Progress Report on the Fundamental
Principles of Software Engineering
Robert Dupuis, Pierre Bourque, Alain Abran, Sybille Wolff, James Moore

In the 50 year history of software development, various methodologies, methods and techniques have been proposed
to facilitate the development of software responsive to needs. Most have proved to be more specific to the then-
current state of technology than has been understood at the time. As aresult, most have proved to be less universally
applicable than originaly intended. At this point in software engineering history, enough such examples have
accumulated that we can begin to perceive underlying principles that may, in fact, be fundamental, hence enduring
in applicability.

In fact, it is hoped that the identification of a set of fundamental principles will promote the recognition of software
engineering as a well established engineering discipline. It will also provide a broader and richer framework for
establishing relationships among groups of software engineering practice standards.

This talk will report on a series of efforts undertaken to try and identify these fundamental principles'. A first
workshop was held at the Forum on Software Engineering Standards Issues of 1996 (SES96) to establish what a
fundamental principle is and which criteria it should conform to. Based on the results of this workshop, it was stated
that a fundamenta principle is less specific and more enduring than methodologies and techniques. It should be
phrased to withstand the test of time. It should not contradict a more genera engineering principle and should have
some correspondence with "best practice.” It should be precise enough to be capable of support and contradiction
and should not conceal atradeoff. It should also relate to one or more computer science or engineering concepts.

A Delphi study was then conducted in 1997 over the Internet among 14 renowned personalities of the software
engineering community, to identify a first candidate list of fundamenta principles of software engineering. A
second workshop was held at the International Symposium on Software Engineering Standards of 1997 (ISESS97)
to eliminate or reformulate some of the principles and the criteria. Subsequently, a second Delphi study was
conducted in 1998 among 31 IEEE software engineering officials in order to improve the principles. From these
studies, a list of fifteen candidate fundamenta principles of software engineering has been compiled. Finaly, an
electronic survey is currently being conducted among the membership of the Technical Council on Software
Engineering to help verify the relevance of these candidate principles for practitioners and to help determine which
of these fifteen candidate principles are indeed fundamental.

The current list of Fundamental Principlesis (in alphabetical order):

Apply and use quantitative measurements in decision-making

Build with and for reuse

Control complexity with multiple perspectives and multiple levels of abstraction
Define software artifacts rigorously

Establish a software process that provides flexibility

Implement a disciplined approach and improve it continuously

Invest in the understanding of the problem

Manage quality throughout the life cycle as formally as possible

Minimize software components interaction

Produce software in a stepwise fashion

Set quality objectives for each deliverable product

Since change is inherent to software, plan for it and manage it

Since tradeoffs are inherent to software engineering, make them explicit and document them
To improve design, study previous solutions to similar problems

Uncertainty is unavoidable in software engineering. Identify and manage it

OZZrAS~"IOMMUO®P

Based on the results of the survey and on other initiatives such as its use in the Guide to the Software Engineering
Body of Knowledge project?, recommendations will be made to improve the proposed set of fundamental principles.

For more detailed information, please see http://www.lrgl.ugam.ca/fpse
See www.swebok.org



