manage what they know, Harvard Business School Press, 1997.

[5] N. Guarino, P. Giaretta, Ontologies and Knowledge Bases: Towards a
Terminological Clarification, In N.J.I. Mars, editor, Proc. of the 2nd
Intern. Conf on Building and Sharing Very Large Knowledge Bases. IOS
Press, Enschede, The Netherlands, 1995.

[6] T. R. Gruber. A Translation Approach to Portable Ontology
Specifications, Stanford University, April 1993.

[7] J. Hasebrook, L. Erasmus, G. Doeben-Henisch, Knowledge Robots for
Knowledge Workers: Self-Learning Agents Connecting Information and
Skills, In: Jain/Chen/Ichalkaranje: Intelligent Agents and Their
Applications, Physica-Verlag Heidelberg New York, Heidelberg, 2002,
pp.59-81.

[8] IEEE Standard Glossary of Software Engineering Terminology, IEEE,
Piscataway, NJ, IEEE Standard 610.12-1990, 1990.

[9] IEEE Standard Glossary of Application Terminology, IEEE, Piscataway,
NJ, IEEE Standard 610.2-1987, 1987.

 C. Wille, A. Abran, J. M. Desharnais, R. R. Dumke

128

[10] ISO 8879:1986, Information Processing - Text and Office Systems -
Standardized Generalized Markup Language (SGML), International
Organization for Standardization, Geneva, 1986.

[11] ISO, ISO/IEC 9126-1:2001 Software engineering – Product quality – Part
1:Quality model, International Organization for
Standardization/International Electrotechnical Commission., Geneva,
2001.

[12] ISO, ISO/IEC 15939:2002 Software Engineering: Software Measurement
Process, International Organization for Standardization/International
Electrotechnical Commission., Geneva, 2002.

[13] ISO, International Vocabulary of Basic and General Terms in Metrology,
International Organization for Standardization – ISO, Geneva, 1993.

[14] The KAON open-source ontology applications Homepage, May 2003,
URL: http://kaon.semanticweb.org/

[15] N. F. Noy and D. L. McGuinness, A Guide to Creating Your First
Ontology, Stanford University, Mai 2003, URL:
http://protege.stanford.edu/publications/ontology_development/ontology1
01.pdf

[16] OIL Homepage, July 2003, URL: http://www.ontoknowledge.org/oil/
[17] Stanford KSL Network Services, June 2003,

URL: http://www-ksl-svc.stanford.edu:5915/doc/network-services.html
[18] W3C Homepage, July 2003, URL: http://www.w3.org/
[19] N. Zhong, Ontologies in Web intelligence, In: Jain/Chen/Ichalkaranje:

Intelligent Agents and Their Applications, Physica-Verlag Heidelberg
New York, Heidelberg, 2002, pp.83-97.

The quality concepts and subconcepts in SWEBOK

129

Annex

Table 4: Inventory of quality concepts in 2 SWEBOK chapters: Software
Requirements and Software

SWEBOK chapter and
sections

used concept Quality-related statement

Software
Requirements

Definition of the
Software Requirements
Knowledge Area (p.2-2)

quality
requirements

Non-functional requirements are sometimes
known as constraints or quality requirements.

Definition of the
Software Requirements
Knowledge Area (p.2-5)

quality Instead, requirements typically iterate toward
a level of quality and detail that is sufficient to
permit design and procurement decisions to
be made.

Definition of the
Software Requirements
Knowledge Area (p.2-5)

requirements
quality

However, requirements engineers are
necessarily constrained by project manage-
ment plans and must therefore take steps to
ensure that the requirements quality is as high
as possible given the available resources.

Breakdown of Topics
for Software
Requirements (p. 2-9)

process quality
assessment

This subtopic is concerned with requirements
engineering process quality assessment.

Breakdown of Topics
for Software
Requirements (p. 2-9)

quality
standards

It will help to orient the requirements
engineering process with quality standards
and process improvement models for software
and systems.

Breakdown of Topics
for Software
Requirements (p. 2-9)

process quality Process quality and improvement is closely
related to the software quality KA and the
software process KA.

Breakdown of Topics
for Software
Requirements (p. 2-9)

process quality The process quality and improvement
subtopic is concerned with quality.

Breakdown of Topics
for Software
Requirements (p. 2-11)

product quality The quality of requirements elicitation has a
direct effect on product quality.

Breakdown of Topics
for Software
Requirements (p. 2-13)

quality, product
quality,
software quality

The quality of the analysis directly affects
product quality. In principle, the more rigorous
the analysis, the more confidence can be
attached to the software quality.

Breakdown of Topics
for Software
Requirements (p. 2-13)

quality This topic is concerned with the structure,
quality and verifiability of the requirements
document.

Breakdown of Topics
for Software
Requirements (p. 2-13)

quality, product
quality

The quality of the requirements document can
dramatically affect the quality of the product.

Breakdown of Topics
for Software
Requirements (p. 2-13)

quality
indicators

A number of quality indicators have been
developed that can be used to relate the
quality of an SRS to other project variables
such as cost, acceptance, performance,
schedule, reproducibility, etc.

 C. Wille, A. Abran, J. M. Desharnais, R. R. Dumke

130

Breakdown of Topics
for Software
Requirements (p. 2-14)

quality The quality of the requirements documents
dramatically affects the quality of the product.

Breakdown of Topics
for Software
Requirements (p. 2-14)

quality
attributes

Quality attributes of requirements documents
can be identified and measured.

Breakdown of Topics
for Software
Requirements (p. 2-14)

quality
problems

These include the danger of users’ attention
being distracted from the core underlying
functionality by cosmetic issues or quality
problems with the prototype.

Breakdown of Topics
for Software
Requirements (p. 2-14)

quality The quality of the models developed during
analysis should be validated.

Breakdown of Topics
for Software
Requirements (p. 2-14)

quality Validation is all about quality - the quality of
the requirements.

Breakdown of Topics
for Software
Requirements (p. 2-15)

quality system A naming scheme for generating these IDs is
an essential feature of a quality system for a
requirements engineering process.

Breakdown of Topics
for Software
Requirements (p. 2-15)

software quality The availability of modern requirements
management tools has improved this situation
and the importance of tracing (and
requirements management in general) is
starting to make an impact on software
quality.

Breakdown of Topics
for Software
Requirements (p. 2-15)

quality Requirements management is a level 2 key
practice area in the software CMM and this
has boosted recognition of its importance for
quality.

Breakdown of Topics
for Software
Requirements (p. 2-15)

process quality
assessment

We believe this topic adds great va lue to any
discussion of requirements engineering as it is
directly concerned with process quality
assessment.

Breakdown Rationale
(p. 2-16)

document
quality
assessment

The breakdown is similar to that discussed in
most texts, apart from document quality
assessment.

Breakdown Rationale
(p. 2-16)

product quality
assurance

The relationship of requirements engineering
product quality assurance, tools and
standards is provided in the breakdown.

