

E-Learning Infrastructure for Software Engineering Education:
Steps in Ontology Modeling for SWEBOK

Cornelius Wille, Reiner R. Dumke
Otto-von-Guericke-University of Magdeburg,

Faculty of Computer Science,
Postfach 4120, 39016 Magdeburg, Germany,

(dumke,wille)@ivs.cs.uni-magdeburg.de

Alain Abran, Jean Marc Desharnais,

École de Technologie Supérieure - ETS
1100 Notre-Dame Ouest, H3C 1K3 Montréal

Québec , Canada,
(aabran,jmdeshar)@ele.etsmtl.ca

Abstract: The Guide to the Software Engineering Body of
Knowledge (SWEBOK) has been developed to represent an
international consensus formed through broad public
participation in the review process and is now close to final
approval as ISO/IEC TR 19759. This guide constitutes an
integrated structuring of a large set of software engineering
concepts developed individually over the past forty years from a
large number of distinct viewpoints. The absence of a
recognized consensus on software engineering terminology has
been a challenging task in building the SWEBOK Guide and in
achieving this international consensus. This paper presents a first
ontological approach to building domain-specific ontologies as a
part of the Semantic Web, and shows how it can be used to build
the SWEBOK ontology and to increase its internal consistency
and clarity. Finally, new ideas on how a SWEBOK ontology can
help in developing an e-learning system on software engineering
are presented.

Key Words: Software Engineering Body of Knowledge,
SWEBOK, ISO/IEC TR 19759, Ontology, E-Learning

1 SWEBOK
Gaining the widest possible consensus on the content of a
Software Engineering Body of Knowledge (SWEBOK) is
an essential step toward developing the software
engineering profession. Without such a consensus, no
licensing examination can be validated, no curriculum can

prepare an individual for an examination and no criteria
can be formulated for accrediting a curriculum. The IEEE
Computer Society has championed the development of
such an international consensus on a compendium and
guide to the body of knowledge that has been developing
and evolving over the past four decades: the Guide to the
Software Engineering Body of Knowledge (SWEBOK)
project [1].

SWEBOK knowledge is subdivided into ten Knowledge
Areas (KAs) – see Figure 1. To provide a topical access to
the knowledge, each KA is further broken down into
topics and sub-topics, and also identifies the related
seminal reference material and a matrix linking the
reference material to the topics listed. In the OO
paradigm, the 10 KAs could be considered as subclasses
of the SWEBOK super class. Every software engineering
concept would be a subclass of one or more of the KAs.
This means that a concept should be a subclass of the
super class and have relations to different KAs. But super
classes and subclasses, as well as the definitions of the
concepts, represent only a first step. A SWEBOK user is
not only interested in the definitions of the concepts, but
also in much more detailed information about the topics
that are important to him. In SWEBOK, this detailed level
of information is not in the Guide itself, but in its
reference material.

Figure 1: Knowledge Areas of the Software Engineering Body of Knowledge

418-126 520

melissa

The authors and hundreds of reviewers from 42 countries
have contributed to SWEBOK and, in parallel, the
document was reviewed by national software engineering
standardization committees and approved in 2003 for
publication and an ISO technical report, ISO/IEC TR
19759.

Because many authors have contributed to the initial
versions of the SWEBOK Guide, it is necessary to verify
the coherency and clarity of the terminology used within
each chapter and across all chapters. For instance, in the
SWEBOK Guide (Trial Version 1.00), the term quality is
used 340 times and the word software quality 104 times.

Terms such as 'quality', 'measurements' and 'process' are
used extensively in the SWEBOK Guide, but each of
these terms might refer to many concepts used in different
contexts and at different conceptual levels. This makes it
challenging for beginner users of the Guide to recognize
whether or not different subconcepts are being discussed
when they are not identified as such by the use of distinct
terms or expressions. It is therefore necessary to verify the
precise interpretation of each of these terms throughout
the text and to ensure that they are adequately identified,
in order to improve the understandability of the SWEBOK
Guide at a detailed level.

Detailed analysis of the SWEBOK text reveals that terms
and expressions (concepts and related subconcepts) are
often used in chapters with both similar and dissimilar
meanings.

In the inventory and analysis of the SWEBOK Guide, it
was observed that sometimes expressions used in a
particular sense were being replaced by generic
expressions, leaving the reader to figure out from the
context that the expression was being used in the
particular sense. One example is the use of the
subconcepts quality attributes and software quality
attributes; both appear in SWEBOK. ‘Quality attributes’
is used 15 times and ‘software quality attributes’ twice.

For users (humans or machines), different interpretations
in distinct contexts sometimes make the meanings of
terms confusing and ambiguous, while a coherent
terminology adds clarity and facilitates understanding.
“People can’t share knowledge if they don’t speak a
common language” [17]. Explicit specifications of
domain conceptualizations, called ontologies, are essential
for the development and use of intelligent systems as well
as for the interoperation of heterogeneous systems.

2 Ontology as a part of the Semantic Web
In recent years, the development of ontologies has moved
from the realm of Artificial Intelligence laboratories to the
desktops of domain experts and finally to the Web, taking
advantage of the possibilities of this new communication
tool. Many disciplines now develop ontologies or

standardized "vocabularies" which domain experts can
use to share and annotate information in their fields.
Medicine, for example, has produced large, standardized
and structured vocabularies, and there is also evidence of
emerging “ontologies” in the field of software engineering
[16]. There is also a need for ontologies in computer
science [7].

What is an ontology then? For Gruber, “an ontology is a
specification of a conceptualization” [19]. An ontology is
also a specification of some topic. It is a formal and
declarative representation which includes the vocabulary
required for referring to the concepts in that subject area
and the logical statements that describe what the concepts
are, how they are related, and can be related, to one
another. Ontologies therefore provide a vocabulary for
representing and communicating knowledge about some
topic and a set of relationships which hold among the
concepts in that vocabulary.

Some of the reported benefits of ontologies are that they
[10]:

• Enable a new and effective way to reuse
knowledge;

• Help us use, and understand, some area of
knowledge better;

• Help us analyze the structure of knowledge;
• Help us reach a consensus on our understanding

of some area of knowledge;
• Help us share a common understanding of the

structure of information, among people or
software agents;

• Enable a machine to use the knowledge in some
application.

In addition, a SWEBOK ontology could help to separate
software engineering knowledge from other operational
knowledge. In this way, general statements could be
consciously delimited. For example, every product has
quality attributes; however, the ontology shows that
quality attributes in the context of software (software
quality attributes) are different from quality attributes for
other products.

An internationally recognized software engineering
ontology, when and if one becomes available, would
make it easier to carry out changes to the knowledge and
to teach this new knowledge to software engineers. In
addition, explicit specifications of software engineering
knowledge are useful for new researchers who will learn
the meaning of concepts in the domain. A software
engineering ontology can play an important role for
people who want to learn more about software
engineering.

Knowledge based on an ontology is also machine-
readable and so useful for an e-learning structure. For
researchers, an ontology will also include machine-
interpretable definitions of basic concepts in the domain

521

and the relations among them. The ontology approach
seems a promising path to follow to tackle terminology
issues at lower levels of detail, since an ontology provides
a standard terminology for a specific context.

Ontology development is necessarily an iterative process.
Concepts in the software engineering ontology should be
close to objects of interest (physical or logical) and to the
relationships between them.

Ontologies are a part of the Semantic Web. The Semantic
Web is the representation of data on the World Wide
Web, and it will by developed under the leadership of the
W3C consortium. “The Semantic Web is also a extension
of the current Web, in which information is given well-
defined meaning, enabling computers and people to work
more cooperatively.”[18] The Semantic Web should be
able to support automated services based on formal
descriptions of semantics, and is seen as a key factor in
finding a way out of the growing problems of traversing
the expanding Web space [7].

Two important and fundamental technologies for
developing the Semantic Web are already in place:
eXtensible Markup Language (XML) and languages
based on the Resource Description Framework (RDF).
Figure 2 gives an overview of the development and
structure of languages for the Semantic Web.

Figure 2: Developing languages for the Semantic Web

DAML (DARPA Agent Markup Language) and OIL
(Ontology Inference Layer) have been combined into an
important ontology language [13] [16]. The following
table gives a first overview of the criteria of the various
ontology languages.

Table 1: Relations between ontology languages
characteristics XML

DTD
XML
Schema

RDF
(S)2002

OIL DAML+OIL

ordered list X X
cardinality
restrictions

X X X X

class
expressions

 X X

data types X X X X
class
definition

 X X

listing X X X
equivalence X X
extensibility X X X
formal
semantic

 X X X

inheritance X X X
inference X X
local
restrictions

 X X

quantitative
restrictions

 X

Based on XML and RDF, the DAML+OIL language has
been specially developed to create ontologies for the
Semantic Web [16] [9].

3 Design for a SWEBOK ontology
The first challenge in developing an ontology for
SWEBOK is to define what the ontology should contain
and the purpose for which it should be used.

Of course, the SWEBOK Ontology should include all the
important concepts in software engineering. These
concepts should be supported by widely accepted
definitions, facilitating a common understanding by all
users in this knowledge domain. Concurrently, an
ontology should provide a necessary delimitation with
respect to other domains of knowledge. In practice,
developing an ontology also includes defining classes
within the ontology and arranging the classes in a
taxonomic (subclass–super class) hierarchy. The structure
of knowledge provided in the SWEBOK Guide provides a
starting point for the design of a software engineering
ontology.

SWEBOK is the super class of the ontology. The ten KAs
are the subclasses of the super class and represent
specialized views of parts of the software engineering
knowledge. Each KA is represented by a structured set of
concepts and corresponding definitions. All concepts are
subclasses of the super class and they can also be
subclasses of one or more KAs.

A second important aspect in the design of an ontology is
that much of the software engineering knowledge in the
SWEBOK Guide is represented by links to internal and
external references. To model such links, we need more
than only the unidirectional HTML links. In the current
book format of the SWEBOK Guide, it is not possible for
the user to access a single (and unique) reference for a
concept. In future versions of the Guide, the user should
ideally be provided with a quick way to find either a
reference or a concept by means of the SWEBOK
ontology, as well as additional information related to his
search.

Bidirectional and multidirectional links allow for
information-sharing in both directions, which means that
every concept can by referenced in one or more ways.

522

Also, the path from the reference to the concept is
available, as illustrated in Figure 2, for the testing concept

and some of the relevant references.

Figure 3: Example of a link structure with internal and tool-supported external sources

An ontology with bidirectional and multidirectional links
would make it possible for every user (as well as
applications and agents) to have very fast access to the
corresponding details of high-level knowledge.

By contrast to other ontologies, such as in the medical
field, the structure of a software engineering ontology will
be relatively flat. Under the root element, there will be

different KAs and different concepts. In other domains, an
electronic marketplace, for example, the structure would
be much deeper.

The SWEBOK structure will contain many different links
to help the user find knowledge quickly, and most of these
links will point to external references (see Figure 3).

Figure 4: Design of a software engineering ontology with different levels of knowledge

Only a few links are illustrated in Figure 4, out of a much
larger number of available references. All concepts are
subclasses of SWEBOK and also subclasses of one or
more KAs. Every concept has a definition and one or
more internal or external references. To find the
knowledge he is looking for, the user can use various
views. For example, he can navigate from KAs through to
concepts with their definitions and references. He can also
search from the perspective of all the concepts in
SWEBOK. In the future, if bidirectional links are

available, users will also be able to navigate from a
reference to a KA or to other references.

An initial example of a data structure for a software
engineering ontology is presented in Figure 5. Under the
root element (SWEBOK) are the KAs with their names
and a list of all the concepts used in each of the
corresponding KAs. Also under the root element are all
the concepts used in all the KAs. These concepts have the
following attributes: 'name', 'is_defined_as', 'is_used' and
'uses'. The definition of the concept gives information

523

about the source of the definition. The expression 'is_used'
represents a list of all the KAs that use the concept, and

'uses' represents a list of references outside SWEBOK
which are supported by tools.

Figure 5: Structure for a software engineering ontology

Concepts can have associated subconcepts. These
subconcepts are also concepts, and have the same
structure. For example: software quality is a subconcept
of quality, and design quality is also a subconcept of
quality.

In section 2, it was noted that different XML- and RDF-
based languages are available to develop an ontology.
Currently, DAML+Oil would appear to be the best
technology choice; however, since technology in this area
is still evolving rapidly, an evolutive strategy must be
designed to ensure stability of the ease of technological
evolution for the development platform to be selected.

4 SWEBOK ontology and E-Learning
Web technologies, dynamic Websites and e-learning
technology make it possible to develop e-learning systems
on software engineering. With the use of ontologies, it is
possible to give data and knowledge a structure which
allows machines and people to use, and share, this
knowledge.

Figure 6: Ontology-based structure for an e-learning
system

The system types of e-learning are [3]:
• open telelearning
• advice telelearning
• teleteaching

In future, documents could be logically linked with the
help of Semantic Web. Thus, e-learning systems can
improve knowledge engineering from data mining
through text mining to Web mining. The Semantic Web
provides descriptions of Web resources and e-learning
portals present them to the user in a contextually clear
way (Figure 6).

The first examples of e-learning in the area of software
measurement are supported by the SML@b of the
University of Magdeburg [15].

Figure 7: Example of measurement e-learning in the
SML@b

524

The SWEBOK ontology will annotate unstructured
information and knowledge with semantic information to
integrate information and to generate user-specific views
which make access to software engineering knowledge
easier.
As the next-generation Web (does this make sense?), the
Semantic Web will enable automatic knowledge
processing over the Internet, using intelligent services
such as search agents, information brokers, and
information filters.

5 Conclusions and Future Work
Under the leadership of the IEEE Computer Society, a
compendium and Guide to the Software Engineering
Body of Knowledge has been developed, and approved in
2003 for publication in 2004 as ISO/IEC TR 19759. A
very detailed inventory of terms and expressions used in
the SWEBOK Guide points, however, to a need to
improve the consistency of the terminology. The current
Trial version of the Guide represents a large number of
viewpoints in a domain where there had not yet been a
consensus on a single set of software engineering terms.
The design of a software engineering ontology could help
improve the consistency of the terminology in the
SWEBOK Guide. An ontology is a flexible and useful
way to define terms, their concepts and subconcepts, and
show how they are related to one another in the context of
domain knowledge. An ontology is also a
conceptualization, and presents domain knowledge and its
structure in a general manner.
In this paper, we presented a candidate approach for the
design of an ontology for SWEBOK. Various languages
are available to create an ontology, and all are based on
XML and RDF. To decide which is the best one to use
will be challenging, since ontologies and their languages
are only in the beginning stages of development, as are
their technologies. A critical step in creating a SWEBOK
ontology will be to define the strategy required for
selecting the technology that will best support it.
The Semantic Web and ontologies will bring structure to
the meaningful content of Web pages and allow building
of e-learning systems on software engineering knowledge
based on SWEBOK.

6 References

[1] A. Abran, J. Moore, P. Bourque, R.L. Dupuis, L.

Tripp, Guide to the Software Engineering Body of
Knowledge – SWEBOK, Trial Version 1.0, IEEE-
Computer Society Press, May 2003, URL:
http://www.swebok.org

[2] A. Abran, R. R. Dumke, Investigations in Software
Measurement-Proceedings of the 13th International
Workshop on Software Measurement, Shaker Verlag
Aachen, 2003.

[3] R. R. Dumke, M. Lother, C. Wille, F. Zbrog, Web
Engineering, Pearson Studium München, 2003.

[4] ISO, ISO/IEC 9126-1:2001 Software engineering –
Product quality – Part 1: Quality model,
International Organization for
Standardization/International Electrotechnical
Commission., Geneva, 2001.

[5] ISO, ISO/IEC 15939:2002 Software Engineering:
Software Measurement Process, International
Organization for Standardization/International
Electrotechnical Commission., Geneva, 2002.

[6] J. Hasebrook, L. Erasmus, G. Doeben-Henisch,
Knowledge Robots for Knowledge Workers: Self-
Learning Agents Connecting Information and Skills,
In: Jain/Chen/Ichalkaranje: Intelligent Agents and
Their Applications, Physica-Verlag Heidelberg New
York, Heidelberg, 2002, pp.59-81.

[7] A. Maedche, Ontology Learning for the Semantic
Web. Boston: Kluwer Academic, 2002, 272 p.

[8] A. Maedche, S. STAAB, Ontology learning for the
Semantic Web, Intelligent Systems, IEEE [see also
IEEE Expert], vol. 16 (2), pp. 72-79, 2001.

[9] M. Missikoff, R. Navigli, S. P. Velardi, Integrated
Approach to Web Ontology Learning and
Engineering, IEEE Computer, November 2002.

[10] N. F. Noy, D. L. McGuinness, A Guide to Creating
Your First Ontology, Stanford University, Mai 2003,
URL: http://protege.stanford.edu/
publications/ontology_development/ontology101.pdf

[11] N. Guarino, P. Giaretta, Ontologies and Knowledge
Bases: Towards a Terminological Clarification, In
N.J.I. Mars, editor, Proc. of the 2nd Intern. Conf on
Building and Sharing Very Large Knowledge Bases.
IOS Press, Enschede, The Netherlands, 1995.

[12] N. Zhong, Ontologies in Web intelligence, In:
Jain/Chen/Ichalkaranje: Intelligent Agents and Their
Applications, Physica-Verlag Heidelberg New York,
Heidelberg, 2002, pp.83-97.

[13] OIL Homepage, July 2003, URL:
http://www.ontoknowledge.org/oil/

[14] O. Andruschak, Ein Softwaremess- und –bewer-
tungsansatz für das Semantic Web, Diploma Thesis,
Otto-von-Guericke University Magdeburg, 2003

[15] SML@b Website, October 2003 URL: http://ivs.cs.
uni-magdeburg.de/sw-eng/us/index.shtml

[16] The DARPA Agent Markup Language Homepage,
July 2003, URL: http://www.daml.org/

[17] T. H. Davenport, L. Prusak, Working Knowledge:
How organizations manage what they know, Harvard
Business School Press, 1997.

[18] T. Berners-Lee, J. Hendler O. Lassila, The Semantic
Web, Scientific American, May 2001.

[19] T. R. Gruber. A Translation Approach to Portable
Ontology Specifications, Technical Report KSL 92-
71, Stanford University, April 1993.

525

