
GGuuiiddee ttoo tthhee SSooffttwwaarree EEnnggiinneeeerriinngg BBooddyy ooff KKnnoowwlleeddggee

AA SSttoonnee MMaann VVeerrssiioonn
((VVeerrssiioonn 00..55))

October 1999

A project of the SSooffttwwaarree EEnnggiinneeeerriinngg CCoooorrddiinnaattiinngg CCoommmmiitttteeee
(Joint IEEE Computer Society - ACM committee)

Corporate support by:

Project managed by:

Co-Executive Editors:

Alain Abran, Université du Québec à Montréal
James W. Moore, The MITRE Corp.

Editors:

Pierre Bourque, Université du Québec à Montréal
Robert Dupuis, Université du Québec à Montréal

Project Champion:

Leonard L. Tripp, IEEE Computer Society

Table of Contents

INTRODUCTORY TEXT FROM THE EDITORIAL TEAM

KNOWLEDGE AREA DESCRIPTION :

- Software Configuration Management

- Software Construction

- Software Design

- Software Engineering Infrastructure

- Software Engineering Management

- Software Engineering Process

- Software Evolution and Maintenance

- Software Quality Analysis

- Software Requirement Analysis

- Software Testing

APPENDIX A

KNOWLEDGE AREA DESCRIPTION SPECIFICATIONS FOR THE STONE MAN VERSION OF THE

GUIDE TO THE SOFTWARE ENGINEERING BODY OF KNOWLEDGE – VERSION 0.25

INTRODUCTORY TEXT FROM THE EDITORIAL TEAM

The IEEE Computer Society and the Association for Computing Machinery are working
on a joint project to develop a guide to the Software Engineering Body Of Knowledge
(SWEBOK). This is the current draft (version 0.5 completed in September 1999) of the
Stoneman version of the Guide1. Articulating a body of knowledge is an essential step
toward developing a profession because it represents a broad consensus regarding the
contents of the discipline. Without such a consensus, there is no way to validate a
licensing examination, set a curriculum to prepare individuals for the examination, or
formulate criteria for accrediting the curriculum.
The project team is currently working on an update to this draft version of the Guide
based on the results of the second review cycle. Early in 2000, major professional
societies and the software engineering community will be invited to participate in the
third review cycle. The completed Stoneman guide will then be made available on the
Web in Spring 2000.

OBJECTIVES AND AUDIENCE

The SWEBOK project objectives are:

1. Characterize the contents of the software engineering discipline.
2. Provide topical access to the Software Engineering Body of Knowledge.
3. Promote a consistent view of software engineering worldwide.
4. Clarify the place—and set the boundary—of software engineering with respect

to other disciplines such as computer science, project management, computer
engineering, and mathematics.

5. Provide a foundation for curriculum development and individual certification
material.

The product of the SWEBOK project will not be the Body of Knowledge itself, but rather
a guide to it. The knowledge already exists; the goal is to gain consensus on the core
subset of knowledge characterizing the software engineering discipline.
To achieve this goal, the project is oriented toward a variety of audiences. It aims to
serve public and private organizations in need of a consistent view of software
engineering for defining education and training requirements, classifying jobs, and
developing performance evaluation policies. It also aims to serve practicing software
engineers and the officials responsible for making public policy regarding licensing and
professional guidelines. In addition, professional societies and educators defining the

1 All final and intermediate products of the SWEBOK project including the contents of this paper can be
downloaded without any charge from www.swebok.org

certification rules, accreditation policies for university curricula, and guidelines for
professional practice will benefit from SWEBOK, as well as students learning software
engineering.

THE GUIDE

The project comprises three phases: Strawman, Stoneman, and Ironman:
• The 1998 Strawman Guide, completed within nine months of project initiation, served

as a model for organizing the SWEBOK project.
• Spring 2000 will see the completion of the Stoneman version.
• The Ironman phase will continue for two or three years after the completion of the

Stoneman version. Following the principles of the Stoneman phase, Ironman will
benefit from more in-depth analyses, a broader review process, and the experience
gained from trial usage.

The SWEBOK Guide will organize the body of knowledge into several Knowledge
Areas. In its current draft, the Stoneman version of the Guide identifies 10 Knowledge
Areas (see Table 1) which form the chapters of this Guide. They are printed in
alphabetical order in this paper copy. Table 1 also indicates the domain experts who are
responsible for writing the chapters.

TABLE 1. THE SWEBOK KNOWLEDGE AREAS AND THEIR CORRESPONDING

SPECIALISTS.

Knowledge Area Specialists
Software configuration management John A. Scott and David Nisse, Lawrence Livermore Laboratory, US

Software construction Terry Bollinger, The MITRE Corporation, US
Software design Guy Tremblay, Université du Québec à Montréal, Canada
Software engineering infrastructure David Carrington, The University of Queensland, Australia

Software engineering management Stephen G. MacDonell and Andrew R. Gray, University of Otago, New Zealand
Software engineering process Khaled El Emam, National Research Council, Canada
Software evolution and maintenance Thomas M. Pigoski, TECHSOFT, US

Software quality analysis Dolores Wallace and Larry Reeker, National Institute of Standards and
Technology, US

Software requirements analysis Pete Sawyer and Gerald Kotonya, Lancaster University, UK

Software testing Antionia Bertolino, Consiglio Nazionale delle Ricerche, Italy

REVIEWS

The development of the Stoneman version includes three public review cycles. The first
review cycle focused on the soundness and the proposed breakdown of topics within
each KA. Thirty-four domain experts completed this review cycle in April 1999. The
reviewer comments, as well as the identities of the reviewers, are available on the
project’s Web site.
The second review cycle was organized around the guidelines originally given to the

Knowledge Area specialists or chapter authors. These guidelines can also be found at
the back of this paper copy. A considerably larger group of professionals, organized into
review viewpoints, answered a detailed questionnaire for each Knowledge Area
description. The viewpoints (for example, individual practitioners, educators, and makers
of public policy) were formulated to ensure relevance to the Guide’s various intended
audiences. The results of this review cycle, completed in October 1999, are also
available on the project’s Web site. Knowledge Area specialists will document how
reviewer feedback was resolved in the Knowledge Area descriptions or chapters.
The focus of the third review cycle review to be conducted on the entire Guide will be on
the correctness and utility of the Guide. This review cycle, scheduled to start in January
2000, will be completed by individuals and organizations representing a cross-section of
potential interest groups. Hundreds of professionals have already been recruited to
review the entire Guide, and we’re soliciting more to fulfill our coverage objectives.

HOW TO CONTRIBUTE TO THE PROJECT

Those interested in participating in the third review cycle of the Guide to the Software
Engineering Body of Knowledge (Stoneman version) can volunteer by signing up at the
project's Web site, http://www.swebok.org. The transition from Stoneman to Ironman will
be based primarily on feedback received from trial applications of the Stoneman guide.
Those interested in performing trial applications are invited to contact the Editorial team.

Project Champion: Leonard Tripp, 1999 President,

l.tripp@computer.org

Project Coexecutive Editors: Alain Abran, Université du Québec à Montréal,

Abran.alain@uqam.ca

James W. Moore, The MITRE Corporation

James.W.Moore@ieee.org

Project Editors: Pierre Bourque, Université du Québec à Montréal,

Bourque.pierre@uqam.ca

Robert Dupuis, Université du Québec à Montréal

Dupuis.robert@uqam.ca

http://www.swebok.org/
mailto:l.tripp@computer.org

Software Configuration Management

Draft Version 0.5

John A. Scott
David Nisse

Lawrence Livermore National Laboratory
7000 East Avenue

P.O. Box 808, L-632
Livermore, CA 94550, USA

(925) 423-7655
scott7@llnl.gov

ABSTRACT
This paper presents an overview of the knowledge area of
software configuration management for the Software
Engineering Body of Knowledge (SWEBOK) project. A
breakdown of topics is presented for the knowledge area
along with a succinct description of each topic. References
are given to materials that provide more in-depth coverage
of the key areas of software configuration management.
Important knowledge areas of related disciplines are also
identified.
Keywords
Software configuration management, software
configuration identification, software configuration control,
software configuration status accounting, software
configuration auditing, software release management.
Acronyms
CCB Change Control Board
CM Configuration Management
FCA Functional Configuration Audit

PCA Physical Configuration Audit
SCI Software Configuration Item
SCR Software Change Request

SCM Software Configuration Management
SCMP Software Configuration Management Plan
SCSA Software Configuration Status Accounting

SDD Software Design Description
SRS Software Requirements Specification

INTRODUCTION
A system can be defined as a collection of components
organized to accomplish a specific function or set of
functions [11]. The configuration of a system is the
function and/or physical characteristics of hardware,
firmware, software or a combination thereof as set forth in

technical documentation and achieved in a product [5]. It
can also be thought of as a collection of specific versions of
hardware, firmware, or software items combined according
to specific build procedures to accomplish a particular
purpose. Configuration management (CM), then, is the
discipline of identifying the configuration of a system at
discrete points in time for the purpose of systematically
controlling changes to the configuration and maintaining
the integrity and traceability of the configuration
throughout the system life cycle [3]. CM is formally
defined [11] as:

“A discipline applying technical and administrative
direction and surveillance to: identify and document the
functional and physical characteristics of a
configuration item, control changes to those
characteristics, record and report change processing and
implementation status, and verify compliance with
specified requirements.”

The concepts of configuration management apply to all
items to be controlled although there are some differences
in implementation between hardware configuration
management and software configuration management.
This paper presents a breakdown of the key software
configuration management (SCM) concepts along with a
succinct description of each concept. In keeping with the
directions of the Software Engineering Body of Knowledge
project, the following sections briefly describe the primary
activities of SCM. These activities (see Fig.1) are the
management of the software configuration management
process, software configuration identification, software
configuration control, software configuration status
accounting, software configuration auditing, and software
release management and delivery. In the discussion of these
SCM activities, the commonly recognized topics are
identified and summarized.

Figure 1. SCM Activities

Following the breakdown are the key references for SCM
along with a cross-reference of topics that each listed
reference covers. Finally, topics in related disciplines that
are important to SCM are identified.

BREAKDOWN OF TOPICS FOR SOFTWARE
CONFIGURATION MANAGEMENT

2.1 Rationale for the Breakdown
One of the primary goals of the SWEBOK project is to
arrive at a breakdown that is ‘generally accepted’.
Consequently, the breakdown of SCM topics was
developed largely by attempting to synthesize the topics
covered in the literature and in recognized standards, which
tend to reflect consensus opinion. The topic on Software
Release Management is an exception since it has not
commonly been broken out separately in the past. The
precedent for this was set by the ISO/IEC 12207 standard,
which identifies a ‘Release Management and Delivery’
activity.
There is widespread agreement in the literature on the SCM
activity areas and their key concepts. However, there
continues to be active research on implementation aspects
of SCM. Examples are found in ICSE workshops on SCM
such as [10] and [34].
The hierarchy of topics chosen for the breakdown presented
in this paper is expected to evolve as the SWEBOK project
review processes proceed. A detailed discussion of the
rationale for the proposed breakdown, keyed to SWEBOK
development criteria, is given in Appendix B.

2.2 Breakdown of Topics
The breakdown of topics, along with a brief description of
each, is provided in this section. A table summarizing the
breakdown hierarchy is given in Table 1 of Appendix A.

I. Management of the SCM Process

Software configuration management is a supporting
software life cycle process that benefits project and line
management, development and assurance activities, and the

customers and users of the end product. A successful SCM
implementation must be carefully planned and managed.
This requires an understanding of the organizational
context for, and the constraints placed upon, the design and
implementation of the SCM process.

I.A Organizational Context for SCM

To plan an SCM process for a project, it is necessary to
understand the organizational structure and the
relationships among organizational elements. SCM
interacts with several other activities or organizational
elements.

SCM, like other processes such as software quality
assurance and software verification and validation, is
categorized as a supporting life cycle process [18]. The
organizational elements responsible for these processes
may be structured in various ways. Although the
responsibility for performing certain SCM tasks might be
assigned to other organizations, such as the development
organization, the overall responsibility for SCM should rest
with a distinct organizational element.

Software is frequently developed as part of a larger system
containing hardware and firmware elements. In this case,
SCM activities take place in parallel with hardware and
firmware CM activities and both must be consistent with
system level CM. Buckley [5] describes SCM within this
context. SCM might also be related to an organization’s
records management activity since some items under SCM
control might also be project records subject to provisions
of the organization’s quality assurance program.

Perhaps the closest relationship is with the software
development organization. The environment for developing
software, including such things as the software life cycle
model and its resulting schedules, the development and
target platforms, and the software development tools, is
also the environment within which many of the software
configuration control tasks are conducted. Frequently, the
same tool systems support both development and SCM
purposes.

I.B Constraints and Guidance for SCM

Constraints affecting, and guidance for, the SCM process
come from a number of sources. Policies and procedures
set forth at corporate or other organizational levels might
influence or prescribe the design and implementation of the
SCM process for a given project. In addition, the contract
between the acquirer and the supplier might contain
provisions affecting the SCM process. For example, certain
configuration audits might be required or it might be
specified that certain items be controlled as software
configuration items. When software products to be
developed have the potential to affect the public safety,
external regulatory bodies may impose constraints. For
example, see [35]. Finally, the particular software life cycle
model chosen for a software development project and the

Mgmt. &
Planning

SCMP

Configuration Identification

Control Status
Accounting

Release
Processing

Auditing

Management

Development
Team

Coordination of Change Activities (“Code Management”)

Authorization of Changes
 (Should changes be made?)

Project Management
 Product Assurance
 Development Team

Status for:

Supports
 Customer
 Maintenance Team

Physical &
 Functional
 Completeness

development tools selected for its implementation affect the
design and implementation of the SCM process [4].

Guidance for designing and implementing an SCM process
can also be obtained from ‘best practice’ as reflected in
standards and process improvement or process assessment
models such as the Software Engineering Institute’s
Capability Maturity Model [28] or the ISO SPICE guidance
[9]. ‘Best practice’ is also reflected in the standards on
software engineering issued by the various standards
organizations. Moore [26] provides a roadmap to these
organizations and their standards.

I.C Planning for SCM

The planning of a SCM process for a given project should
be consistent with the organizational context, applicable
constraints, commonly accepted guidance, and the nature of
the project (e.g., size and criticality). The major activities
covered are Software Configuration Identification,
Software Configuration Control, Software Configuration
Status Accounting, Software Configuration Auditing, and
Software Release Management and Delivery. In addition,
issues such as organization and responsibilities, resources
and schedules, tool selection and implementation, vendor
and subcontractor control, and interface control are
typically considered. The results of the planning activity
are recorded in a Software Configuration Management Plan
(SCMP).

I.C.1 SCM Organization and Responsibilities

To prevent confusion about who will perform given SCM
activities or tasks, organizations to be involved in the SCM
process need to be clearly identified. Specific
responsibilities for given SCM activities or tasks also need
to be assigned to organizational entities, either by title or
organizational element. The overall authority for SCM
should also be identified, although this might be
accomplished in the project management or quality
assurance planning.

I.C.2 SCM Resources and Schedules

The planning for SCM identifies the staff and tools
involved in carrying out SCM tasks. It addresses schedule
questions by establishing necessary sequences of SCM
tasks and identifying the relationships of the tasks to the
project development schedules and milestones. Any
training requirements necessary for implementing the plans
are also specified.

I.C.3 Tool Selection and Implementation

Different types of tools, and procedures for their use, are
used to support the SCM activities (see Fig. 2). For
example, code management tools are needed to support the
operation of software development libraries. These tools
control access to library elements, coordinate the activities
of multiple users, and help to enforce operating procedures.
Other tools support the process of building software and

release documentation from the software elements
contained in the libraries. Tools for managing software
change requests can support the change control procedures
applied to controlled software items. Other tools can
provide database management and reporting capabilities for
management, development, and assurance activities. The
capabilities of several tool types might be integrated into
SCM systems, which, in turn, are closely coupled to
software development activities.
The planning activity assesses the SCM tool needs for a
given project within the context of the development
environment to be used and selects the tools to be used for
SCM. The planning considers issues that might arise in the
implementation of these tools, particularly if some form of
culture change is necessary. An overview of SCM systems
and selection considerations is given in [7] and a recent
case study on selecting an SCM system is given in [25].

Figure 2. Characterization of SCM Tools and Related
Procedures

I.C.4 Vendor/Subcontractor Control

A software development project might acquire or make use
of purchased software products, such as compilers. The
planning for SCM considers if and how these items will be
taken under configuration control (e.g., integrated into the
project libraries) and how changes or updates will be
evaluated and managed.

Similar considerations apply to subcontracted software. In
this case, the SCM requirements to be imposed on the
subcontractor’s SCM process as part of the subcontract and
the means for monitoring compliance also need to be
established.

I.C.5 Interface Control

When a software item developed by a project will interface
with another item outside the scope of the software effort, a
change to either item can affect the other. The planning for
the SCM process considers how the interfacing items will
be identified and how changes to the items will be managed

Planning

SCMP

Control Status
Accounting

Release
Processing

Auditing

Management

Development
Team

Baselines,
Libraries,

SCRs

Code Mgmt
Systems

Change
Evaluation
& Approval

CCBs

Change
Implementation

DBMS, Code Mgmt Systems

Release
Authorization
& Preparation

Audit
Procedures

Configuration Identification

and communicated.

I.D Software Configuration Management Plan

The results of SCM planning for a given project are
recorded in a Software Configuration Management Plan
(SCMP). The SCMP is a ‘living document’ that serves as a
reference for the SCM process. It is maintained (i.e.,
updated and approved) as necessary during the software life
cycle.

Guidance for the creation and maintenance of an SCMP,
based on the information produced by the planning activity,
is available from a number of sources, such as [13]. This
reference provides requirements for the information that
should be contained in an SCMP. It defines and describes
six categories of SCM information that should be included
in an SCMP:

1. Introduction (purpose, scope, terms used)

2. SCM Management (organization, responsibilities,
applicable policies, directives, and procedures)
3. SCM Activities (configuration identification,
configuration control, etc.)
4. SCM Schedules (coordination with other project
activities)

5. SCM Resources (tools, physical, and human
resources)
6. SCM Plan Maintenance

I.E Surveillance of Software Configuration Management

After the SCM process has been implemented, some degree
of surveillance should be conducted to assure that the
provisions of the SCMP are properly carried out. This
could involve an SCM authority assuring that the defined
SCM tasks are performed correctly by those with the
assigned responsibility. The software quality assurance
authority, as part of a compliance auditing activity, might
also perform this surveillance.
I.E.1 SCM Metrics

A related goal in monitoring the SCM process is to
discover opportunities for process improvement. The
software libraries and the various SCM tools provide
sources for extracting information about the characteristics
of the SCM process (as well as providing project and
management information). For example, information about
the processing time required for various types of changes
would be useful in an evaluation of the criteria for
determining what levels of authority are optimal for certain
types of changes.

II. Software Configuration Identification

The software configuration identification activity identifies
items to be controlled, establishes identification schemes
for the items and their versions, and establishes the tools

and techniques to be used in acquiring and managing
controlled items. These activities provide the basis for the
other SCM activities.

II.A Identifying Items To Be Controlled

A first step in controlling change is to identify the software
items to be controlled. This involves understanding the
software configuration within the context of the system
configuration, selecting software configuration items,
developing a strategy for labeling software items and their
relationships, and identifying the baselines to be used,
along with the procedure for a baseline’s acquisition of the
items.

II.A.1 Software Configuration

A software configuration is the set of functional and
physical characteristics of software as set forth in the
technical documentation or achieved in a product [12]. It
can be viewed as a part of an overall system configuration.

II.A.2 Software Configuration Item

A software configuration item (SCI) is an aggregation of
software that is designated for configuration management
and is treated as a single entity in the SCM process [12].
Software items with potential to become SCIs include
plans, specifications, test materials, software tools, source
and executable code, code libraries, data and data
dictionaries, and documentation for maintenance,
operations and software use.

Selecting SCIs is an important process that must achieve a
balance between providing adequate visibility for project
control purposes and providing a manageable number of
controlled items. A list of criteria for SCI selection is given
in [2].

II.A.3 Software Configuration Item Relationships

The structural relationships among the selected SCIs, and
their constituent parts, affect other SCM tasks and
activities, such as software building or analyzing the impact
of proposed changes. The design of the identification
scheme for these items should consider the need to map the
identified items to the software structure and the need to
support the evolution of the software items.

II.A.4 Software Versions

Software items evolve as a software project proceeds. A
version of a software item is a particular identified and
documented item. It can be thought of as a state of an
evolving item [6]. A revision is a new version intended to
replace the old version. A variant is a new version of an
item that will be added to the configuration without
replacing the old version. The management of software
versions in various development environments is a current
research topic [6], [10], and [34].

II.A.5 Baseline

A baseline is a set of software items formally designated
and fixed at a specific time during the software life cycle.
The term is also used to refer to a particular version of a
software item that has been agreed upon. In either case, the
baseline can only be changed through formal change
control procedures. A baseline, together with all approved
changes to the baseline, represents the current approved
configuration.

Commonly used baselines are the functional, allocated,
developmental, and product baselines. The functional
baseline corresponds to the reviewed system requirements.
The allocated baseline corresponds to the reviewed
software requirements specification and software interface
requirements specification. The developmental baseline
represents the evolving software configuration at selected
times during the software life cycle. The product baseline
corresponds to the completed software product delivered
for system integration. The baselines to be used for a given
project, along with their associated levels of authority
needed for change approval, are typically identified in the
SCMP.

II.A.6 Acquiring Software Configuration Items

Different software configuration items are taken under
SCM control at different times; i.e. they are incorporated
into a particular baseline at a particular point in the
software life cycle. The triggering event is the completion
of some form of formal acceptance task, such as a formal
review. Figure 3 characterizes the growth of baselined
items as the life cycle proceeds.

Figure 3. Acquisition of Items

Following the acquisition of an SCI, changes to the item
must be formally approved as appropriate for the SCI and
the baseline involved. Following the approval, the item is
incorporated into the baseline according to the appropriate
procedure.

II.B Software Library

A software library is a controlled collection of software and
related documentation designed to aid in software
development, use, and maintenance [12]. Several types of
libraries might be used, each corresponding to a particular
level of maturity of the software item. For example a
working library could support coding whereas a master
library could be used for finished products. The appropriate
level of SCM control (associated baseline and level of
authority for change) is associated with each library. A
model of a software library is described in [2].

II.B.1 SCM Library Tool

The tool(s) used for each library must support the SCM
control needs for that library. At the working library level,
this is a code management capability serving both
developers and SCM. It is focused on managing the
versions of software items while supporting the activities of
multiple developers. At higher levels, access control is
more restricted and SCM is the primary user.

III. Software Configuration Control

Software configuration control is concerned with managing
changes during the software life cycle. It covers the process
for determining what changes to make, the authority for
approving certain changes, support for the implementation
of those changes, and the concept of formal deviations and
waivers from project requirements.

III.A. Requesting, Evaluating, and Approving Software
Changes

The first step in managing changes to controlled items is
determining what changes to make. A software change
request process (see Fig. 4) provides formal procedures for
submitting and recording change requests, evaluating the
potential cost and impact of a proposed change, and
accepting or rejecting the proposed change. Requests for
changes to software configuration items may be originated
by anyone associated with the item at any point in the
software life cycle. Once received, a technical evaluation is
performed to determine the extent of modifications that
would be necessary should the change request be accepted.
A good understanding of the relationships among software
items is important for this task. Finally, an established
authority, commensurate with the affected baseline, the SCI
involved, and the nature of the change, will evaluate the
technical and managerial aspects of the change request and
either accept or reject the proposed change.

SRSA

Requirements
 Review

SRSB

SDDA

Design
 Review

SCR control
of SRS mods

SRSC

SDDB

Code A

Test
 PlansA

Test Readiness
 Review

SCR control
of SRS, SDD
mods

SRSD

SDDC

Code B

Test
 PlansB

User
 Manual A

Regression
 Test DBA

Acceptance

SCR control
of SRS, SDD,
Code, Test
Plans

Figure 4. Flow of a Change Control Process

III.A.1. Software Configuration Control Board

The authority for accepting or rejecting proposed changes
rests with an entity typically known as a configuration
control board (CCB). In smaller projects, this authority
actually may reside with the responsible leader or an
assigned individual rather than a multiperson board. There
can be multiple levels of change authority depending on a
variety of criteria, such as the criticality of the item
involved, the nature of the change (e.g., impact on budget
and schedule), or the current point in the life cycle. The
composition of the CCBs used for a given system varies
depending on these criteria. When the scope of authority of
a CCB is strictly software, it is known as a software
configuration control board (SCCB).

III.A.2 Software Change Management Tool

The software change request process requires the use of
supporting tools that can range from paper forms and a
documented procedure to an electronic tool for originating
change requests, enforcing the flow of the change process,
capturing CCB decisions, and reporting change process
information. Change process descriptions and supporting
forms (information) are given in a variety of references,
e.g. [2] and [14]. Typically, change management tools are
tailored to local processes and tool suites and are often
locally developed. The current trend is towards integration
of these kinds of tools within a suite referred to as a
software development environment (SDE).

III.B. Implementing Software Changes

Approved change requests are implemented according to
the defined software development procedures. Since a
number of approved change requests might be implemented
simultaneously, it is necessary to provide a means for
tracking which change requests are incorporated into
particular software versions. As part of the closure of the
change process, completed changes may undergo
configuration audits. The change management tool
described above will typically reflect the SCM and other
approval information for the change.

III.B.1. Software Change Control Tool

The actual implementation of a change is supported by the
library tool capabilities that provide version management
and code repository support. At a minimum, these tools
provide source file checkin/out and associated version
control. These tools may be manifested as separate entities
under control of an independent SCM group, such as
Platinum’s Harvest or Lucent’s Sablime. They may also
appear as an integrated part of the SDE, such as, Rational’s
ClearCase or MicroSoft’s SourceSafe products. Finally,
they may be as elementary as the original (and still widely
used) version of SCCS, which is part of Unix.

III.C. Deviations and Waivers

The constraints imposed on a software development effort
or the specifications produced during the development
activities might contain provisions that cannot be satisfied
at the designated point in the life cycle. A deviation is an
authorization to depart from a provision prior to the
development of the item. A waiver is an authorization to
use an item, following its development, that departs from
the provision in some way. In these cases, a formal process
is used for gaining approval for deviations to, or waivers of,
the provisions.

IV. Software Configuration Status Accounting

Software configuration status accounting (SCSA) is the
recording and reporting of information needed for effective
management of the software configuration. This can be
viewed as an information systems activity and the SCSA
capability should be designed as such.

IV.A. Software Configuration Status Information

The SCSA activity designs and operates a system for the
capture and reporting of necessary information as the life
cycle proceeds. As in any information system, the
configuration status information to be managed for the
evolving configurations must be identified, collected, and
maintained. Various information is needed to support the
SCM process and to meet the configuration status reporting
needs of management, development, and other related
activities. The types of information available include the
approved configuration identification as well as the
identification and current implementation status of changes,
deviations and waivers. A partial list of important data
elements is given in [2].

IV.A.1. Software Configuration Status Accounting Tools

Some form of automated tool support is necessary to
accomplish the SCSA data collection and reporting tasks.
This could be a database capability, such as a relational or
object oriented database management system. This could be
a stand-alone tool or a capability of a larger, integrated tool
environment.

Need for
Change

 Change
 identified with
controlled item

SCR generated

 SCR evaluated incomplete

 Preliminary
Investigation

CCB Review

Assign to
 Software
 Engineer

 Schedule,
 design, test,
complete change

Approved

Rejected Inform
Requester

‘Emergency Path’
usually also exists.

Changes can be
implemented with
change process
performed afterward

complete

IV.B. Software Configuration Status Reporting

Reported information can be used by various organizational
and project elements, including the development team, the
maintenance team, project management, and company
assurance activities. Reporting can take the form of ad hoc
queries to answer specific questions or the periodic
production of pre-designed reports. Some information
produced by the status accounting activity during the
course of the life cycle might become quality assurance
records.

IV.B.1. Metrics (Measures)

In addition to reporting the current status of the
configuration, the information contained in the SCSA
database can serve as a basis for various measurements of
interest to management, development, and SCM. Examples
include the number of change requests per SCI and the
average time needed to implement a change request.

V. Software Configuration Auditing

The software configuration auditing activity determines the
extent to which an item satisfies the required functional and
physical characteristics. Informal audits of this type can be
conducted at key points in the life cycle. Two types of
formal audits might be required by the governing contract:
the Functional Configuration Audit (FCA) and the Physical
Configuration Audit (PCA). Successful completion of these
audits can be a prerequisite for the establishment of the
product baseline. Buckley [5] contrasts the purposes of the
FCA and PCA in hardware versus software contexts and
recommends careful evaluation of the need for the software
FCA and PCA before performing them.

V.A. Software Functional Configuration Audit

The purpose of the software FCA is to determine that the
performance of the audited software item is consistent with
its governing specifications. The output of the software
verification and validation activities is a key input to this
audit.

V.B. Software Physical Configuration Audit

The purpose of the software PCA is to determine if the
design and reference documentation is consistent with the
as-built software product.

V.C. Software In-process Audit

Audits can be carried out during the development process
to investigate the current status of specific elements of the
configuration or to assess the implementation of the SCM
process.

VI. Software Release Management and Delivery

The term “release” is used in this context to refer to the

distribution of a software configuration item outside the
development organization. This includes distribution to
customers. When different versions of a software item are
available for delivery, such as versions for different
platforms or versions with varying capabilities, it is
frequently necessary to recreate specific versions and
package the correct materials for delivery of the version.

VI.A. Software Building

Software building is the activity of combining the correct
versions of software elements, using the appropriate
configuration data, into an executable program for delivery
to a customer. For systems with hardware or firmware, the
executable is delivered to the system building activity.
Build instructions ensure that the proper build steps are
taken and in the correct sequence.

Software is built using particular versions of supporting
tools, such as compilers. It might be necessary to rebuild an
exact copy of a previously delivered software item. In this
case, the supporting tools need to be under SCM control to
ensure their availability.

VI.A.1 Software Building Tools

A tool capability is needed for selecting the correct
versions of software items for a given target environment
and for automating the process of building the software
from the selected versions and appropriate configuration
data. Most software development environments provide
this capability and it is usually referred to as the “make”
facility (as in UNIX). These tools vary in complexity from
requiring the engineer to learn a specialized scripting
language to graphics-oriented approaches that hide much of
the complexity of an “intelligent” build facility.

VI.B Software Release Management

Software release management encompasses the packaging
of the elements of a product for delivery, for example, the
executable, documentation, release notes, and configuration
data. It may also be necessary to track the distribution of
the product to various customers.

VI.B.1 Software Release Management Tool

A tool capability is needed for tracking the full set of
elements in a particular release. If necessary, this could also
include information on various target platforms and on
various customers.

RECOMMENDED REFERENCES FOR SOFTWARE
CONFIGURATION MANAGEMENT

3.1 Recommendations
The following set of references was chosen to provide
coverage of all aspects of software configuration
management from various perspectives and to varying
levels of detail. The author and title are cited; the complete
reference is given in the References section.

W.A. Babich, Software Configuration Management,
Coordination for Team Productivity [1]
This text is focused on code management issues from the
perspective of the development team.
H.R. Berlack, Software Configuration Management [2]
This textbook provides detailed, comprehensive coverage
of the concepts of software configuration management.
This is one of the more recent texts with this focus.
F.J. Buckley, Implementing Configuration Management:
Hardware, Software, and Firmware [5]
This text presents an integrated view of configuration
management for projects in which software, hardware, and
firmware are involved. It is a recent text that provides a
view of software configuration management from a
systems perspective.
R. Conradi and B. Westfechtel, "Version Models for
Software Configuration Management" [6]
An in-depth article on version models used in software
configuration management. It defines fundamental concepts
and provides a detailed view of versioning paradigms. The
versioning characteristics of various SCM systems are
discussed.
S.A. Dart, Spectrum of Functionality in Configuration
Management Systems [7]
This report covers features of various CM systems and the
scope of issues concerning users of CM systems.
J. Estublier, Software Configuration Management, ICSE
SCM-4 and SCM-5 Workshops Selected Papers [10]

These workshop proceedings are representative of current
experience and research on SCM. This reference is
included with the intention of directing the reader to the
whole class of conference and workshop proceedings.
The suite of IEEE/EIA and ISO/IEC 12207 standards, [15]-
[18]
These standards cover software life cycle processes and
address software configuration management in that context.
These standards reflect commonly accepted practice for
software life cycle processes.
IEEE Std.828-1990, IEEE Standard for Software
Configuration Management Plans [13] and IEEE
Std.1042-1987, IEEE Guide to Software Configuration
Management [14]
These standards focus on software configuration
management activities by specifying requirements and
guidance for preparing the SCMP. These standards reflect
commonly accepted practice for software configuration
management.
A.K. Midha, "Software Configuration Mangement for the
21st Century" [25]
This article discusses the characteristics of SCM systems,
assessment of SCM needs in a particular environment, and
issue of selecting and implementing an SCM system. It is a
current case study on this issue.

J.W. Moore, Software Engineering Standards, A User’s
Road Map [26]
This text provides a comprehensive view of current
standards and standards activities in the area of software
engineering.
M.C. Paulk, et al., Key Practices of the Capability Maturity
Model [27]
This report describes the key practices that could be
evaluated in assessing software process maturity.
Therefore, the section on SCM key practices provides a
view of SCM from a software process assessment
perspective.
R.S. Pressman, Software Engineering: A Practioner's
Approach [31]
This reference addresses SCM in the context of a textbook
on software engineering.
I. Sommerville, Software Engineering [33]
This reference addresses SCM in the context of a textbook
on software engineering.
J.P. Vincent, et al., Software Quality Assurance [36]
In this text, SCM is described from the perspective of a
complete set of assurance processes for a software
development project.
D. Whitgift, Methods and Tools for Software Configuration
Management [38]
This text covers the concepts and principles of SCM. It is
provides detailed information on the practical questions of
implementing and using tools. This text is out of print but
still available in libraries.

3.2 Coverage of the SCM Breakdown Topics by the
Recommended References
This cross-reference is shown in Table 2 of Appendix A.

KNOWLEDGE AREAS OF RELATED DISCIPLINES

The following knowledge areas of related disciplines are
important to SCM.

4.1 Computer Science
A. Information Management – Database Models
B. Operating Systems – File Systems, Protection,

Security
C. Programming Fundamentals and Skills – Compilers,

Code Generation

4.2 Project Management
A. Project Integration Management
B. Project Quality Management
C. Project Risk Management

4.3 Computer Engineering
A. Storage Devices and Systems

4.4 Systems Engineering
A. Process – Requirements Definition, System

Definition, Integration, Maintenance & Operations,
Configuration Management, Documentation, Systems
Quality Analysis and Management, Systems V&V,
Systems Evaluation

B. Essential Functional Processes – Development, Test,
Distribution, Operations, Support

C. Techniques and Tools – Metrics, Reliability, Security

4.5 Management and Management Science
A. Organizational Environment – Characteristics,

Functions, and Dynamics
B. Information Systems Management – Data Resource

Management

4.6 Cognitive Science and Human Factors
A. Development Process – Design Approaches,

Implementation Techniques, Evaluation Techniques

REFERENCES

1. W.A. Babich, Software Configuration Management:
Coordination for Team Productivity, Addison-Wesley,
Reading, Massachusetts, 1986.

2. H.R. Berlack, Software Configuration Management,
John Wiley & Sons, New York, 1992.

3. E.H. Bersoff, "Elements of Software Configuration
Management," Software Engineering, M. Dorfman and
R.H. Thayer ed., IEEE Computer Society Press, Los
Alamitos, CA, 1997.

4. E.H. Bersoff and A.M. Davis, "Impacts of Life Cycle
Models on Software Configuration Management,"
Communications of the ACM, Vol. 34, No. 8, August
1991, pp104-118.

5. F.J. Buckley, Implementing Configuration
Management: Hardware, Software, and Firmware,
Second Edition, IEEE Computer Society Press, Los
Alamitos, CA, 1996.

6. R. Conradi and B. Westfechtel, "Version Models for
Software Configuration Management," ACM
Computing Surveys, Vol. 30, No. 2, June 1998, pp.
232-282.

7. S.A. Dart, Spectrum of Functionality in Configuration
Management Systems, Technical Report CMU/SEI-90-
TR-11, Software Engineering Institute, Carnegie
Mellon University, 1990.

8. S.A. Dart, "Concepts in Configuration Management
Systems," Proceedings of the Third International
Workshop on Software Configuration Management,
ACM Press, New York, 1991, pp1-18.

9. Khaled El Emam, et al., SPICE, The Theory and

Practice of Software Process Improvement and
Capability Determination, IEEE Computer Society,
Los Alamitos, CA, 1998.

10. J. Estublier, Software Configuration Management,
ICSE SCM-4 and SCM-5 Workshops Selected Papers,
Springer-Verlag, Berlin, 1995.

11. P.H. Feiler, Configuration Management Models in
Commercial Environments, Technical Report
CMU/SEI-91-TR-7, Software Engineering Institute,
Carnegie Mellon University, 1991.

12. IEEE Std.610.12-1990, IEEE Standard Glossary of
Software Engineering Terminology, IEEE, Piscataway,
NJ, 1990.

13. IEEE Std.828-1990, IEEE Standard for Software
Configuration Management Plans, IEEE, Piscataway,
NJ, 1990.

14. IEEE Std.1042-1987, IEEE Guide to Software
Configuration Management, IEEE, Piscataway, NJ,
1990.

15. IEEE/EIA Std 12207.0-1996, Software Life Cycle
Processes, IEEE, Piscataway, NJ, 1996.

16. IEEE/EIA Std 12207.1-1996, Guide for Software Life
Cycle Processes – Life Cycle Data, IEEE, Piscataway,
NJ, 1996.

17. IEEE/EIA Std 12207.1-1996, Guide for Software Life
Cycle Processes – Implementation Considerations,
IEEE, Piscataway, NJ, 1996.

18. ISO/IEC 12207:1995(E), Information Technology -
Software Life Cycle Processes, ISO/IEC, Geneve,
Switzerland, 1995.

19. ISO/IEC 12207:1995(E) (Committee Draft),
Information Technology - Software Life Cycle
Processes: Part 2: Configuration Management for
Software, ISO/IEC, Geneve, Switzerland, 1995.

20. ISO/DIS 9004-7 (now ISO 10007), Quality
Management and Quality System Elements, Guidelines
for Configuration Management, International
Organization for Standardization, Geneve,
Switzerland, 1993.

21. P. Jalote, An Integrated Approach to Software
Engineering, Springer-Verlag, New York, 1997

22. John J. Marciniak and Donald J. Reifer, Software
Acquisition Management, Managing the Acquisition of
Custom Software Systems, John Wiley & Sons, 1990.

23. J.J. Marciniak, "Reviews and Audits," Software
Engineering, M. Dorfman and R.H. Thayer ed., IEEE
Computer Society Press, Los Alamitos, CA, 1997.

24. K. Meiser, "Software Configuration Management
Terminology," Crosstalk, 1995,

http://www.stsc.hill.af.mil/crosstalk/1995/jan/terms.ht
ml, February 1999.

25. A.K. Midha, "Software Configuration Management for
the 21st Century," Bell Labs Technical Journal, Winter
1997.

26. J.W. Moore, Software Engineering Standards, A User's
Roadmap, IEEE Computer Society, Los Alamitos, CA,
1998.

27. M.C. Paulk, et al., Key Practices of the Capability
Maturity Model, Version 1.1, Technical Report
CMU/SEI-93-TR-025, Software Engineering Institute,
Carnegie Mellon University, 1993

28. M.C. Paulk, et al., The Capability Maturity Model,
Guidelines for Improving the Software Process,
Addison-Wesley, Reading, Massachusetts, 1995.

29. S.L. Pfleeger, Software Engineering: Theory and
Practice, Prentice Hall, Upper Saddle River, NJ, 1998

30. R.K. Port, "Software Configuration Management
Technology Report, September 1994, "
http://www.stsc.hill.af.mil/cm/REPORT.html,
February 1999.

31. R.S. Pressman, Software Engineering: A Practioner's
Approach, McGraw-Hill, New York, 1997.

32. Walker Royce, Software Project Management, A
United Framework, Addison-Wesley, Reading,
Massachusetts, 1998.

33. I. Sommerville, Software Engineering, Fifth Edition,
Addison-Wesley, Reading, Massachusetts, 1995.

34. I. Sommerville, Software Configuration Management,
ICSE SCM-6 Workshop, Selected Papers, Springer-
Verlag, Berlin, 1996.

35. USNRC Regulatory Guide 1.169, Configuration
Management Plans for Digital Computer Software
Used in Safety Systems of Nuclear Power Plants, U.S.
Nuclear Regulatory Commission, Washington DC,
1997.

36. J.P. Vincent, et al., Software Quality Assurance,
Prentice-Hall, Englewood Cliffs, NJ, 1988.

37. W.G. Vincenti, What Engineers Know and How They
Know It, The Johns Hopkins University Press,
Baltimore, MD, 1990.

38. D. Whitgift, Methods and Tools for Software
Configuration Management, John Wiley & Sons,
Chichester, England, 1991.

APPENDIX A

Table 1. Summary of the SCM Breakdown

I. Management of the SCM Process

A. Organizational Context for SCM

B. Constraints and Guidance for SCM
C. Planning for SCM

1. SCM Organization and Responsibilities

2. SCM Resources and Schedules

3. Tool Selection and Implementation

4. Vendor/Subcontractor Control
5. Interface Control

D. Software Configuration Management Plan

E. Surveillance of SCM

1. SCM Metrics

II. Software Configuration Identification
A. Identifying Items to be controlled

1. Software Configuration

2. Software Configuration Item

3. Software Configuration Item Relationships

4. Software Versions
5. Baseline

6. Acquiring Software Configuration Items

B. Software Library

1. SCM Library Tool

III. Software Configuration Control
A. Requesting, Evaluating, and Approving Software Changes

1. Software Configuration Control Board

2. Software Change Management Tool

B. Implementing Software Changes
1. Software Change Control Tool

C. Deviations & Waivers

IV. Software Configuration Status Accounting

A. Software Configuration Status Information

1. Software Configuration Status Accounting tools
B. Software Configuration Status Reporting

1. Metrics (Measures)

V. Software Configuration Auditing

A. Software Functional Configuration Audit

B. Software Physical Configuration Audit
C. Software In-process Audit

VI. Software Release Management and Delivery

A. Software Building

1. Software Building Tools

B. Software Release Management

1. Software Release Management Tool

Table 2. Coverage of the Breakdown Topics by the Recommended References

B
ab

ic
h

B
er

la
ck

B
uc

kl
ey

C
on

ra
di

D
ar

t

E
st

ub
lie

r
(S

C
M

4/

5)

IE
E

E
 8

28
/1

04
2

IS
O

/IE
C

 1
22

07

M
id

ha

M
oo

re

P
au

lk

P
re

ss
m

an

S
om

m
er

vi
lle

V
in

ce
nt

W
hi

tg
ift

I. Management X X X X X

 I.A. Org. Context X X X X x X X

 I.B Constraints X X X X X X

 I.C Planning X X X X X X
 I.C.1 Org. & Resp. X X X X
 I.C.2 Resources & Sched. X X X X X X
 I.C.3 Tool Selection X X X X X X X X X X
 I.C.4 Vendor Control X X X X X
 I.C.5 Interface Control X X X

 I.D SCM Plan X X X X X X X

 I.E Surveillance X X X
 I.E.1 Metrics X

II. SW Config Identification X X X X X X X X X

 II.A Identifying Items X X X X X
 II.A.1 SW Configuration X X X X X
 II.A.2 SW Config. Item X X X X X X X X X
 II.A.3 SCI Relationships X X X X X
 II.A.4 Software Versions X X X X
 II.A.5 Baselines X X X X X X X
 II.A.6 Acquiring SCIs X X

 II. Software Library X X X X X X X X X X
 II.B.1 SCM Library Tool X X X X X X X X

Table 2. Coverage of the Breakdown Topics by the Recommended References (cont.)

B
ab

ic
h

B
er

la
ck

B
uc

kl
ey

C
on

ra
di

D
ar

t

E
st

ub
lie

r
(S

C
M

 4
/5

)

IE
E

E
 8

28
/1

04
2

IS
O

/IE
C

 1
22

07

M
id

ha

M
oo

re

P
au

lk

P
re

ss
m

an

S
om

m
er

vi
lle

V
in

ce
nt

W
hi

tg
ift

III. SW Configuration Control X X X X X X X X X X X

 III.A Requesting Changes X X X X X X X X X X
 III.A.1 SW CCB X X X X X X X X
 III.A.2 Change Mgmt Tool X X X X

 III.B Implementing Changes X X X X X X X X X
 III.B.1 Change Cntl Tool X X X X X X X
 III.C Deviations & Waivers X X

IV. SW Config Status Acctg X X X X X X X

 IV.A. Status Information X X X X X X
 IV.A. CSA Tool

 IV.B Status Reporting X X X X X X X
 IV.B Metrics

V. SW Configuration Audit X X X X X X X X

 V.A Functional Config Audit X X X X X

 V.B Physical Config Audit X X X X X

 V.C In-Process Audit X X X X

VI. SW Release Mgmt & Del X X X

 VI.A SW System Building X X X X
 VI.A.1 SW Build Tools X X X X

 VI.B SW Release Mgmt X X X
 VI.B.1 SW Release Tool X

APPENDIX B. BREAKDOWN RATIONALE

Criterion (a): Number of topic breakdowns
One breakdown is provided.

Criterion (b): Reasonableness
The breakdowns are reasonable in that they cover the areas typically discussed in texts and standards, although there is
somewhat less discussion of release management as a separate topic. The topics dealing with types of tools are appropriate
but may not have enough supporting material to stand by themselves. In this case, the discussion would be incorporated into
the higher level topic or into the tool discussion in the management of SCM section.

Criterion (c): Generally Accepted
The breakdowns are generally accepted in that they cover the areas typically discussed in texts and standards.

At level 1, the breakdown is identical to that given in IEC 12207 (Section 6.2) except that the term “Management of the
Software Configuration Management Process” was used instead of “Process Implementation” and the term “Software
Configuration Auditing” was used instead of “Configuration Evaluation.” The typical texts discuss Software Configuration
Management Planning (my topic A.3); We have expanded this to a “management of the process” concept in order to capture
related ideas expressed in many of the references that we have used. These ideas are captured in topics A.1 (organizational
context), A.2 (constraints and guidance), and A.4 (surveillance of the SCM process). A similar comparison can also be made
to [Buckley] except for the addition of “Software Release Management and Delivery.”

We have chosen to include the word “Software” as a prefix to most of the configuration topics to distinguish the topics from
hardware CM or system level CM activities. We would reserve “Configuration Management” for system purposes and then
use HCM and SCM for hardware and software respectively.

The topic A.1, “Software Configuration Management Organizational Context,” covers key topics addressed in multiple texts
and articles and it appears within the level 1 headings consistently with the placement used in the references. This new term
on organizational context was included as a placeholder for capturing three concepts found in the references. First, [Buckley]
discusses SCM in the overall context of a project with hardware, software, and firmware elements. We believe that this is a
link to a related discipline of system engineering. (This is similar to what IEEE 828 discusses under the heading of “Interface
Control”). Second, SCM is one of the product assurance processes supporting a project, or in IEC 12207 terminology, one of
the supporting lifecycle processes. The processes are closely related and, therefore, interfaces to them should be considered in
planning for SCM. Finally, some of the tools for implementing SCM might be the same tools used by the developers.
Therefore, in planning SCM, there should be awareness that the implementation of SCM is strongly affected by the
environment chosen for the development activities.

The inclusion of the topic “Release Management and Delivery” is somewhat controversial since the majority of texts on
software configuration management devote little or no attention to the topic. We believe that most writers assume the library
function of configuration identification would support release management and delivery but, perhaps, assume that these
activities are the responsibility of project or line management. The IEC 12207 standard, however, has established this as a
required area for SCM. Since this has occurred and since this topic should be recognized somewhere in the overall
description of software activities, “Release Management and Delivery” has been included.

Criterion (d): No Specific Application Domains
No specific application domains have been assumed.

Criterion (e): Compatible with Various Schools of Thought
SCM concepts are fairly stable and mature.

Criterion (f): Compatible with Industry, Literature, and Standards
The breakdown was derived from the literature and from key standards reflecting consensus opinion. The extent to which
industry implements the SCM concepts in the literature and in standards varies by company and project.

Criterion (g): As Inclusive as Possible
The inclusion of the level 1 topic on management of SCM expands the planning concept into a larger area that can cover all
management-related topics, such as surveillance of the SCM process. For each level 1 topic, the level 2 topics categorize the
main areas in various references’ discussions of the level 1 topic. These are intended to be general enough to allow an open-
ended set of subordinate level 3 topics on specific issues. The level 3 topics cover specifics found in the literature but are not
intended to provide an exhaustive breakdown of the level 2 topic.

Criterion (h): Themes of Quality, Tools, Measurement, and Standards
The relationship of SCM to product assurance is provided for in the breakdowns. The description will also convey the role of
SCM in achieving a consistent, verified, and validated product.

A number of level 3 topics were included throughout the breakdown in order to call attention to the types of tool capabilities
that needed for efficient work within the areas described by particular level 1 and level 2 topics. These are intended to
address capabilities, not specific tools; i.e. one tool may perform several of the capabilities described. These topics may not
be significant enough to stand alone; if not, We would combine the discussion and place it in the management section or
include the discussion in the higher level topic. One or more references on the subject of tool selection will be listed.

A similar approach was taken toward the use of measures.

Standards are explicitly included in the breakdowns.

Criterion (i): 2 to 3 levels, 5 to 9 topics at the first level
The proposed breakdown satisfies this criterion.

Criterion (j): Topic Names Meaningful Outside the Guide
For the most part, We believe this is the case. Some terms, such a “Baselines” or “Physical Configuration Audit” require
some explanation but they are obviously the terms to use since appear throughout the literature.

Criterion (k): Vincenti Breakdown
TBD

Criterion (l): Version 0.1 of the Description
TBD

Criterion (m): Text on the Rationale Underlying the Proposed Breakdowns
This document provides the rationale.

APPENDIX C. BLOOM’S TAXONOMY

This appendix contains a table identifying the SCM topic areas and the associated Bloom’s taxonomy level of understanding
on each topic. The levels of understanding from lower to higher are: knowledge, comprehension, application, analysis,
synthesis, and evaluation.

SCM TOPIC Bloom Level

I. Management of the SCM Process Knowledge
A. Organizational Context for SCM Knowledge
B. Constraints and Guidance for SCM Knowledge
C. Planning for SCM Knowledge

1. SCM Organization and Responsibilities Knowledge
2. SCM Resources and Schedules Comprehension
3. Tool Selection and Implementation Knowledge
4. Vendor/Subcontractor Control Knowledge
5. Interface Control Comprehension

D. Software Configuration Management Plan Knowledge
E. Surveillance of SCM Comprehension

1. SCM Metrics Comprehension
II. Software Configuration Identification Comprehension

A. Identifying Items to be controlled Comprehension
1. Software Configuration Comprehension
2. Software Configuration Item Comprehension
3. Software configuration item relationships Comprehension
4. Software Versions Comprehension
5. Baselines Comprehension
6. Acquiring Software Configuration Items Knowledge

B. SCM Library Comprehension
1. SCM Library Tool (Version Management) Comprehension

III. Software Configuration Control Application
A. Requesting, Evaluating, and Approving Software
Changes

Application
1. Software Configuration Control Board Application
2. Software Change Management Tool Application

B. Implementing Software Changes Application
1. Software Change Control Tool Application

C. Deviations & Waivers Comprehension
IV. Software Configuration Status Accounting Comprehension

A. Software Configuration Status Information Comprehension
1. Software Configuration Status Accounting
tools

Knowledge
B. Software Configuration Status Reporting Comprehension

1. Metrics (Measures) Comprehension
V. Software Configuration Auditing Knowledge

A. Software Functional Configuration Audit Knowledge
B. Software Physical Configuration Audit Knowledge
C. Software In-process Audit Knowledge

VI. Software Release Management & Delivery Comprehension
A. Software Building Comprehension

1. Software Building Tools Application
B. Software Release Management Comprehension

1. Software Release Management Tool Comprehension

APPENDIX D. VINCENTI CATEGORIZATION
TBD

Software Construction (Version 0.5)
SWEBOK

– 1 – Timestamp: 9908251654

Software Construction (Version 0.5)

Terry Bollinger

Software Construction

Software construction is the most fundamental act of software engineering: the construction of
working, meaningful software through a combination of coding, self-validation, and self-testing
(unit testing) by a programmer. Far from being a simple mechanistic “translation” of good design
into working software, software construction burrows deeply into some of the most difficult
issues of software engineering. It requires the establishment of a meaningful dialog between a
person and a computer – a “communication of intent” that must reach from the slow and fallible
human to a fast and unforgivingly literal computer. Such a dialog requires that the computer
perform activities for which it is poorly suited, such as understanding implicit meanings and
recognizing the presence of nonsensical or incomplete statements. On the human side, software
construction requires that forgetful, sloppy, and unpredictable people train themselves to be
precise and thorough to the point that at the least they do not appear to be completely insane
from the viewpoint of a very literal computer. The relationship works at all only because each
side possesses certain capabilities that the other lacks. In the symbiosis of disparate entities that
is software construction, the computer provides astonishing reliability, retention, and (once the
need has been explained) speed of performance. Meanwhile, the human side provides something
utterly lacking on the part of the computer: Creativity and insight into how to solve new, difficult
problems, plus the ability to express those solutions with sufficient precision to be meaningful to
the computer. Perhaps the most remarkable aspect of software construction is that it is possible at
all, given the strangeness of the symbiosis on which it is based.

Software Construction and Software Design

To fully understand the role of software construction in software engineering, it is important to
understand its relationship to the related engineering concept of software design. The
relationship is closer than it might seem: Software design is simply what happens when software
construction is “parceled out” to more than one developer, usually for reasons of scale or
schedule constraints. Since humans are notoriously bad at communicating with each other
efficiently and without quarrelling, this act of parceling out construction tasks requires the use of
procedural and automated enforcement to ensure that programmers “behave” over the course of
completing their tasks. The act of parceling out software construction to create a multi-person
software design activity also unavoidably entails a massive drop in productivity, since it is far
more difficult for such a group to remain “sane” from the perspective of a literal computer that
must run their integrated results.

In practice, nearly all of the skills required in “software design” are also a key part of software
construction, as demonstrated by the accomplishments of many individual programmers who
have created powerful and well-designed software by directly applying design and construction
methods. The idea that all of the hard problems are solved during “design” can lead directly to
the common but highly inaccurate impression that software construction is nothing more than the
“mechanistic” translation of software designs into actual software. If this were actually the case,

Software Construction (Version 0.5)
SWEBOK

– 2 – Timestamp: 9908251654

the commercial market would long ago have moved entirely to abstract design tools that did in
fact automate the final coding steps out of existence. While progress has indeed been made on
this front for some specialized styles of software construction, the actual consequence of such
automation is simply to move programming-style activities up to a new and more powerful level
of capability. Furthermore, the idea that significant levels of repetitive mechanical translation by
people should be tolerated in any strong software engineering process is inherently absurd, as it
attempts to make costly and error-prone humans perform the very types of tasks for which the
computer is vastly better suited. Sadly, project politics also play in some perceptions of the
relative importance and complexity of the design and construction efforts. While it is not at all
uncommon for experienced programmers to massively repair, replace, or expand a documented
design as the “details” of the implementation become more apparent, it is seldom to their benefit
politically to shout too loudly about the naivete or inaccuracy of original design. As a result, the
software design summary reports and metrics of projects seldom reflect the exact dynamics of
what happened between design and construction, and in more than a few cases they may be
vastly and unfairly biased towards touting the results of the “design” phase over construction.

The Spectrum of Construction Techniques

Software construction techniques can be broadly grouped in terms of how they fall between two
endpoints: computer-intensive construction techniques, and human-intensive construction ones.

Computer-Intensive Construction ßß Human-Intensive Construction

Task: Configure limited sets of options ßß Task: Configure nearly unlimited sets of options

Description: Most knowledge is “in” the computer ßß Description: Most knowledge is “in” the programmer

Goal: Move tasks into this category ßß Goal: Move tasks out of this category

Computer-Intensive Construction

In the simplest forms of software construction the computer has been previously programmed to
take care of the vast majority of algorithmic steps, and the human then takes the simple role of
“configuring” software to the special needs of an organization of people and other systems.
While this type of construction is far less taxing on the human constructors, it still requires skills
such as communication with an organization that are far beyond the capabilities of an unassisted
computer, and thus is unavoidably an example of communicating intent to a computer – that is,
of software construction. More important, however, is that this simple style of construction
should in many cases be the goal to which all construction methods should aspire, since it is
vastly more reliable and efficient than nearly any other type of communication-of-intent interface
to a computer. Once implemented, configuration-style software construction “swallows” huge
chunks of the overall software engineering process and replaces them with a more localized
process that is controlled by the computer. It also allows the overall software engineering process
to refocus on new and more complex problems that have not yet been so thoroughly automated.

Software Construction (Version 0.5)
SWEBOK

– 3 – Timestamp: 9908251654

Human-Intensive Construction

At the other extreme of software construction is the development of new and creative algorithms
and software mechanisms, in which the programmer must wrestle with unsolved problems or the
first-time automation of highly complex processes. One example of this type of programming
would be creating a driver for an entirely new class of software peripheral. Human-intensive
software construction requires the use of people who are capable of “thinking like computers,”
and thus are able to provide the computer with the kind of expertise that makes the computer
appear to be “smarter” than it was before. This end of the construction spectrum is close to the
traditional concept of “coding,” although in terms of its burden on the programmer it bears very
little resemblance to the idea that programming is simply “translating” higher-level designs into
code. On the contrary, this end of the software construction spectrum requires a rich mix of skills
including creative problem analysis, disciplined formal-proof-like logical and mathematical
expression of solutions, and the ability to “forecast” how the resulting software construction will
change over time. The best constructors in this domain not only have much the same skills as
advanced logicians, but also the ability to use those skills in a much more difficult environment.

As indicated by the left arrows and goals in the table, all software construction methods should
as a general goal work to move tasks away from the human-intensive side and into the computer-
intensive side. The rationale for this is straightforward: People are too expensive and error-prone
to waste in re-solving the same problems repeatedly. However, moving construction processes to
the left can be difficult to accomplish in practice, especially if large numbers of developers are
involved or the overall development process does not recognize the need for automation. Even
so, the concept of moving towards higher levels of automated, computer-intensive software
construction is sufficiently fundamental to good design that it permeates nearly every aspect of
the software construction problem. For example, even as simple a concept as assigning a value to
a constant at the beginning of a software module reflects the automation theme, since such
constants “automate” the appropriate insertion of new values for the constant in the event that
changes to the program are necessary. Similarly, the concept of class inheritance in object-
oriented programming helps automate and enforce the conveyance of appropriate sets of methods
into new, closely related or derived classes of objects.

Computer Languages

Since the fundamental task of software construction is to communicate intent unambiguously
between two very different types of entities (people and computers), it is not too surprising that
the interface between the two would be expressed in the form of languages. The resulting
computer languages, such as Ada, Python, Fortran, C, C++, Java, and Perl, are close enough in
form to human languages to allow some “borrowing” of innate skills of programmers in natural
languages such as English or French. However, computer languages are also very nit-picky from
the perspective of natural languages, since no computer yet built has sufficient context and
understanding of the natural world to recognize invalid language statements and constructions
that would be caught immediately with a natural language.

Software Construction (Version 0.5)
SWEBOK

– 4 – Timestamp: 9908251654

Construction Languages

Construction languages are a broader set of languages that include not only computer languages
such as C and Java, but also pre-constructed sets of parts and terms that have been designed for
use together in constructing new software for some well-defined set of problems. Thus the
example of sets of simple software configuration options mentioned earlier can also be
understood as constituting a small but well-defined construction language for the problem
domain of how to configure that software. The concept of construction languages is useful for
emphasizing issues such as the need to transition over time from human-intensive computer
languages to computer-intensive ones in which the required construction languages are simpler
and more problem-focused. In practice the creation and use of specialized construction languages
usually begins very early in the construction process, even for one-person efforts. This occurs in
part because the creation of simpler, more automated sets of components is an important tool for
controlling complexity during the construction process.

Styles of Construction

A good construction language moves detailed, repetitive, or memory-intensive construction tasks
away from people and into the computer, where they can be performed faster and more reliably.
To accomplish this, construction languages must present and receive information in ways that are
readily understandable to human senses and capabilities. This need to rely on human capabilities
leads to three major styles of software construction interfaces:

A. Linguistic: Linguistic construction languages make statements of intent in the form of
sentences that resemble natural languages such as French or English. In
terms of human senses, linguistic constructions are generally conveyed
visually as text, although they can (and are) also sometimes conveyed by
sound. A major advantage of linguistic construction interfaces is that they
are nearly universal among people; a disadvantage is their imprecision.

B. Mathematical: The precision and rigor of mathematical and logical reasoning make this
style of human thought especially appropriate for conveying human intent
accurately into computers, as well as for verifying the completeness and
accuracy of a construction. Unfortunately, mathematical reasoning is not
nearly as universal a skill as natural language, since it requires both innate
skills that are not as universal as language skills, and also many years of
training and practice to use efficiently and accurately. It can also be
argued that certain aspects of good mathematical reasoning, such as the
ability to realize all the implications of a new assertion on all parts of a
system, cannot be learned by some people no matter how much training
they receive. On the other hand, mathematical reasoning styles are often
notorious for focusing on a problem so intently that all “complications”
are discarded and only a very small, very pristine subset of the overall
problem is actually addressed. This kind of excessively narrow focus at
the expense of any complicating issues can be disastrous in software
construction, since it can lead to software that is incapable of dealing with
the unavoidable complexities of nearly any usable system.

Software Construction (Version 0.5)
SWEBOK

– 5 – Timestamp: 9908251654

C. Visual: Another very powerful and much more universal construction interface
style is visual, in the sense of the ability to use the same very sophisticated
and necessarily natural ability to “navigate” a complex three-dimensional
world of images, as perceived primarily through the eye (but also through
tactile senses). The visual interface is powerful not only as a way of
organizing information for presentation to a human, but also as a way of
conceiving and navigating the overall design of a complex software
system. Visual methods are particularly important for systems that require
many people to work on them – that is, for organizing a software design
process – since they allow a natural way for people to “understand” how
and where they must communicate with each other. Visual methods are
also deeply important for single-person software construction methods,
since they provide ways both to present options to people and to make key
details of a large body of information “pop out” to the visual system.

Construction languages seldom rely solely on a single style of construction. Linguistic and
mathematical style in particular are both heavily used in most traditional computer languages,
and visual styles and models are a major part of how to make software constructions manageable
and understandable in computer languages. Relatively new “visual” construction languages such
as Visual Basic and Visual Java provide examples that intimately combine all three styles, with
complex visual interfaces often constructed entirely through non-textual interactions with the
software constructor. Data processing functionality behind the interfaces can then be constructed
using more traditional linguistic and mathematical styles within the same construction language.

Principles of Organization

In addition to the three basic human-oriented styles of interfacing to computers, there are four
principles of organization that strongly affect the way software construction is performed. These
principles are:

1. Reduction of Complexity: This principle of organization reflects the relatively limited
(when compared to computers) ability of people to work
with complex systems with many parts or interactions.

2. Anticipation of Diversity: The motive behind this principle is simple: There is no such
thing as an unchanging software construction. Any truly
useful software construction will change in various ways
over time, and the anticipation of what those changes will
be turns out to be one of the fundamental drivers of nearly
every aspect of software construction.

3. Structuring for Validation No matter how carefully a person designs and implements
software, the creative nature of non-trivial software design
(that is, of software that is not simply a re-implementation
of previously solved problems) means that mistakes and
omissions will occur. Structuring for validation means
building software in such a fashion that such errors and

Software Construction (Version 0.5)
SWEBOK

– 6 – Timestamp: 9908251654

omissions can be ferreted out more easily during unit
testing and subsequent testing activities. One of the single
most important implications of structuring for validation is
that software must generally be modular in at least one of
its major representation spaces, such as in the overall layout
of the displayed or printed text of a program. This
modularity allows both improved analysis and thorough
unit-level testing of such components before they are
integrated into higher levels in which their errors may be
more difficult to identify. As a principle of construction,
structuring for validation generally goes hand-in-hand with
anticipation of diversity, since any errors found as a result
of validation represent an important type of “diversity” that
requires will require software changes (bug fixes).

4. Use of External Standards: A natural language that is spoken by one person would be
of little value in communicating with the rest of the world.
Similarly, a construction language that has meaning only
within the software for which it was constructed can be a
serious roadblock in the long-term use of that software.
Such construction languages therefore should either
conform to external standards such as those used for
computer languages, or provide a sufficiently detailed
internal “grammar” (e.g., documentation) by which the
construction language can later be understood by others.
The interplay between reusing external standards and
creating new ones is a complex one, as it depends not only
on the availability of such standards, but also on realistic
assessments of the long-term viability of such external
standards.

These principles of organization in software construction are discussed in more detail below.

Reduction in Complexity

Another major factor in how people convey intent to computers is the severely limited ability of
people to “hold” complex structures and information in their working memory, especially over
long periods of time. A human-to-computer construction that does not shield people from the
nearly unlimited complexity and retention possible within a computer can easily overload the
people working with it, potentially leading to serious inefficiencies and a proliferation of errors
during the construction process. This need for simplicity in the human-to-computer interface
leads to one of the strongest drivers in software construction: reduction of complexity. The need
to reduce complexity applies to essentially every aspect of the software construction, and is
particularly critical to the process of self-verification and self-testing of software constructions.

There are three main techniques for reducing complexity during software construction:

Software Construction (Version 0.5)
SWEBOK

– 7 – Timestamp: 9908251654

Removal of Complexity: Although trivial in concept, one obvious way to reduce
complexity during software construction is to remove
features or capabilities that are not absolutely required.
This may or may not be the right way to handle a given
situation, but certainly the general principle of parsimony –
that is, of not adding capabilities that clearly will never be
needed when constructing software – is valid.

Automation of Complexity: A much more powerful technique for removal of
complexity is to automate the handling of it. That is, a new
construction language is created which features that were
previously time-consuming or error-prone for a human to
perform are migrated over to the computer in the form of
new software features or capabilities. The history of
software is replete with examples of powerful software
tools that raised the overall level of development capability
of people by allowing them to address a new set of
problems. Operating systems are one example of this
principle, since they provide a rich construction language
by which efficient use of underlying hardware resources
can be greatly simplified. Visual construction languages
similarly provide automation of visual aspects of software
that otherwise could be very laborious to build.

Localization of Complexity: If complexity can neither be removed nor automated, the
only remaining option is to localize complexity into small
“units” or “modules” that are small enough for a person to
understand in their entirety, and (perhaps more importantly)
sufficiently isolated that meaningful assertions can be made
about them. (A contrasting example: Arbitrarily dividing a
very long sequence of code into small “modules” does not
help, because the relationships between the modules
become extremely complex and difficult to predict.)

Localization of complexity has a powerful impact on the
design of computer languages, as demonstrated by the
growth in popularity of object-oriented methods that seek
to strictly limit the number of ways to interface to a
software module. Localization is also a key aspect of good
design of the broader category of construction languages,
since new feature that are too hard to find and use are
unlikely to be effective as tools for construction. Classical
design admonitions such as the goal of having “cohesion”
within modules and to minimize “coupling” are also
fundamentally localization of complexity techniques, since
they strive to make the number and interaction of parts
within a module easy for a person to understand.

Software Construction (Version 0.5)
SWEBOK

– 8 – Timestamp: 9908251654

Anticipation of Diversity

This principle has more to do with how people use software than with differences between
computers and people. As stated earlier, the main idea is quite simple: There is no such thing as
an unchanging software construction. Useful software constructions are unavoidably part of a
changing external environment in which they perform useful tasks, and changes in that outside
environment trickle in to impact the software constructions in diverse (and often unexpected)
ways. In contrast, mathematical constructions and formulae can in some sense be stable or
unchanging over time, since they represent abstract quantities and relationships that do not
require direct “attachment” to a working, physical computational machine. For example, even
the software implementations of “universal” mathematical functions must change over time due
to external factors such as the need to port them to new machines, and the unavoidable issue of
physical limitations on the accuracy of the software on a given machine.

Anticipation of the diversity of ways in which software will change over time is one of the more
subtle principles of software construction, yet it is vitally important for the creation of software
that can endure over time and add value to future endeavors. Since it includes the ability to
anticipate changes due to design errors (bugs) in software, it is also a fundamental part of the
ability to make software robust and error-free. Indeed, one handy definition of “aging” software
is that it is software that no longer has the flexibility to accommodate bug fixes without breaking.

Structuring for Validation

It is not particularly difficult to write software that cannot really be validated not matter how
much it is tested. This is because even moderately large “useful” software components frequently
cover such a large range of outputs that exhaustive testing of all possible outputs would take
millennia or longer with even the fastest computers.

Structuring for validation thus becomes a fundamental constraint for producing software that can
be shown to be acceptably reliable within a reasonable time frame. One of the most important
implications of this principle is that software must be modular in some fashion that allows its
behavior to be thoroughly analyzed and validated through testing before it becomes so complex
that such validation is no longer feasible. The concept of unit testing parallels structuring for
validation, and is used in parallel with the construction process to help ensure that validation
occurs before the overall structure gets “out of hand” and can no longer be readily validated.

Use of External Standards

With the advent of the Internet as a major force in software development and interaction, the
importance of selecting and using appropriate external standards for how to construct software is
more apparent than ever before. Software that must share data and even working modules with
other software anywhere in the world obviously must “share” many of the same languages and
methods as that other software. The result is that selection and use of external standards – that is,
of standards such as language specifications and data formats that were not originated within a
software effort – is becoming an even more fundamental constraint on software construction than
it was in the past. It is a complex issue, however, because the selection of an external standard
may need to depend on such difficult-to-predict issues as the long-term economic viability of a

Software Construction (Version 0.5)
SWEBOK

– 9 – Timestamp: 9908251654

particular software company or organization that promotes that standard. Also, selecting one
level of standardization often opens up an entire new set of standardization issues. An example
of this is the data description language XML (eXtensible Markup Language). Selecting XML as
an external standard answers many questions about how to describe data in an application, but it
also opens up the issue of whether one of the growing numbers of customizations of XML to
specific problem domains should also be used.

A Taxonomy of Software Construction Methods

The following taxonomy uses the above breakdowns of the software construction problem to
suggest categories of tools and techniques needed for effective and well-rounded software
engineering during the construction phase. Rather than being delayed until the construction
phase itself, decisions about what styles of construction and specific methods will be used should
be made early in the engineering process, since they will affect other phases as well.

A. Linguistic Construction Methods

Linguistic construction methods are distinguished in particular by the use of word-like strings
of text to represent complex software constructions, and the combination of such word-like
strings into patterns that have a sentence-like syntax. Properly used, each such string should
have a strong semantic connotation that provides an immediate intuitive understanding of
what will happen when the underlying software construction is executed. For example, the
term “search” has an immediate, readily understandable semantic meaning in English, yet the
underlying software implementation of such a term in software can be very complex indeed.
The most powerful linguistic construction methods allow users to focus almost entirely on
the language-like meanings of such term, as opposed (for example) to frittering away mental
efforts on examining minor variations of what “search” means in a particular context.

Linguistic construction methods are further characterized by similar use of other “natural”
language skills such as using patterns of words to build sentences, paragraphs, or even entire
chapters to express software design “thoughts.” For example, a pattern such as “search table
for out-of-range values” uses word-like text strings to imitate natural language verbs, nouns,
prepositions, and adjectives. Just as having an underlying software structure that allows a
more natural use of words reduces the number of issues that a user must address to create
new software, an underlying software structure that also allows use of familiar higher-level
patterns such as sentence further simplifies the expression process.

Finally, it should be noted that as the complexity of a software expression increases,
linguistic construction methods begin to overlap unavoidably with visual methods that make
it easier to locate and understand large sequences of statements. Thus just as most written
versions of natural languages use visual clues such as spaces between words, paragraphs, and
section headings to make text easier to “parse” visually, linguistic construction methods rely
on methods such as precise indentation to convey structural information visually.

The use of linguistic construction methods is also limited by our inability to program
computers to understand the levels of ambiguity typically found in natural languages, where
many subtle issues of context and background can drastically influence interpretation. As a

Software Construction (Version 0.5)
SWEBOK

– 10 – Timestamp: 9908251654

result, the linguistic model of construction usually begins to weaken at the more complex
levels of construction that correspond to entire paragraphs and chapters of text.

1. Reduction in Complexity (Linguistic)

The main technique for reducing complexity in linguistic construction is to make short,
semantically “intuitive” text strings and patterns of text stand in for the much more
complex underlying software that “implement” the intuitive meanings. Techniques that
reduce complexity in linguistic construction include:

§ Functions, procedures, and code blocks

§ Software templates

§ Design patterns

§ Component libraries and frameworks

§ Interrupt and event-driven programming

§ Data structures

§ Encapsulation and abstract data types

§ Higher-level and domain-specific languages

2. Anticipation of Diversity (Linguistic)

Linguistic construction anticipates diversity both by permitting extensible definitions of
“words,” and also by supporting flexible “sentence structures” that allow many different
types of intuitively understandable statements to be made with the available vocabulary.
An excellent example of using linguistic construction to anticipate diversity is the use of
human-readable configuration files to specify software or system settings.

§ Information hiding

§ Embedded documentation

§ “Complete and sufficient” method sets

§ Object-oriented class inheritance

§ Creation of “glue languages” for linking legacy components

§ Table-driven software

§ Configuration files

§ Self-describing software and hardware

Software Construction (Version 0.5)
SWEBOK

– 11 – Timestamp: 9908251654

3. Structuring for Validation (Linguistic)

Because natural language in general is too ambiguous to allow safe interpretation of
completely free-form statements, structuring for validation shows up primarily as rules
that at least partially constrain the free use of natural the free use of expressions in
software. The objective is to make such constructions as “natural” sounding as possible,
while not losing the structure and precision needed to ensure consistent interpretations of
the source code by both human users and computers.

§ Modular design

§ Structured programming

§ Style guides

§ Unit testing

4. Use of External Standards (Linguistic)

Traditionally, standardization of programming languages was one of the first areas in
which external standards appeared. The goal was (and is) to provide standard meanings
and ways of using “words” in each standardized programming language, which makes it
possible both for users to understand each other’s software, and for the software to be
interpreted consistently in diverse environments.

§ Standardized programming languages

§ Standardized data description languages (e.g., XML)

§ Standardized alphabet representations (e.g., Unicode)

§ Inter-process communication standards (e.g., COM, CORBA)

§ Component-based software

B. Mathematical Construction Methods

Mathematical construction methods rely less on intuitive, everyday meanings of words and
text strings, and more on definitions that are backed up by precise, unambiguous, and fully
formal (mathematical) definitions. Mathematical construction methods are at the heart of
most forms of system programming, where precision, speed, and verifiability are more
important than ease of mapping into ordinary language. Mathematical constructions also use
precisely defined ways of combining symbols that avoid the ambiguity of many natural
language constructions. Functions are an obvious example of mathematical constructions,
with their direct parallel to mathematical functions in both form and meaning.

Mathematical construction techniques also include the wide range of precisely defined
methods for representing and implementing “unique” computer problems such as concurrent

Software Construction (Version 0.5)
SWEBOK

– 12 – Timestamp: 9908251654

and multi-threaded programming, which are in effect classes of mathematical problems that
have special meaning and utility within computers.

The importance of the mathematical style of programming cannot be understated. Just as the
precision of mathematics is fundamental to disciplines such as physics and the hard science,
the mathematical style of programming is fundamental to building up a reliable framework of
software “results” that will endure over time. While the linguistic and visual styles work well
for interfacing with people, these less precise styles can be unsuitable for building the interior
of a software system for the same reason that stained glass should not be used to build the
supporting arches of a cathedral. Mathematical construction provides a foundation that can
eliminate entire classes of errors or omissions from ever occurring, whereas linguistic and
visual construction methods are much more likely to focus on isolated instances of errors or
omissions. Indeed, one very real danger in software quality assurance is to focus too much on
capturing isolated errors occurring in the linguistic or visual modes of construction, while
overlooking the much more grievous (but harder to identify and understand) errors that occur
in the mathematical style of construction.

1. Reduction in Complexity (Mathematical)

As is the case with linguistic construction methods, mathematical construction methods
reduce complexity by representing complex software constructions as simple text strings.
The main difference is that in this case the text strings follow the more precisely defined
rules and syntax of mathematical notations, rather than the “fuzzier” rules of natural
language. Reading and writing such expressions and constructs them generally more
training, but once mastered, the use of mathematical constructions tends to keep the
ambiguity of what is being specified to an absolute minimum. However, as with
linguistic construction, the quality of a mathematical construction is only as good as its
underlying implementation. The advantage is that the precision of the mathematical
definitions usually translates into a more precise specification for the software beneath it.

§ Traditional functions and procedures

§ Functional programming

§ Logic programming

§ Concurrent and real-time programming techniques

§ Spreadsheets

§ Mathematical libraries of functions

2. Anticipation of Diversity (Mathematical)

Diversity in mathematical construction is handled in terms of precisely defined sets that
can vary greatly in size. While mathematical formalizations are capable of very flexible
representations of diversity, they require explicit anticipation and preparation for the full
range of values that may be needed. A common problem in software construction is to

Software Construction (Version 0.5)
SWEBOK

– 13 – Timestamp: 9908251654

use a mathematical technique – e.g., a fixed-length vector or array – when what is really
needed to accommodate future diversity is a more generic solution that anticipates future
growth – e.g., an indefinitely variable-length vector. Since more generic solutions are
often harder to implement and harder to make efficient, it is important when using
mathematical construction techniques to try to anticipate the full range of future versions.

§ Functional parameterization

§ Macro parameterization

§ Extensible mathematical frameworks

3. Structuring for Validation (Mathematical)

Since mathematics in general is oriented towards proof of hypothesis from a set of
axioms, mathematical construction techniques provide a broad range of techniques to
help validate the acceptability of a software unit. Such methods can also be used to
“instrument” programs to look for failures based on sets of preconditions.

§ Assertion-based programming (static and dynamic)

§ State machine logic

§ Redundant systems, self-diagnosis, and failover methods

§ Hot-spot analysis and performance tuning

4. Use of External Standards

For mathematical construction techniques, external standards generally address ways to
define precise interfaces and communication methods between software systems and the
machines they reside on.

§ POSIX standards

§ Data communication standards

§ Hardware interface standards

§ Standardized mathematical representation languages (e.g., MathML)

§ Mathematical libraries of functions

C. Visual Construction Methods

Visual construction methods rely much less on the text-oriented constructions of both
linguistic and mathematical construction, and instead rely on direct visual interpretation and
placement of visual entities (e.g., “widgets”) that represent the underlying software. Visual
construction tends to be somewhat limited by the difficulty of making “complex” statements

Software Construction (Version 0.5)
SWEBOK

– 14 – Timestamp: 9908251654

using only movement of visual entities on a display. However, it can also be a very powerful
tool in cases where the primary programming task is simply to build and “tweak” a visual
interface to a program whose detailed behavior was defined earlier.

Object-oriented languages are an interesting case. Although object-oriented languages use
text and words to describe the detailed properties of objects, the style of reasoning that they
encourage is highly visual. For example, experienced object-oriented programmers tend to
view their designs literally as objects interacting in spaces of two or more dimensions, and a
plethora of object-oriented design tools and techniques (e.g., Universal Mapping Language,
or UML) actively encourage this highly visual style of reasoning.

However, object-oriented methods can also suffer from the lack of precision that is part of
the more intuitive visual approach. For example, it is common for new – and sometimes not-
so-new – programmers in object-oriented languages to define object classes that lack the
mathematical precision that will allow them to work reliably over user-time (that is, long-
term system support) and user-space (e.g., relocation to new environments). The visual
intuitions that object-oriented languages provide in such cases can be somewhat misleading,
because they can make the real problem of how to define a class to be efficient and stable
over user-time and user-space seem to be simpler than it really is. A complete object-oriented
construction model therefore must explicitly identify the need for mathematical construction
methods throughout the object design process. The alternative can be an object-based system
design that, like a complex stained glass window, looks impressive but is too fragile to be
used in any but the most carefully designed circumstances.

More explicitly visual programming methods such as those found in Visual C++ and Visual
Basic reduce the problem of how to make precise visual statements by “instrumenting”
screen objects with complex (and mathematically precise) objects that lie behind the screen
representations. However, this is done at a substantial loss of generality when compared to
using C++ with explicit training in both visual and mathematical construction, since the
screen objects are much more tightly constrained in properties.

1. Reduction in Complexity (Visual)

Especially when compared to the steps needed to build a visual interface using text-
oriented linguistic or mathematical construction, visual construction can provide drastic
reductions in the total effort required to building a working graphical interface to a
program. It can also reduce complexity by providing a simple way to select between the
elements of a small set of choices.

§ Object-oriented programming

§ Visual creation and customization of user interfaces

§ Visual (e.g., visual C++) programming

§ “Style” aspects of structured programming

Software Construction (Version 0.5)
SWEBOK

– 15 – Timestamp: 9908251654

2. Anticipation of Diversity (Visual)

Provided that the total sets of choices are not overly large, visual construction methods
can provide a good way to configure or select options for software or a system. Visual
construction methods are analogous to linguistic configuration files in this usage, since
both provide easy ways to specify and interpret configuration information.

§ Object classes

§ Visual configuration specification

§ Separation of GUI design and functionality implementation

3. Structuring for Validation (Visual)

Visual construction can provide immediate, active validation of requests and attempted
configurations when the visual constructs are “instrumented” to look for invalid feature
combinations and warn users immediately of what the problem is.

§ “Complete and sufficient” design of object-oriented class methods

§ Dynamic validation of visual requests in visual languages

4. Use of External Standards (Visual)

Standards for visual interfaces greatly ease the total burden on users by providing
familiar, easily understood “look and feel” interfaces for those users.

§ Object-oriented language standards

§ Standardized visual interface models (e.g., Microsoft Windows)

§ Standardized screen widgets

§ Visual Markup Languages

Software Construction (Version 0.5)
SWEBOK

– 16 – Timestamp: 9908251654

References

 1. Bentley, Jon, Programming Pearls. Addison-Wesley, 1989.

 2. McConnell, Steve, Code Complete. Microsoft Press, 1993.

 3. Henricson, Mats, and Nyquist, Erik, Industrial Strength C++. Prentice-Hall, 1997.

 4. Brooks, Frederick P. Jr., The Mythical Man-Month. Addison-Wesley, 1995.

Very important note from the Knowledge Area specialist and the editors. Suggestions for
book and article references are very much welcome for this Knowledge Area Description. Here
is a reminder of the specifications regarding references:

1.1 Criteria and Requirements for selecting Reference Material

a) Specific reference material must be identified for each topic. Each piece of
reference material can, of course, cover multiple topics.

b) Proposed Reference Material can be book chapters, refereed journal papers,
refereed conference papers or refereed technical or industrial reports, or any other
type of recognized artifact. They must be generally available and cannot be
confidential in nature.

c) Proposed Reference Materials must be in English.

d) A maximum of 15 Reference Materials can be recommended for each Knowledge
Area.

e) If deemed feasible and cost-effective by the IEEE Computer Society, selected
reference material will be published on the Guide to the Software Engineering
Body of Knowledge Web site. To facilitate this task, preference should be given
to reference material for which the copyrights already belong to the IEEE
Computer Society or to the ACM. This should not, however, be seen as a
constraint or an obligation.

f) A matrix of reference material versus topics must be provided.

In order to facilitate your contribution to this section, here is table containing the breakdown of
topics suggested above by the Knowledge Area Specialist. Please make your suggestions of
reference material which cover one or more of the following topics, while respecting the above
specifications.

We do not expect you to make reference material suggestions for each topic, especially if you
don’t agree with the breakdown or some part of it. If you suggest other topics, please include
relevant material suggestions for these new topics.

Software Construction (Version 0.5)
SWEBOK

– 17 – Timestamp: 9908251654

Topics Proposed reference material

A. Linguistic Construction Methods

1. Reduction in Complexity (Linguistic)

2. Anticipation of Diversity (Linguistic)

3. Structuring for Validation (Linguistic)

4. Use of External Standards (Linguistic)

B. Mathematical Construction Methods

1. Reduction in Complexity (Mathematical)

2. Anticipation of Diversity (Mathematical)

3. Structuring for Validation (Mathematical)

4. Use of External Standards (Mathematical)

C. Visual Construction Methods

1. Reduction in Complexity (Visual)

2. Anticipation of Diversity (Visual)

3. Structuring for Validation (Visual)

4. Use of External Standards (Visual)

Knowledge Area Description for Design (version 0.5)

Guy Tremblay
Dépt. d’Informatique, UQAM

Montréal, Qué.

Overview and rationale

As demanded in the specifications document, I have tried to be as inclusive as possible and, also, to
include topics related with quality, measurements and standards. Thus, certain topics have been included
in the list of topics even though they may not yet be fully considered as generally accepted (e.g., design
metrics, which are formally discussed in a single software engineering book). As for the topic of
standards, it was not clear how to include it, especially considering the relatively few number of such
standards. Thus, a special “Existing standards” topic section has been created.

Some topics have also been included because it was asked to include topics which might be considered
generally accepted within a 3-5 years time frame. In this spirit, I have included the following topics: i)
elements related with software architecture (“Software Architecture”, Shaw and Garlan, 1996; “Software
Architecture in Practice”, Bass, Clements and Kazman, 1998), including notions related with architectural
styles; ii) the approach to OOD recently presented by the UML group (“The Unified Software
Development Process”, Jacobson, Booch and Rumbaugh, 1999). Note that although UML is not explicitly
mentioned in the design notations, many of its elements are indeed present, for example: class dia-
grams, collaboration diagrams, deployment diagrams, object diagrams, sequence diagrams, statecharts.
Note that no special section explicitly related with tools has been included as it was not clear what
should be included in relation with design.

After receiving the comments from the reviewers of version 0.1, a number of modifications have been done
and a single breakdown of topics has been selected. This breakdown takes the approach taken in a
number of software engineering books, where the notations are presented apart from the strategies and
methods that use those notations. Also, in the current breakdown of topics, the concepts related with the
topics of architecture and standards have been given explicit sections, whereas the topics related with
quality and metrics are grouped in a single section (because metrics can bee seen as tools to evaluate
the quality of a design). Finally, the section on strategies and methods has been divided, as done in
many references, in a first section that presents general strategies followed by subsequent sections that
present the various classes of approaches (data- vs. function- vs. object-oriented). Note that although
numerous approaches to OOD have been presented in the literature, we mention only a few, as the one
recently proposed by the UML group can be considered a fusion of many existing approaches (Booch,
Objectory, OMT).

Before presenting the proposed detailed breakdown of topics, let us present an overview of the major
categories accompanied by a brief description.

2

Basic concepts and principles
The basic concepts and principles which are generally considered fundamental to software design. These
are key notions that often reappear, in various forms, in the subsequent topics. They are like a foundation
for understanding design.

Design quality and metrics

Quality attributes
The attributes that are generally considered important for obtaining a design of good quality. These
include both attributes related with the external behavior of the software (e.g., availability, usability) or
related with the quality of the internal structure of the system (e.g., maintainability, simplicity).

Quality assurance
General QA techniques that can be used to ensure the good quality of a design.

Metrics
Formal metrics that can be used to estimate various aspects of the quality of a design. Although
some metrics are general, some depend on the approach used for producing the design, for example,
structured vs. object-oriented design.

Software architecture

Structures and viewpoints
Various authors have different views of the differents high-level facets of a design that should be
described and documented. Some of these views are presented.

Architectural styles
The notion of architectural style -- a paradigmatic architectural pattern that can be used to obtain a
high-level organization of software -- has become an important notion of the field of software
architecture. This section presents some of the major styles which have been identified by various
authors.

Architectural descriptions
The techniques and/or notations that can be used to describe a high-level architecture, either formally
(e.g., formal architecture description language) or informally (e.g., patterns). Note that these
techniques generally differ from the ones used in a specific architectural design document.

Object-Oriented Frameworks: Description of the notion of framework, which has become important in the
context of OO programming.

Design notations

Architectural design
Various notations that can be used to document a specific architectural design.

Detailed design
Various notations that can be used to produce the detailed design of a system.

3

Design strategies and methods

General strategies
General classes of strategies that can be used to create a design for a system.

Data-structure centered design
Although less popular in North America than in Europe, the work on data-structured design (mostly
M. Jackson’s work) seems worthy of mention.

Function-oriented design
The classical approach of function/structured design (à la Yourdon/Constantine).

Object-oriented design
Some of the strategies and �methods that have been proposed for OO design, including the recently
proposed Unified Software Development Process approach.

4

Detailed breakdown of topics

Basic concepts and principles

Abstraction

Cohesion and coupling

Decomposition

Encapsulation

Information hiding

Interface vs. Implementation

Modularity

Partitioning

Refinement

Separation of concerns

Structure

Design quality and metrics

Quality attributes
Availability
Correctness
Efficiency
Integrability
Interoperability
Maintainability
Modifiability
Portability
Reliability
Reusability
Security
Simplicity
Testability
Usability

Quality assurance
Preliminary design reviews and/or design walkthroughs
Critical design reviews
Program design reviews

Metrics
Graph/cyclomatic complexity metrics
Structured design metrics
Object-oriented design metrics

Software architecture

Structures and viewpoints
Behavioural vs. functional vs. structural vs. data modeling
Conceptual vs. module vs. code vs. architecture
Logical vs. process vs. physical vs. development

5

Architectural styles
Batch systems
Blackboards
Data abstraction and OO organization
Distributed systems (e.g., CORBA, DCOM)
Event-based systems
Interactive systems
Interpreters
Layered systems
Pipes and filters
Process control
Repositories
Rule-based systems

Architectural descriptions
Module Interconnection Languages
Architecture description languages
Patterns

Object-Oriented Frameworks

Design notations

Architectural design
Class diagrams
CRC (Class-Responsibilities-Collaborators) Cards
Deployment and processes diagrams
Module diagrams
Structure charts
Subsystems diagrams

Detailed design
Collaboration diagrams
Decision tables and diagrams
Flowcharts and structured (box) flowcharts
HIPO diagrams (Hierarchical Input-Process-Output)
Jackson structure diagrams
Pseudo-code and PDL (Program Design Language)
Sequence diagrams
State transition diagrams and statecharts

Design strategies and methods

General strategies
Data-oriented decomposition
Functional decomposition
Information-hiding
Object-oriented design
Stepwise refinement

Data-structure centered design
Jackson Structured Programming (JSP)
Jackson System Development (JSD)

6

Function-oriented design
SSADM
Structured design

Object-oriented design
Coad and Yourdon method
Fusion
Meyer’s Design By Contract
Shlaer/Mellor Method
The Unified Software Development Process’ approach to design
Wirfs-Brock et al.’s Responsibility-driven design

Existing standards

IEEE Standard Glossary of Software Engineering Terminology

IEEE Recommended Practice for Ada as a Program Design Language

IEEE Recommended Practice for Software Design Descriptions

IEEE Guide to Software Design Descriptions

7

Proposed reference material

In what follows, we suggest reference material for the various topics presented in the proposed breakdown
of topics. Note that, for some topics, a number of global references are given for a non-leaf topic, rather a
specific reference for each particular leaf topic. This seemed preferable because some of these topics
were discussed in a number of interesting references.

Also note that the number of references is slightly above the suggested 15 references indicated in the
specification document for the knowledge area descriptions. In our case, this number is both only slightly
above (17) and largerly above. Exactly 17 references have been indicated, of which four (4) are references
to existing IEEE Standards. These latter were included for completeness but not all of them are directly
relevant (e.g., IEE87a, IEE91). However, if complete and detailed references had been given, the number
of references would have been largely above the suggested 15: in 3 cases, the indicated references are
to publications from the IEEE Computer Society Press which are in fact collections of papers previously
published elsewhere. These references are used mainly for the topics related with the various design
notations and methods.

Basic concepts and principles
[BMR+96, chap. 6]
[Jal97, chap. 5]
[Pfl98, chap. 5]
[Pre92, chaps. 13 and 23]
[YC79]

Design quality and metrics

Quality attributes
[BCK98, chap. 4]
[BMR+96, chap. 6]
[Jal97, chap. 5]
[IEE91]

Quality assurance
[BCK98, chap. 10]
[Jal97, chap. 7]
[Pfl98, chap. 5]

Metrics
[Jal97, chaps. 5, 6 and 7]
[Pre98, chaps. 18 and 23]

Software architecture

Structures and viewpoints
[BCK98, chap. 2]
[BMR+96, chap. 6]
[Pfl98, chap. 5]

8

Architectural styles
[BCK98, chap. 2]
[BMR_96, chap. 2]
[Pfl98, chap. 5]
[SG96, chaps. 2 and 4]

Architectural descriptions
Module Interconnection Languages [FW83, part V][SG96, chap. 7]
Architecture description languages [BCK98, chap. 12][SG96, chaps. 6 and 7]
Patterns [BCK98, chap. 12][BMR+96][Pre92, chap. 21]

Object-Oriented Frameworks [BMR+96, chap. 6]

Design notations

Architectural design
[DT97, chap. 4]
[Jal97, chaps. 5 and 6]
[JBR99, chap. 9]
[Pre92, chap. 14]
[TM93, chap. 5]
[WBWW90]
[YC79]

Detailed design
[DT97, chap. 4]
[FW, parts III and VII]
[JBR99, chap. 9]
[Pre92, chap. 14]

Design strategies and methods

General strategies
Data-oriented decomposition [FW83, part V]
Functional decomposition [FW83, part V][Pre92, chaps. 13 and 14]
Information-hiding [FW83, part V][Pre92, chap. 13]
Object-oriented design [FW83, part VI][Pre92, chaps. 19 and 21]
Stepwise refinement [FW83, part VII]

Data-structure centered design
Jackson Structured Programming (JSP) [DT97, chap. 4][FW83, part VII][TM93, chap. 5]
Jackson System Development (JSD) [DT97, chap. 4][FW83, part III][TM93, chap. 5]

Function-oriented design
SSADM [TM93, chap. 5]
Structured design [Jal97, chap. 5][Pre92, chap. 14][YC79]

Object-oriented design [Hut94][Jal97, chap. 6][Pre92, chap. 21]
Coad and Yourdon method [Pre92, chap. 21][Hut94]
Fusion [Hut94]
Meyer’s Design By Contract [Hut94][Pfl98, chap. 5]
Shlaer/Mellor Method [Hut94]
The Unified Software Development Process’ approach to design [JBR99]
Wirfs-Brock et al.’s Responsibility-driven design [Hut94][Pre92, chap. 21][WBWW90]

9

Existing standards

IEEE Standard Glossary of Software Engineering Terminology [IEE91]

IEEE Recommended Practice for Ada as a Program Design Language [IEE87a]

IEEE Recommended Practice for Software Design Descriptions [IEE87b]

IEEE Guide to Software Design Descriptions [IEE93a]

10

Matrix of topics vs. reference material

Note: A number in the matrix entry indicates the appropriate chapter number. A “*” indicates a general
reference (no specific chapter).

BCK
98

BMR
+96

DT
97

FW
83

Hut
94

Jal
97

JBR9
9

Pfl
98

Pre
92

SG
96

TM
93

WBW
W90

YC
79

Basic conc. and
princ.

6 5,6 5 13,23

Abstraction 6 5 5 13,23
Cohes. and coupl. 6 5,6 5 13
Decomposition 5
Encapsulation 6 6 23
Info. hiding 6 6 5 13,23
Interf. vs. Impl. 6
Modularity 6 5 5 13
Partitioning 5 13
Refinement 5 13
Sep. of concerns 6
Structure 13
Design qual. and
m.
Quality attr. 4 6 5 7
Availability 4
Correctness 5
Efficiency 4 6 5
Integrability 4
Interoperability 6
Maintainability
Modifiability 4 6
Portability 4
Reliability 6
Reusability 4 6 7
Security 4
Simplicity 5
Testability 4 6
Usability 4
Quality assurance 10 5 5
PDR and/or DW 10 7 5
CDR 7 5
Program DR 5
Metrics 5-7 18,

23
Graph metrics 7 18
Struct. des. m. 5 18
OO des. m. 6 23

11

Software
architecture
Structures and
viewpoints

2 6 4 5

Beh./func./str./data 2 4
Conc./mod./code./
arch.

2 6 5

Log./proc./phys./de
v.

2 6

Architectural styles 6, 8 2 5 2,4
Batch systems 4
Blackboards 2
Data abs. and OO 2
Distr. syst. 8 2 5
Event syst. 5 2
Interactive syst. 6 2
Interpreters 5 2
Layered syst. 2 5 2,4
Pipes and filters 2 5 2
Proc. control 5 2
Reposit. 5 2,4
Rule syst. 2
Archi. descr. 12 1 V 21 6,7
MIL V 7
Arch. descr. lang. 12 6,7
Patterns 12 1 21
OO Frameworks 6
Des. notations
Arch. design 4 12 5,6 9 14 5 * *
Class diagr. 6 9
CRC Cards 21 *
Deploy. diagr. 9
Module diagr. 9
Struct. charts 4 5 14 5 *
Subsyst. diagr. 9

12

Detailed design 4 III,
VII

7 9 14

Collab. diagr. 9
Decision diagr 14
Flowcharts VII 14
HIPO diagr. III
Jackson struct.
diagr.

4

PDL VII 7 14
Sequence diagr. 9
STD 4 7 9
Design strategies
and methods
General strategies 4 V-VII
Data-oriented dec. 4 V
Funct. dec. V
Info.-hiding V
OO design VI
Stepw. ref. VII
Data-str. design 4 III,

VII
5

JSP 4 VII 5
JSD 4 III 5
Funct.-or. design 5 14 5 *
SSADM 5
Struct. design 5 14 *
OO design 4,7,1

9,
21

9 5 *

Coad and Yourd. 4
Fusion 7
D�BC 5
Shlaer/Mellor 19
UML Proc. 9
Resp.-driven 21 *

13

References

[BCK98]
L. Bass, P. Clements, and R. Kazman.
Software Architecture in Practice.
SEI Series in Software Engineering. Addison-Wesley, 1998.

[BMR+96]
F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal.
A System of Patterns.
Wiley, West Sussex, England, 1996.

[DT97]
M. Dorfman and R.H. Thayer.
Software Engineering.
IEEE Computer Society Press, Los Alamitos, CA, 1997.

[FW83]
P. Freeman and A.I. Wasserman.
Tutorial on Software Design Techniques, fourth edition.
IEEE Computer Society Press, Silver Spring, Md, 1983.

[Hut94]
A.T.F. Hutt.
Object Analysis and Design --- Description of Methods.
John Wiley & Sons, New York, 1994.

[IEE87a]
An american national standard --- IEEE recommended practice for Ada as a program design language.
IEEE Std 990-1987, IEEE, New York, NY, 1987.

[IEE87b]
An american national standard --- IEEE recommended practice for software design descriptions.
IEEE Std 1016-1987, IEEE, New York, NY, 1987.

[IEE91]
IEEE standard glossary of Software Engineering Terminology.
IEEE Std 610.12-1990, IEEE, New York, NY, 1993.

[IEE93a]
IEEE guide to software design descriptions.
IEEE Std 1016.1-1993, IEEE, New York, NY, 1993.

[Jal97]
P. Jalote.
An integrated approach to software engineering, 2nd ed.
Springer, New York, NY, 1997.

14

[JBR99]
I. Jacobson, G. Booch, and J. Rumbaugh.
The Unified Software Development Process.
Addison-Wesley, Reading, Ma, 1999.

[Pfl98]
S.L. Pfleeger.
Software Engineering --- Theory and Practice.
Prentice-Hall, Inc., 1998.

[Pre92]
R.S. Pressman.
Software Engineering --- A Practitioner's Approach (Third Edition).
McGraw-Hill, Inc., 1992.

[SG96]
M. Shaw and D. Garlan.
Software architecture: Pespectives on an emerging discipline.
Prentice Hall, Englewood Cliff, NJ, 1996.

[TM93]
R.H. Thayer and A.D. McGettrick.
Software Engineering: A European Perspective.
IEEE Computer Society Press, Los Alamitos, CA, 1993.

[WBWW90]
R. Wirfs-Brock, B. Wilkerson, and L. Wiener.
Designing Object-Oriented Software.
Prentice-Hall, Prentice-Hall, NJ, 1990.

[YC79]
E. Yourdon and L. Constantine.
Structured Design.
Yourdon Press, Englewood Cliffs, NJ, 1979.

- 1 -

SWEBOK Knowledge Area Description for
Software Engineering Infrastructure (version 0.5)

David Carrington
Department of Computer Science and Electrical Engineering

The University of Queensland
Brisbane, Qld 4072

Australia
+61 7 3365 3310

davec@csee.uq.edu.au

1 INTRODUCTION
This document provides an initial breakdown of topics
within the Software Engineering Infrastructure Knowledge
Area as defined by the document “Approved Baseline for a
List of Knowledge Areas for the Stone Man Version of the
Guide to the Software Engineering Body of Knowledge”.
This Knowledge Area contains the topics of development
methods and software development environments. The
Industry Advisory Board in Mont-Tremblant identified
“standard designs”, “integration” and “reuse” as potential
additions to this Knowledge Area. Development of this
document has been guided by the document “Knowledge
Area Description Specifications for the Stone Man Version
of the Guide to the Software Engineering Body of
Knowledge (version 0.2)”.

2 SOURCES USED
The five standard texts [DT97, Moo98, Pfl98, Pre97, and
Som96] have been supplemented by Tucker [Tuc96], who
provides nine chapters on software engineering topics. In
particular, Chapter 112, “Software Tools and
Environments” by Steven Reiss {Rei96] was particularly
helpful for this Knowledge Area. Specialised references
have been identified for particular topics, e.g., Szyperski
[Szy97] for component-based software. Note: citations will
use the letters plus year digits form in the initial versions
of this document while the list of references is volatile.
Ultimately reference numbers will be used to conform to
the IEEE style.

3 AUTHOR REFLECTIONS
Scope of Knowledge Area
The request by the Industry Advisory Board that the topics
“standard designs”, “integration” and “reuse” be added to
this Knowledge Area has proven difficult to achieve in a
coherent fashion. Few links have been identified between
these topics and the original topics associated with this

Knowledge Area. Appendix 1 of the “Approved Baseline”
document suggests that an additional Knowledge Area
covering the life cycle operation of integration would be an
alternative location for these topics. Initial development of
the Software Engineering Infrastructure Knowledge Area
supports this proposal. Such a Knowledge Area also
strengthens the conformance to the structure identified in
the ISO/IEC 12207 standard.

Approaches to Knowledge Area Breakdown
The Stone Man Version of the Guide to the Software
Engineering Body of Knowledge conforms at least
partially with the partitioning of the software life cycle in
the ISO/IEC 12207 Standard. Some Knowledge Areas,
such as this one, are intended to cover knowledge that
applies to multiple phases of the life cycle. One approach
to partitioning topics in this Knowledge Area would be to
use the software life cycle phases. For example, software
methods and tools could be classified according to the
phase with which they are associated. This approach was
not seen as effective. If software engineering infrastructure
could be cleanly partitioned by life cycle phase, it would
suggest that this Knowledge Area could be eliminated by
allocating each part to the corresponding life cycle
Knowledge Area, e.g., infrastructure for software design to
the Software Design Knowledge Area. Such an approach
would fail to identify the commonality of, and
interrelationships between, both methods and tools in
different life cycle phases.

There are many links between methods and tools, and one
possible structure would seek to exploit these links.
However because the relationship is not a simple “one-to-
one” mapping, this structure has not been used to organise
topics in this Knowledge Area. This does mean that these
links are not explicitly identified.

Some topics in this Knowledge Area do not have
corresponding reference materials identified in the
matrices in Appendix 2. There are two possible
conclusions: the topic area is not relevant to this
Knowledge Area, or additional reference material needs to
be identified. Feedback from reviewers will be helpful to
resolve this issue.

LEAVE BLANK THE LAST 2.5 cm (1”)
OF THE LEFT COLUMN ON THE FIRST PAGE

FOR THE COPYRIGHT NOTICE.

Do SWEBOK Knowledge Area Descriptions
need to preserve this space?

- 2 -

4 DEFINITION OF KNOWLEDGE AREA
The Software Engineering Infrastructure Knowledge Area
includes both the development methods and the software
development environments knowledge areas identified in
the Straw Man version of the guide.

Development methods impose structure on the software
development activity with the goal of making the activity
systematic and ultimately more likely to be successful.
Methods usually provide a notation and vocabulary,
procedures for performing identifiable tasks and guidelines
for checking both the process and the product.
Development methods vary widely in scope, from a single
life cycle phase to the complete life cycle.

Software development environments are the computer-
based tools that are intended to assist the software
development process. Tools are often designed to support
particular methods, reducing any administrative load
associated with applying the method manually. Like
methods, they are intended to make development more
systematic, and they vary in scope from supporting
individual tasks to encompassing the complete life cycle.

The emergence of software components as a viable
approach to software development represents a maturing of
the discipline to overcome the “not invented here”
syndrome. The point is often made that more mature
engineering disciplines rely on component technologies
[Szy97]. Using components affects both methods and tools
but the extent of this effect is currently difficult to
quantify.

5 OUTLINE OF KNOWLEDGE AREA
This section contains a “first-cut” breakdown of topics in
the Software Engineering Infrastructure Knowledge Area.

The Development Methods section has been divided into
three subsections: heuristic methods dealing with informal
approaches, formal methods dealing with mathematically
based approaches, and prototyping methods dealing with
software development approaches based on various forms
of prototyping. The three subsections are not disjoint;
rather they represent distinct concerns. For example, an
object-oriented method may incorporate formal techniques
and rely on prototyping for verification and validation.

The top-level partitioning of the Software Tools section is
based initially on part of the ISO/IEC 12207 Standard by
separating out development and maintenance, supporting
activities and management tools. The remaining categories
cover integrated tool sets (also known as software
engineering environments), and tool assessment
techniques. This section is broader than the preceding
methods section as it covers the full spectrum of tools.

The term “software document” refers generically to any
product of a software life-cycle task. Creation and editing
refers to human-controlled development whereas
translation refers to machine-controlled development.

The Component Integration section dealing with
components and integration has been partitioned into
topics dealing with individual components, reference
models that describe how components can be combined,
and the more general topic of reuse.

I. Development Methods
A. Heuristic methods

1. structured methods
2. data-oriented methods
3. object-oriented methods
4. real-time methods

B. Formal methods
1. specification languages: model-oriented,

property-oriented, behaviour-oriented, visual,
executable

2. refinement (reification)
3. verification/proving properties: theorem

proving, model checking
C. Prototyping methods

1. styles: throwaway, evolutionary/iterative,
executable specification

2. prototyping target: requirements, design, user
interface

3. evaluation techniques
II. Software Tools

A. Development & maintenance tools
1. creation & editing of software documents
2. translation of software documents:

preprocessors, compilers, linkers/loaders, GUI
generators, document generators

3. analysis of software documents:
syntactic/semantic; data, control flow and
dependency analysers

4. comprehension tools: debuggers, static and
dynamic visualisation, program slicing

5. reverse and re-engineering tools
B. Supporting activities tools

1. configuration management tools: system
builders, version managers

2. review tools
3. verification & validation tools: animation,

prototyping and testing tools
C. Management tools

1. measurement tools
2. planning and estimation tools
3. communication tools (groupware)

D. Workbenches: integrated CASE tools and Software
Engineering Environments

1. storage repositories (software engineering
databases)

2. integration techniques: platform, presentation,
process, data, control

3. process tools
4. meta-tools

E. Tool assessment techniques

- 3 -

III. Component Integration
A. Component definition

1. interface specifications
2. protocol specifications

3. off-the-shelf components
B. Reference models

1. patterns
2. frameworks
3. standard architectures: client-server, middleware

products
4. semantic interoperability

C. Reuse
1. types of reuse: code, design, requirements
2. re-engineering
3. reuse repositories
4. cost/benefit analysis

6 RELEVANT STANDARDS
No standards for software development methodologies
have been identified although individual methods are
sometimes standardised.

For software tools, the relevant standards are:

• Trial-Use Standard Reference Model for Computing
System Tool Interconnections, IEEE Std 1175-1992

• IEEE Recommended Practice for the Evaluation and
Selection of CASE Tools, IEEE Std 1209-1992
(ISO/IEC 14102)

• IEEE Recommended Practice for the Adoption of
CASE Tools, IEEE Std 1348-1995 (ISO/IEC 14471)

For reuse, the relevant standards are:

• IEEE Standard for Information Technology —
Software Reuse—Data Model for Reuse Library
Interoperability: Basic Interoperability Data Model
(BIDM), IEEE Std 1420.1-1995

• Supplement to IEEE Standard for Information
Technology —Software Reuse—Data Model for
Reuse Library Interoperability: Asset Certification
Framework, IEEE Std 1420.1a-1996

• Guide for Information Technology—Software
Reuse—Concept of Operations for Interoperating
Reuse Libraries, IEEE Std 1430-1996

7 CLASSIFICATION OF KNOWLEDGE AREA
In this section, the topics of this Knowledge Area will be
classified according to the categories of engineering design
knowledge defined by Vincenti [Vin90, Chapter 7].

To be completed.

8 RELATED DISCIPLINES
Mastery of the Software Engineering Infrastructure
Knowledge Area is considered to require knowledge of the
following Knowledge Areas of Related Disciplines:

• Computer Science

• Mathematics

• Project Management

To be completed.

The full list of Knowledge Areas of Related Disciplines
can be found in the document “A Proposed Baseline for a
List of Related Disciplines”.

ACKNOWLEDGEMENTS
This document was developed from the jump-start
document written by Tuong Vinh Ho. Phil Cook, Andrew
Coyle, Ian MacColl and Jim Welsh helped to identify
relevant information sources and offered helpful advice.
Their contribution is gratefully acknowledged. The two
referees for version 0.1, Don Bagert and Jorge Diaz-
Herrera, provided useful advice about topics and structure
(see Appendix 3).

REFERENCES
1. Alan W. Brown and Kurt C. Wallnau. Engineering of

Component-Based Systems. In Component-Based
Software Engineering, Alan W. Brown (Editor), IEEE
Computer Society Press, pages 7-15, 1996.

2. Edmund M. Clarke, Jeanette M. Wing et al. Formal
Methods: State of the Art and Future Directions. ACM
Computer Surveys, 28(4):626-643, 1996.

3. Merlin Dorfman and Richard H. Thayer, Editors.
Software Engineering. IEEE Computer Society, 1997.

4. James W. Moore. Software Engineering Standards: A
User’s Road Map. IEEE Computer Society, 1998.

5. Shari Lawrence Pfleeger. Software Engineering:
Theory and Practice. Prentice Hall, 1998.

6. Roger S. Pressman. Software Engineering: A
Practitioner’s Approach. 4th edition, McGraw-Hill,
1997.

7. Steven P. Reiss. Software Tools and Environments,
Ch. 112, pages 2419-2439. In Tucker [Tuc96], 1996.

8. Ian Sommerville. Software Engineering. 5th edition,
Addison-Wesley, 1996.

9. Clemens Szyperski. Component Software: Beyond
Object-oriented Programming. Addison-Wesley,
1997.

10. Allen B. Tucker, Jr., Editor-in-chief. The Computer
Science and Engineering Handbook . CRC Press,
1996.

11. Walter G. Vincenti. What Engineers Know and How
They Know It: Analytical Studies from Aeronautical
History. John Hopkins University Press, 1990.

- 4 -

APPENDIX 1: BLOOM’S TAXONOMY ANALYSIS
This appendix will (when complete) identify for each topic
in this Knowledge Area the level at which a “graduate plus
four years experience” should “master this topic.

To be completed.

APPENDIX 2: REFERENCE MATERIAL
MATRICES
The following matrices indicate for each topic sources of
information within the selected references (see Section 2).
The tutorial volume [DT97] contains a collection of papers
organised into chapters. The following papers are
referenced (section numbers have been added to reference
individual papers more conveniently):

Chapter 5: Software Development Methodologies

5.1 Object-oriented Development, Linda M. Northrup

5.2 Object-oriented Systems Development: Survey of
Structured Methods, A.G. Sutcliffe

5.4 A Review of Formal Methods, Robert Vienneau

Chapter 12 Software Technology

12.1 The Re-engineering and Reuse of Software, Patrick
A.V. Hall and Lingzi Jin

12.2 Prototyping: Alternate Systems Development
Methodology, J.M. Carey

12.3 A Classification of CASE Technology, Alfonso
Fuggetta

The text by Pfleeger [Pfl98] is structured according to the
phases of a life cycle so that discussion of methods and
tools is distributed throughout the book.

Note: formatting these matrices within the two-column
format is excessively constraining. Landscape mode may
provide the maximum flexibility.

- 5 -

I. Development Methods BW96 CW96 DT97 Moo98 Pfl98 Pre98 Rei96 Som96 Szy97

A. Heuristic Methods 10-23

1. structured methods 5.2 4.5, 10-18 15

2. data-oriented methods 5.2 12.8

3. object-oriented methods 5.1,
5.2

4.4,
7.5

19-23 6.3, 14

4. real-time methods 15 16

B. Formal Methods 3 5.4 24, 25 9-11

1. specification languages 3 4.5 24.4

2. refinement 25.3

3. verification/proving properties 3 5.7,
7.3

24.2

C. Prototyping Methods 12.2 4.6,
5.6

2.5,
11.4

8

1. styles 12.2 4.6 11.4

2. prototyping target 12.2

3. evaluation techniques

- 6 -

II. Software Tools BW96 CW96 DT97 Moo98 Pfl98 Pre98 Rei96 Som96 Szy97

A. Development & maintenance tools 12.3 10.5 29 112.2

1. creation & editing 12.3 112.2

2. translation tools 12.3 10.5 112.2

3. analysis tools 3 12.3 7.7,
8.7

112.5 24.3

4. comprehension tools 12.3 112.5

5. reverse & re-engineering tools 12.3

B. Supporting Activity tools 12.3 112.3

1. configuration management 12.3 10.5 33.3,
33.4

2. review tools 12.3

3. verification & validation tools 3 12.3 7.7,
8.7

112.3

C. Management tools 12.3

1. measurement tools 12.3

2. planning & estimation tools 12.3

3. communication (groupware) tools 12.3

D. Workbenches and CASE tools 12.3 11 1.8 29 112.3,
112.4

25-27

1. storage repositories 12.3 29.6

2. integration techniques 12.3 11 1.8 29.5 27.1

3. process tools 12.3 2.3,
2.4

112.4

4. meta-tools 12.3 26.4

F. Tool assessment techniques 11 8.10

- 7 -

III. Component Integration BW96 CW96 DT97 Moo98 Pfl98 Pre98 Rei96 Som96 Szy97

A. Component definition 3 12.1 26.4 4, 5,
22

1. interface specifications 26.5 5

2. protocol specifications

3. off-the-shelf components 3 26.5

B. Reference models 3 9, 20,
21

1. patterns 9

2. frameworks 21

3. standard architectures 3 28 13 20

4. semantic interoperability 3 9

C. Reuse 12.1 11 11.4 26, 27 20

1. types of reuse 12.1 11.4 26.2 20

2. re-engineering 12.1 10.6 27 34

3. reuse repositories 12.1 11.4 26.5

4. cost/benefit analysis 12.1 11.4 26.6

- 8 -

APPENDIX 3: FEEDBACK ON VERSION 0.1
The following comments were received as feedback on
version 0.1 of this document and were handled as
described below in italics. For subsequent reviews, it may
be more appropriate to create a separate document for the
feedback comments and their disposition.

Don Bagert:
Here are my comments concerning Infrastructure v0.1:

1. Concerning “Development Methods”, section 1
(object-oriented methods) should include a subsection
on patterns. Even though patterns are called “Design
Patterns”, the “Design Methods” subsection is not
sufficient to include patterns, which are more of an
architectural technique.

Patterns have been included in the Component
Integration section. The restructuring of the
Development Methods section reduces the significance
of any addition to this section.

2. Once again concerning “Development Methods”,
section 4 (structured methods”) should include a
subsection on structured programming. (Note: Section
1 includes a subsection on object-oriented
programming; either structured and OO programming
should be both in or both out; I suggest that they are
both in.)

The restructuring of the Development Methods section
reduces the significance of this suggestion although
the words “structured programming” have been
added.

3. For section 8 (Related Disciplines), I would include
Computer Science, Mathematics, and possibly Project
Management.

This suggestion has been incorporated in this version.

Jorge L. Diaz Herrera:
The comments below correspond to Carrington’s
document “SWEBOK Knowledge Area Description for
Software Engineering Infrastructure (version 0.1).

Development methods

1. I suggest reorganising the main partitioning of
Development Methods into three main categories
related by a single aspect (type of method) as follows:

1) Heuristic methods
-- make Object-oriented and Structure methods
subcategories of this partition
-- add structured programming, integration and
testing, and metrics to Structured methods
category (just like for OO)
-- what about data-oriented methods?
-- what about real-time methods?

2) Formal methods

3) Prototyping methods

-- add “iii) operational Specifications” to a)
styles

This restructuring suggestion has been adopted.

Software Development Tools

2. could this area be renamed simply “Software Tools”
(to avoid redundancy below)?

Incorporated

3. under 1.b, add “iv) GUI generators” and “v) document
generators”

Incorporated

4. under 3.c.iii, add “(#) Dependency analysers” (use or
static structure)

Incorporated

5. delete 3.d “Documentation tools” since this is included
in 1.b above; document generation to conform to a
standard is more part of “translation of software
documents” than to “supporting tools.”

Incorporated

Component Integration

This area seems to require more work. A clearer definition
is lacking. E.g., the whole category of reuse needs to be
developed. Numerous topics related to reuse are missing,
although they may be treated elsewhere in the SWEBOK;
these include product-line practices, domain engineering,
domain analysis, development-for-reuse (generic designs)
vs. development-with-reuse (product configuration). Also
component integration approaches (like top-down vs.
bottom-up) may fit in this category too.

Additional work is definitely required in this section. The
issue of whether this section belongs in this Knowledge
Area is still to be resolved.

Here are some specific comments on this area.

6. not sure if “1.b Off-the-shelf components” belong
here.

Left in for now

7. add “1.c protocol specifications” (counterpart to
interface specifications”

Incorporated

8. change “2) Standard Designs” to “2) Reference
Models”

Incorporated

9. Add “2.d Patterns”

Incorporated

10. In category 3, be consistent “3) reuse vs. b) re-use”

Fixed

- 9 -

11. not sure we need “3.a types of reuse …”

Left in for now

12. in 3.b, “libraries” seems too restrictive, I suggest
“repositories”

Incorporated

SWEBOK: Software engineering management knowledge area

description version 0.5

Stephen G. MacDonell and Andrew R. Gray

Software Metrics Research Laboratory

University of Otago, Dunedin, New Zealand

+64 3 479 8135 (phone) +64 3 479 8311 (fax)

fstevemacgfagrayg@infoscience.otago.ac.nz

1 Introduction

This is the current draft (version 0.5) of the knowledge area description for software engineering management. The relevant

jump-start document [Gra99] was quite detailed in certain respects and some of its material has been incorporated here (with

suitable modi�cations and extensions). Re�nements from version 0.1 of this document re�ect the more detailed presentation

required and some much appreciated feedback from reviewers. It is apparent that there are several different viewpoints as to the

breakdown of this topic and the reviewers' alternative perspectives have been very helpful in improving this document � both

in terms of clarity and content.

The primary goal of this draft is to present the breakdown of the knowledge area into topics, list reference material, and to

provide the topic-reference matrix. Additionally, an initial sketch of Bloom's taxonomy for certi�cation courses is included.

The tables showing Vincenti's classi�cations for the topics are still being revised from those shown in the jump-start document

and version 0.1 of the draft, as is the table of standards and references.

Much of this material is therefore still incomplete, as is to be expected with a draft document at this stage of its life. A

considerable amount of additional material is included to assist the authors and reviewers to work towards the �nal version.

The eventually completed document is expected to be much closer to the ten page suggested guideline from [BDA+99] once

this material is removed.

The software engineeringmanagement knowledge area consists of both the measurement/metrics and management process sub-

areas (as de�ned below based on the jump-start document). Whilst these two topics are often regarded (and generally taught)

as being separate, and indeed they do possess many mutually unique aspects, their close relationship necessitates the combined

treatment taken here as part of the SWEBOK. In essence, management without measurement � qualitative or quantitative �

suggests a lack of rigor and measurement without management suggests a lack of purpose or context

The followingworking de�nitions are based on those from the software engineeringmanagement jump-start document [Gra99].

Measurement/metrics refers to the assignment of values and labels to aspects of software development (products,

processes, and resources) and the models that may be derived therefrom.

Management process refers to the activities that are undertaken in order to ensure that the software development

process is performed in a manner consistent with the organization's policies, goals, and requirements.

The management process area makes (in theory at least) extensive use of the measurement/metrics area � ideally this

exchange between the two processes occurs continuously throughout the development process.

As is apparent from these de�nitions, the software engineeringmanagement knowledge area overlaps with several other knowl-

edge areas, most notably, software construction, software testing, con�guration management, and software quality analysis.

This overlap is explored a little more fully in Appendix E.

2 References used

All of the references from the jump-start document are used here, namely [DT97, FP97, Moo98, P�98, Pre97b, Som96]1. These

form a core of texts that provides a solid understanding of most of the area and are all expected to be updated with suf�cient

regularity to ensure timely and complete coverage. The latter point is of greatest importance for the management process area

which encompasses many disparate topics.

1With respect to the [DT97] text, only a subset of the papers were used in the jump-start document. They are [Boe97a, Boe97b, Bro97a, Bro97b, BB97,

Car97, Com97, DeM97, Fai97, Gib97, Hee97, Hur97, NB97, Pau97, Pre97a, Tha97a, Tha97c].

An additional reference added is a basic statistics text to complement and extend the material covered in [FP97] � which is by

necessity limited in treatment. The text we have chosen is [MM98] although any general introductory statistics book would

suf�ce equally well here. However this text is very highly regarded for introductory statistics courses and should be fairly

accessible to software engineers in general. As well as having excellent presentation it contains a plentiful source of sample

applications that should be useful in software engineering management practice.

Other references added include [Rei97], [Tha97b], [Kar96], and [Zus97]. [Rei97] contains extensive supplementarymaterial on

the management process topics presented in the breakdown, whilst [Zus97] provides more comprehensive theoretical coverage

of the measurement/metrics area. [Tha97b] complements the collections of papers found in [Rei97] and [DT97], although there

is some overlap. In order to provide a more general and comprehensive text on risk management we have also included [Kar96].

As a group these supplementary references provide broader coverage of the issues associated with the management of software

engineering as compared to the set of core texts that are more closely focused on the process of software engineering.

3 Outline of knowledge area

The outline of the knowledge area topics is shown �rstly as the draft from the jump start document, and then in a revised

form (to illustrate its evolution) . We are still preparing another breakdown (as referred to in version 0.1 of the draft) based on

topics rather than the life-cycle approach taken here. We envisage that both breakdowns will be useful (and complementary) in

education and practice.

Original outline

The jump start document for this knowledge area identi�ed the following topics before classifying them (using slightly different

terminology) using Vincenti's [Vin90] classi�cation scheme [Gra99]. See Appendix B or the original jump-start document for

this classi�cation.

1. Measurement

(a) Selection of measurements

(b) Collection of data

2. Software metric models

(a) Model building and calibration

(b) Model evaluation

(c) Implementation of models

(d) Re�nement of models

3. Existing metric models

(a) Function Point Analysis

(b) COCOMO

4. Initiation and scope de�nition

(a) Collection of requirements

(b) Feasibility analysis

(c) Process for the revision of requirements

5. Planning

(a) Schedule and cost estimation

(b) Risk assessment

(c) Resource allocation

(d) Task and responsibility allocation

(e) Quality control

6. Execution

(a) Implementation of plan

(b) Monitor process (including reporting)

(c) Control process

(d) Feedback

7. Review and evaluation

(a) Determining satisfaction of requirements

(b) Reviewing and evaluating performance

8. Closure

(a) Determining closure

(b) Archival activities

As can be seen in this breakdown the topics divide into two sections. Measurement/metrics covers the �rst three headings,

whilst management process concerns the following �ve.

Revised outline number one

The changes that have been made through versions 0.1 to 0.5 of the draft are as follows:

� The three major topics relating to measurement have now been �collapsed� into one so that its relative importance in the

breakdown is re�ected more realistically.

� We have augmented the topic area of coordination, to now consist of portfolio management, policymanagement, personnel

management, and general management activities. Communication is a vital part of all management endeavors � irrespec-

tive of the domain of application. These are all higher-level issues that were omitted in the jump-start which focused

more on individual projects (although it did make mention of portfolio management). As such we assume that this set of

tasks is ongoing throughout all software processes. However, the focus is (necessarily) on the management of software

development projects and related activities rather than general management.

� Feasibility analysis is now considered to be more of an on-going activity and has been added to the planning topic as well

as still being part of initiation and scope de�nition. This differs from risk assessment and management in that feasibility

analysis deals with the question �should we continue with the project?� Furthermore feasibility can be broken down into

two types � technical and economic, the former dealing with �can it be done?� and the latter with �can we afford to do

it?�. Risk assessment and management on the other hand deal with the uncertainties that occur as part of the project with

the intention that the project will continue. This can include allowances for delays, alternative paths to a goal, contingency

plan development, and such like.

� Change control and con�guration management are now mentioned as part of controlling the development process under

the execution topic. This further stresses the interrelationship between the two knowledge areas.

� In some cases, third-level subtopics have been added to clarify which aspects of second-level subtopics are considered

important here. These are not intended to be comprehensive, but rather are indicative of the important subtopics that we

consider should be covered.

The current outline is very much a �life-cycle� based breakdown. Topics tend to appear in each of the two threads in the

same order as their associated activities are enacted in a software development project � with the obvious exception of the

�coordination� topic.

In several places speci�c techniques are listed. This generally indicates that the technique is suggested as being a good

tutorial/case-study example of the overall concept. Other speci�cs could be used to replace these if desired.

The current outline is proposed as follows.

1. Measurement

(a) The goal of a measurement program

i. Organizational objectives

ii. Software process improvement goals

iii. Determining measurement goals

(b) Selection of measurements

i. The Goal/Question/Metric approach (as an example)

ii. Other metric frameworks (such as Practical Software Measurement (PSM) and GQM++)

iii. Measurement validity

(c) Collection of data

i. Survey techniques and questionnaire design

ii. Automated and manual data extraction

iii. Costing data collection

(d) Software metric models

i. Model building, calibration and evaluation

ii. Implementation and re�nement of models

iii. Existing models (examples as case-studies)

2. Coordination

(a) Portfolio management

i. Project selection

ii. Portfolio construction (risk minimization)

(b) Policy management

i. Means of policy development

ii. Policy dissemination and enforcement

(c) Personnel management

i. Hiring and staf�ng

ii. Directing personnel

iii. Team structures

(d) Communication

(e) General management issues

3. Initiation and scope de�nition

(a) Collection of requirements

(b) Feasibility analysis

i. Technical feasibility

ii. Investment analysis

(c) Process for the revision of requirements

4. Planning

(a) Schedule and cost estimation

i. Effort estimation

ii. Task dependencies

iii. Duration estimation

(b) Risk assessment

i. Critical risk analysis

ii. Techniques for modeling risk

iii. Contingency planning

(c) Resource allocation

(d) Task and responsibility allocation

(e) Quality control

(f) Feasibility analysis

i. Investment analysis

ii. Project abandonment policies

5. Execution

(a) Implementation of plan

(b) Monitor process

i. Reporting

ii. Variance analysis

(c) Control process

i. Change control

ii. Con�guration management

iii. Scenario analysis

(d) Feedback

6. Review and evaluation

(a) Determining satisfaction of requirements

(b) Reviewing and evaluating performance

i. Personnel performance

ii. Tool and technique evaluation

iii. Process assessment

7. Closure

(a) Determining closure

(b) Archival activities

i. Measurement database

These topics are not listed in temporal order since there are in fact two distinct processes being performed here as was mentioned

with respect to the previous iteration, namely, measurement/metrics and management process. Figure 1 shows this more clearly.

We have decided to treat the former as the actual activity of developing and releasing of models, and the latter as the usage of

those pre-existing models. This is discussed in more detail later in the document.

4 Descriptions of topics

The overall topic is, in this breakdown, divided into the measurement/metrics and management process sub-areas.

Within the measurement/metrics topic area four main subtopics are addressed: measurement program goals, measurement

selection, data collection and model development. The �rst three subtopics are primarily concerned with the actual theory and

purpose behind measurement and address issues such as measurement scales and measure selection (such as by GQM). The

collection of measures is included as an issue to be addressed here. This involves both technical issues (automated extraction)

and human issues (questionnaire design, responses to measurements being taken). The fourth subtopic (model development) is

concerned with the task of building models using both data and knowledge. Such models need to be evaluated (for example, by

testing their performance on hold-out samples) to ensure that their levels of accuracy are both suf�cient and that their limitations

are known. The re�nement of models, which could take place during or after projects are completed is another activity here.

The implementation of metric models is more management-oriented since the use of such models has an in�uential effect on

the subject's (for want of a better word) behavior.

(Note: We have continued to use the common terminology (in software engineering circles) of software metrics here, rather

than limiting ourselves to measurement. We recognize that this could lead to some confusion with engineers familiar with

Measurement

Selection

Collection

Software metric models

Building and calibration

Evaluation

Implementation

Re�nement

Existing models

Initiation and scope de�nition

Collection of requirements

Feasibility analysis

Process for revising requirements

Start of project

Planning

Schedule/cost estimation

Risk assessment

Resource allocation

Task/responsibility allocation

Quality control

Feasibility analysis

Coordination

Portfolio management

Policy management

Personnel management

Execution

Implementation of plan

Monitor process

Control process

Feedback

Review and evaluation

Determining satisfaction of requirements

Reviewing and evaluating performance

Closure

Determining closure

Archival activities Completion of project

Figure 1: Measurement/metrics and management process �owchart (draft)

the empirical model-building process from another discipline, necessitating careful wording. The alternative of using more

standard terminology however, whilst well intentioned, would make less obvious the connection between this work and many

excellent papers and books (including Fenton and P�eeger's seminal work). On the other hand Zuse's excellent book does

include �measurement� in the title rather than �metrics�. Here it seems that the best solution is to use both sets of expressions

in a somewhat interchangeable manner so that practitioners are familiar with both.)

In the management process sub-area the notion of management �in the large� is considered in the coordination topic, addressing

issues including project selection, the development and implementation of standards, project staf�ng, and team development.

The remaining topics then correspond to stages in the project development life-cycle. First is the initiation and scope-de�nition

topic which covers the management of the requirements gathering process and the speci�cation of procedures for their revision.

Feasibility analysis is included as part of this topic even though this is an ongoing activity. Here the focus is on high-level

feasibility, as in �is it possible�. It is during this sub-task that the communication between the two sub-areas begins. Feasibility

may well be determined by reference to some formal model.

Planning is the next set of activities for a software engineering manager. This continues the interaction between the two

processes. Schedule and cost estimation are perhaps the most vital tasks, although without some form of risk analysis estimates

can be quite worthless. Again, feasibility analysis needs to be performed, this time from the perspective of the project. Given

schedule estimates it is possible to perform task allocation. Responsibilities need to be allocated and quality control procedures

implemented. The outcome of this stage would be a series of plans.

These plans are then put into action in the execution topic. The project must then be monitored for deviations and corrective

actions may be taken. Change control and con�guration management are important activities at this stage in the development

process. The timeliness and format of reports is also important if feedback is to be successful.

The review topic involves determining that the requirements have indeed been satis�ed by the system. Performance assessment,

of individuals, tools, techniques and processes is necessary for performance improvement and as part of the organization's

learning process.

Finally, the project needs to be closed and all useful information securely recorded. These archival activities are often neglected

in both practice and education so we would like to emphasize their necessity for supporting a measurement program.

5 Justi�cation of revised outline

The above breakdown of topics is based on a division into measurement/metrics and management process. The former refers

to the actual creation of models, which can then be used as part of the latter. These activities may be performed by the same

person, but they could then be seen to be �wearing different hats.�

The division of topics within measurement/metrics consists of the preliminary activities (measure selection, preferably via a

controlled process such as GQM, and then data collection for calibration). This then leads to model development. Here the

actual models are created, implemented and re�ned.

Apart from the �meta-projectmanagement� issues considered in the coordination topic, themanagement process section follows

very much a life-cycle approach, with topics covering each stage in a project from its initiation though to archival activities.

Since management involves all other activities, directly or indirectly, there is considerable overlap with other knowledge areas.

6 Matrix of material versus topics

In Table 1 a `�' indicates that the topic is covered to a reasonable degree. The threshold of reasonableness is subjective.

T
o
p
ic

[D
T
9
7
]2

[F
P
9
7
]

[K
a
r9
6
]

[M
M
9
8
]

[P
�
9
8
]

[P
re
9
7
b
]

[R
e
i9
7
]

[S
o
m
9
6
]

[T
h
a
9
7
b
]

[Z
u
s9
7
]

A
rc
h
iv
a
l
a
c
ti
v
it
ie
s

�

�

C
o
ll
e
c
ti
o
n
o
f
d
a
ta

�

�

�

C
o
ll
e
c
ti
o
n
o
f
re
q
u
ir
e
m
e
n
ts

�

�

�

�

�

C
o
m
m
u
n
ic
a
ti
o
n

�

�

�

�

�

�

�

�

C
o
n
tr
o
l
p
ro
c
e
ss

�

�

�

�

�

�

D
e
te
rm
in
in
g
c
lo
su
re

�

�

D
e
te
rm
in
in
g
sa
ti
sf
a
c
ti
o
n
o
f
re
q
u
ir
e
m
e
n
ts

�

�

�

�

�

F
e
a
si
b
il
it
y
a
n
a
ly
si
s

�

�

F
e
e
d
b
a
c
k

�

�

�

�

G
e
n
e
ra
l
m
a
n
a
g
e
m
e
n
t
is
su
e
s

�

�

�

�

�

�

�

�

G
o
a
l
o
f
m
e
a
su
re
m
e
n
t

�

�

�

�

�

�

�

�

Im
p
le
m
e
n
ta
ti
o
n
o
f
p
la
n

�

�

�

�

�

�

M
o
n
it
o
r
p
ro
c
e
ss

�

�

�

�

�

�

P
e
rs
o
n
n
e
l
m
a
n
a
g
e
m
e
n
t

�

�

�

�

�

�

P
o
li
cy
m
a
n
a
g
e
m
e
n
t

�

�

�

�

�

P
o
rt
fo
li
o
m
a
n
a
g
e
m
e
n
t

P
ro
c
e
ss
fo
r
th
e
re
v
is
io
n
o
f
re
q
u
ir
e
m
e
n
ts

�

�

�

�

�

Q
u
a
li
ty
c
o
n
tr
o
l

�

�

�

�

�

R
e
so
u
rc
e
a
ll
o
c
a
ti
o
n

�

�

�

�

R
ev
ie
w
in
g
a
n
d
ev
a
lu
a
ti
n
g
p
e
rf
o
rm
a
n
c
e

�

�

�

�

�

�

�

R
is
k
a
ss
e
ss
m
e
n
t

�

�

�

�

�

�

�

�

S
c
h
e
d
u
le
a
n
d
c
o
st
e
st
im
a
ti
o
n

�

�

�

�

�

�

�

�

�

S
e
le
c
ti
o
n
o
f
m
e
a
su
re
m
e
n
ts

�

�

�

�

�

S
o
ft
w
a
re
m
e
tr
ic
m
o
d
e
ls

�

�

�

�

�

�

�

�

�

�

T
a
sk
a
n
d
re
sp
o
n
si
b
il
it
y
a
ll
o
c
a
ti
o
n

�

�

�

T
a
b
le
1
:
T
o
p
ic
s
a
n
d
th
e
ir
re
fe
re
n
c
e
s

A Assessing the breakdown using the criteria

The following subsections each discuss how the proposed draft of the KA meets the criteria given in the guide to producing this

document [BDA+99]. In cases where the relevant material has yet to be written this is noted as �TO DO�.

One or two breakdowns with identical topics

A single breakdown of topics is shown at present along with the draft version from the jump start document.

Soundness and reasonableness

The primary references and secondary sources were examined quite thoroughly in order to list all main topics. The division of

the management process into life-cycle based topics seems both plausible and useful in terms of educational presentation.

Generally acceptable

In our view the material in this knowledge area description meets the criterion of being generally acceptable in terms of being

�applicable to most projects, most of the time� and having �widespread consensus about their value and usefulness� [Dun96].

These topics are those that receive the greatest coverage in both the original texts and additional materials suggested herein.

Similarly, the Industrial Advisory Board de�nition of �study material of a software engineering licensing exam that a graduate

would pass after completing four years of work experience� appears to be met. However, in this case the speci�c responsibilities

of the graduate will obvious in�uence what areas they have the opportunity to gain experience in. Project management is often a

more senior position and as such graduates with four years of experience may not have had signi�cant experience in managing,

at least with large-scale, projects.

The importance of measurement and better management practices is widely acknowledged and so its importance can only

increase in the coming three to �ve years. Measurement has become one of the cornerstones of organizational maturity.

The only material that we feel could be seen to too specialized is that of software metric modeling using statistics. However, the

level required here is roughly equivalent to a solid introductory course and should not be overly demanding. The understanding

is not merely required for the development of models, but also for understanding existing measures and models and their

limitations.

Avoid presuming speci�c features of applicability

The measurement/metric activities of model development, implementation and revision are seen as essential to any managed

software development process. Similarly, the management activities are mostly generic to management in general.

Compatible with various schools of thought within software engineering

Excluding debate on measurement theoretic issues there is little intense debate in the measurement/metrics �eld.

There is nothing that appears to be controversial in the management process sub-area.

Compatible with breakdown in industry, literatures, and standards

TO DO

Inclusive as opposed to limited coverage

We have included some areas, such as statistical model building and assessment, that may be considered too specialized by

some.

Inclusion of themes (quality, measurement, tools, and standards)

Quality is an important aspect of management and this is noted in Appendix E.

The second of these, measurement, is obviously included as one of the sub-areas.

Tools TO DO

Standards are listed in Appendix C.

Depth and node density

The suggested guidelines have been met here.

Meaningful topic names

Apart from the issue relating to the use of the term �metrics� (as discussed above) we feel that the names are indeed meaningful.

Breakdown based on Vincenti's classi�cation scheme

See Appendix B for a draft breakdown from the original jump-start document. The new version, using the new references and

new topic areas, is currently being prepared for the next version of this document.

Brevity of topic descriptions

The descriptions seem adequately brief and to the point.

Rationale of breakdown

We believe that the breakdowns are both rational and suitable for education. The section above on justi�cation for the breakdown

provides more information relating to this criterion.

Bloom's taxonomy

A draft version is shown in Appendix D. This will be revised and justi�cation added in the next version of this document.

Speci�c reference material

Additional reference material for more specialized topics not covered adequately in the primary reference material has been

added.

Proposed reference material (publicly available)

All material is publicly available.

Language of material must be English

Yes.

Maximum number of reference materials is 15

We are aiming to adhere to this limit.

Preference to IEEE or ACM copyrighted material

This is evident in the selection of reference material, especially the collections of papers.

Matrix of reference material versus topics

A draft of this is presented in 6.

Licensing exam material

TO DO

B Vincenti's categories

This is the version of the classi�cation found in the jump-start documentation [Gra99]. A newer version with the additional

references and the new topics added here is being prepared for the next version of this document.

The following Tables 2, 3, 4, 5, 6, and 7 list the main topics in the software engineering management Knowledge Area under

each of Vincenti's categories [Vin90]. The relevant literature for each topic is also indicated. These categories, as noted by

Vincenti, are neither mutually exclusive nor exhaustive. With the former point in mind, many topics appear in more than one

table. The area of software engineering management does not, in the authors' opinion, �t easily into Vincenti's categories.

In these tables a � indicates that the topic is covered to a reasonable degree. The threshold of reasonableness is of course

subjective.

Fundamental Design Con-

cepts

[DT97] [FP97] [P�98] [Pre97b] [Som96]

Project planning � � � �

Project management � � � �

Quality assurance � � �

Characteristics of projects � � � � �

Risk assessment and man-

agement

� � � �

Software metric models � � � � �

Table 2: Vincenti's categories � fundamental design concepts

C Standards

Table 8 is a possibly incomplete list of standards that are listed and/or discussed within the reference publications. This is the

same as was provided in the jump-start document [Gra99]. The next step will be to reference the newer texts and map topics to

standards.

D Bloom's taxonomy

Criteria and Speci�cations [DT97] [FP97] [P�98] [Pre97b] [Som96]

Project proposal � �

System requirements � � � �

System characteristics � � � �

User characteristics � �

Table 3: Vincenti's categories � criteria and speci�cations

Theoretical Tools [DT97] [FP97] [P�98] [Pre97b] [Som96]

COCOMO � � � � �

Function Point Analysis � � � �

Goal/Question/Metric

Framework

� � �

Project schedule � � � � �

Software metric models � � � � �

Statistical techniques for

model building

�

Statistical techniques for an-

alyzing experimental data

�

Table 4: Vincenti's categories � theoretical tools

Quantitative Data [DT97] [FP97] [P�98] [Pre97b] [Som96]

Complexity measurements � � � �

Cost estimates � � � � �

Developer productivity � � � � �

Effort estimates � � � � �

Metric model assessment � �

Quality measurements � � � �

Reliability measurements � � � � �

Size measurements � � � � �

Software standards � � � �

System performance re-

quirements

� � � �

Table 5: Vincenti's categories � quantitative data

Practical Considerations [DT97] [FP97] [P�98] [Pre97b] [Som96]

Expert opinion for metrics

estimation

� � � �

Process maturity � � � � �

Table 6: Vincenti's categories � practical considerations

Design Instrumentalities [DT97] [FP97] [P�98] [Pre97b] [Som96]

Project management � � � � �

Software metric model

building

� � � � �

Table 7: Vincenti's categories � design instrumentalities

Table 9 shows the level of mastery that we feel a �graduate plus four years experience� should possess for each topic. This is

still a very rough draft, but indicates our approach to this task.

E Related knowledge areas

Some parts of these topic areas overlap with other Knowledge Areas, most notably software construction (which must be

compatible vis-á-vis software engineering management), software testing (which should involve software metrics in some

capacity), and software quality analysis (which should also make use of software metrics and management-initiated reviews).

F Related disciplines

In terms of related disciplines (which are de�ned in terms of the authors' own experience) the most important are as follows.

Again, this is an updated version of material from the jump-start document [Gra99].

Computer science

Without some understanding of the fundamental concepts underlying the activity of software development some areas of soft-

ware engineering management would be inaccessible or prohibitively buried in computer science terminology and concepts.

For example, many software metric models require some understanding of data structures as independent variables. Similarly,

feasibility analysis requires a basic understanding of computer science in terms of hardware performance, storage devices,

etcetera. The history of computing is also useful when projects require some judgements on likely changes to technologies in

the industry.

Project management

This is obviously a major component of the software engineering management Knowledge Area.

Management

Many principles in managing software engineering projects are common to generic management processes. These include

personnel issues, planning techniques and tools, budgeting, and project selection methods (both under limited resources and

between mutually exclusive alternatives).

Cognitive science

This discipline is mainly invoked here as part of quality assurance in terms of usability. Other aspects making use of this

discipline include motivation, task allocation, and training issues.

Management sciences

Many management science topics can be readily used without adaptation in a software engineering management context. This

especially includes the use of modeling techniques.

REFERENCES

[BB97] David Budgen and Pearl Brereton. A software engineering bibliography, pages 503�508. In Dorfman and Thayer

[DT97], 1997.

[BDA+99] Pierre Bourque, Robert Dupuis, Alain Abran, James W. Moore, and Leonard Tripp. Knowledge area description

speci�cations for the stone man version of the guide to the software engineering body of knowledge version 0.2.

Submitted to the Industrial Advisory Board for SWEBOK, March 1999.

[Boe97a] Barry W. Boehm. Industrial software metrics top 10 list, page 494. In Dorfman and Thayer [DT97], 1997.

[Boe97b] Barry W. Boehm. A spiral model of software development and enhancement, pages 415�426. In Dorfman and

Thayer [DT97], 1997.

[Bro97a] Frederick P. Brooks. The mythical man-month, pages 350�357. In Dorfman and Thayer [DT97], 1997.

[Bro97b] Frederick P. Brooks. No silver bullet: essence and accidents of software engineering, pages 13�22. In Dorfman

and Thayer [DT97], 1997.

[Car97] J. M. Carey. Prototyping: alternative systems development methodology, pages 461�468. In Dorfman and Thayer

[DT97], 1997.

[Com97] Edward R. Comer. Alternative software life cycle models, pages 404�414. In Dorfman and Thayer [DT97], 1997.

[DeM97] Tom DeMarco. Why does software cost so much?, pages 372�373. In Dorfman and Thayer [DT97], 1997.

[DT97] Merlin Dorfman and Richard H. Thayer, editors. Software engineering. IEEE Computer Society, 1997.

[Dun96] W.R. Duncan. A guide to the project management body of knowledge. Project Management Institute, 1996.

[Fai97] Richard Fairly. Risk management for software development, pages 387�400. In Dorfman and Thayer [DT97],

1997.

[FP97] Norman E. Fenton and Shari Lawrence P�eeger. Software metrics: a rigorous & practical approach. PWS

Publishing Company, second edition, 1997.

[Gib97] Wayt Gibbs. Software's chronic crisis, pages 4�12. In Dorfman and Thayer [DT97], 1997.

[Gra99] Andrew R. Gray. Swebok knowledge area jump-start document for software engineering management. Unpub-

lished report for SWEBOK, February 1999.

[Hee97] F. J. Heemstra. Software cost estimation, pages 374�386. In Dorfman and Thayer [DT97], 1997.

[Hur97] Patricia W. Hurst. Software quality assurance: a survey of an emerging view, pages 308�319. In Dorfman and

Thayer [DT97], 1997.

[Kar96] Dale Walter Karolak. Software engineering risk management. IEEE Computer Society, 1996.

[MM98] David S. Moore and George P. McCabe. Introduction to the practice of statistics. W H Freeman & Co., third

edition, 1998.

[Moo98] James W. Moore. Software engineering standards: a user's road map. IEEE Computer Society, 1998.

[NB97] Ronald E. Nusenoff and Dennis C. Bunde. A guidebook and a spreadsheet tool for a corporate metrics program,

pages 483�493. In Dorfman and Thayer [DT97], 1997.

[Pau97] Mark C. Paulk. The Capability Maturity Model for software, pages 427�438. In Dorfman and Thayer [DT97],

1997.

[P�98] Shari Lawrence P�eeger. Software engineering: theory and practice. Prentice Hall, 1998.

[Pre97a] Roger S. Pressman. Software engineering, pages 57�74. In Dorfman and Thayer [DT97], 1997.

[Pre97b] Roger S. Pressman. Software engineering: a practitioner's approach. McGraw-Hill, fourth edition, 1997.

[Rei97] Donald J. Reifer, editor. Software management. IEEE Computer Society, �fth edition, 1997.

[Som96] Ian Sommerville. Software engineering. Addison-Wesley, 1996.

[Tha97a] Richard H. Thayer. Software engineering project management, pages 358�371. In Dorfman and Thayer [DT97],

1997.

[Tha97b] Richard H. Thayer, editor. Software engineering project management. IEEE Computer Society, 1997.

[Tha97c] Richard H. Thayer. Software engineering standards, pages 509�523. In Dorfman and Thayer [DT97], 1997.

[Vin90] W.G. Vincenti. What engineers know and how they know it - analytical studies from aeronautical history. John

Hopkins, 1990.

[Zus97] Horst Zuse. A framework of software measurement. Walter de Gruyter, 1997.

Standard [DT97]3 [FP97] [Moo98] [P�98] [Pre97b] [Som96]

AFNOR

Z67-101-1FD �

ASTM

E 622-94 �

E 792-87 �

E E1113-86 �

DOD

AFSCP 800-43 �

AFSCP 800-45 �

MIL STD 1521B �

EIA

CRB 1-89 �

DMG-1-86 �

DMG-2-89 �

ESA

PSS-05-08 �

GER MOD

PROSIS �

IEEE Std.

982.1 � �

982.2 � �

1044 �

1044.1 �

1045 � �

1058.1 � �

1061 � �

1209 �

1220 �

ISO

9000 series � � � �

9000-3 � � � �

9001 � � � �

9126 � �

ISO/IEC DIS

14143.1 �

14756 �

JPL

D-4011 �

NATO

NAT-PRC-1 �

NAT-STAN-7 �

PMI

1996 �

One of the papers in [DT97], namely [Tha97c] is in fact a comprehensive list of software engineering standards. All standards indicated as being mentioned

in this volume came from this one paper in x4.14 (Management Standards).

Table 8: Standards relevant to software engineering management

Topic Level

Archival activities Application

Collection of data Analysis

Collection of requirements Analysis

Communication Synthesis

Control process Evaluation

Determining closure Application

Determining satisfaction of requirements Analysis

Feasibility analysis Synthesis

Feedback Synthesis

General management issues Synthesis

Goal of measurement Analysis

Implementation of plan Synthesis

Monitor process Analysis

Personnel management Synthesis

Policy management Synthesis

Portfolio management Analysis

Process for the revision of requirements Analysis

Quality control Evaluation

Resource allocation Application

Reviewing and evaluating performance Synthesis

Risk assessment Synthesis

Schedule and cost estimation Evaluation

Selection of measurements Analysis

Software metric models Analysis

Task and responsibility allocation Analysis

Table 9: Bloom's taxonomy and mastery levels for the software engineering management topics

R03 –22/07/99 1

Description of The
SWEBOK Knowledge Area

Software Engineering Process
(Version 0.5)

Khaled El Emam , NRC, Canada

The software engineering process Knowledge Area (KA) can be examined at two levels. The first level
encompasses the technical and managerial activities that are performed during software development,
maintenance, acquisition, and retirement. The second is the meta-level which is concerned with the
definition, implementation, measurement, management, change and improvement of the software
processes.

The first level is covered by the other KA’s of the SWEBOK. This knowledge area is concerned with the
second, meta, level of software process.

It is important to orient the readers and reviewers by making the following clarification. This KA
description has been developed with the following example uses in mind:

• If one were to write a book on the topic of software engineering process, this KA description would
identify the chapters and provide the initial references for writing the chapters. The KA description is
not the book.

• If one were to prepare a certification exam on software engineering process, this KA description
would identify the sections of the exam and provide the initial references for writing the questions.
The KA description by itself will not be the source of questions.

• If one were to prepare a course on the software engineering process, this KA description would
identify the sections of the course and the course material, and identify the initial references to use as
the basis for developing the course material. The KA description is not the course material by itself.

Scope

The scope of the KA is defined to exclude the following:

• Human resources management (as embodied in the People CMM [21] for example)

• Systems engineering processes

The reason for this exclusion is that, while important topics in themselves, they are outside the direct
scope of software engineering process. However, where relevant, interfaces to HRM and systems
engineering will be addressed.

Currency of Material

The software engineering process area is rapidly changing, with new paradigms and new models. The
breakdown and references included here are pertinent at the time of writing. An attempt has been made
to focus on concepts to shield the knowledge area description from changes in the field, but of course this
cannot be 100% successful, and therefore the material here must be evolved over time. A good example
is the on-going CMM Integration effort and the Team Software Process effort, both of which are likely to
have a considerable influence on the software engineering process community once completed, and
would therefore have to be accommodated in the knowledge area description.

R03 –22/07/99 2

Structure of the Document

The following is the proposed breakdown of the topics in the Software Engineering Process Knowledge
Area:

1. “Basic Concepts and Definitions”: which establishes the themes and terminology of the KA.

2. “Process Definition”: which describes the purpose and methods for defining software processes,
as well as existing software process definitions and automated support.

3. “Process Evaluation”: which describes the approaches for the qualitative and quantitative analysis
of software processes.

4. “Process Implementation and Change”: which describes the paradigms, infrastructure, and critical
success factors necessary for successful process implementation and change.

R03 –22/07/99 3

1. Basic Concepts and Definitions

• Themes

The main themes in the software engineering process field have been described by Dowson in [25].
His themes are a basis for the manner in which this KA has been structured, except that our scope is
slightly larger. Below are Dowson’s themes:

• Process definition: covered in topic 2 of this KA breakdown

• Process assessment: covered in topic 3 of this KA breakdown

• Process improvement: covered in topic 4 of this KA breakdown

• Process support: covered in topic 2 of this KA breakdown

We also add two themes in this KA description, namely the analytic paradigm to process evaluation
(covered in topic 3) and process measurement (covered in topic 3).

• Terminology:

There is no single universal source of terminology for the software engineering process field, but
good sources that define important terms are [35][59], and the vocabulary (Part 9) in the ISO/IEC
15504 documents [50].

2. Process Definition
Software engineering processes are defined for a number of reasons, including: facilitating human
understanding and communication, supporting process improvement, supporting process management,
providing automated process guidance, and providing automated execution support [20][46][36]. The
types of process definitions required will depend, at least partially, on the reason.

There are different approaches that can be used to define and document the process. Under this topic
the approaches that have been presented in the literature are covered, although at this time there is no
data1 on the extent to which these are used in practice.

• Types of process definitions

Processes can be defined at different levels of abstraction (e.g., generic definitions vs. tailored
definitions, descriptive vs. prescriptive vs. proscriptive). The differentiation amongst these has been
described in [60][47][71].

• Life cycle models

These models serve as a high level definition of the activities that occur during development. They
are not detailed definitions, but only the high level activities and their interrelationships. The common
ones are: the waterfall model, throwaway prototyping model, evolutionary prototyping model,
incremental/iterative development, spiral model, reusable software model, and automated software
synthesis. (see [9][19][51][71]). Comparisons of these models are provided in [19][22], and a method
for selection amongst many of them in [3].

• Life cycle process models

Definitions of life cycle process models tend to be more detailed than life cycle models. Another
difference being that life cycle process models do not attempt to order their processes in time.
Therefore, in principle, the life cycle processes can be arranged to fit any of the life cycle models.
The two main references in this area are ISO/IEC 12207 [49] and ISO/IEC 15504 [50][31]. The latter
defines a two dimensional model with one dimension being processes, and the second a

1 There are many opinions, of course.

R03 –22/07/99 4

measurement scale to evaluate the capability of the processes. In principle, ISO/IEC 12207 would
serve as the process dimension of ISO/IEC 15504.

• Notations for process definitions

Different elements of a process can be defined, for example, activities, products (artifacts), and
resources [46]. Detailed frameworks that structure the types of information required to define
processes are described in [65][4].

There are a large number of notations that have been used to define processes. They differ in the
types of information defined in the above frameworks that they capture.

Because there is no data on which of these was found to be most useful or easiest to use under
which conditions, we cover what seemingly are popular approaches in practice: data flow diagrams
[38], in terms of process purpose and outcomes [50], as a list of processes decomposed in
constituent activities and tasks defined in natural language [49], Statecharts [54][75] (also see [43]),
ETVX [74], Actor-Dependency modeling [11][85], SADT notation [64], Petri nets [5], rule-based [7],
and System Dynamics [1]. Other process programming languages have been devised, and these are
described in [20][36][46].

• Process definition methods

These methods specify the activities that must be performed in order to define a process model. In
general, there is a strong similarity amongst them in that they follow a traditional software
development life cycle: [65][64][10][11][55].

• Automation

Automated tools either support the execution of the process definitions, or they provide guidance to
humans performing the defined processes.

There exist tools that support all of the above process definition notations. Furthermore, these tools
can execute the process definitions to provide automated support to the actual processes, or to fully
automate them in some instances. An overview of process modeling tools can be found in [36], and
of process-centered environments in [40][41].

Recent work on the application of the www to the provision of real-time process guidance is described
in [56].

3. Process Evaluation
Process evaluation can consist of qualitative analysis of the process or its definition, or a quantitative
analysis of data collected about the process. There are a multitude of reasons why one would wish to
evaluate the software engineering process. Some of these are covered in the Project Management and
other KA’s. Here we focus on process evaluation mainly for the purpose of process improvement.

The assumption upon which most process evaluation work is premised can be depicted by the following
path diagram. Here, we assume that the process has an impact on process outcomes. Process
outcomes could be, for example, product quality, maintainability, productivity, or customer satisfaction.
This relationship depends on the particular context (e.g., size of the organization, or size of the project).

R03 –22/07/99 5

Process Process
Outcomes

Context

Not every process will have a positive impact on outcomes. For example, the introduction of software
inspections may reduce testing effort and cost, but may increase interval time if each inspection
introduces large delays due to the scheduling of inspection meetings.

In general, we are not really interested in the process itself, we are most concerned about the process
outcomes. However, in order to achieve the process outcomes that we desire (e.g., better quality, better
maintainability, greater customer satisfaction) we have to implement the appropriate process.

Of course, it is not only process that has an impact on outcomes, other factors such as the capability of
the staff and the tools that are used play an important role. But here we focus only on the process as an
antecedent.

Measurement plays an important role in process evaluation. Therefore, knowledge of process
measurement is considered to be important.

• Methodology in process measurement

A guide for measurement using the G/Q/M method is provided in [79], and the “Practical Software
Measurement” guidebook provides another good overview of measurement [69].

Two important issues in the measurement of software engineering processes are reliability and
validity. Reliability becomes important when there is subjective measurement, for example, when
assessors assign scores to a particular process. There are different types of validity that ought to
be demonstrated for a software process measure, but the most critical one is predictive validity.
This is concerned with the relationship between the process measure and the process outcome.
A discussion of both of these and different methods for achieving them can be found in [29][42].

An overview of existing evidence on reliability of software process assessments can be found in
[34], and for predictive validity in [42][53][32].

Two general paradigms that are useful for characterizing the type of process evaluation that can be
performed have been described by Card [14].

The first is the analytic paradigm. This is characterized as relying on "quantitative evidence to determine
where improvements are needed and whether an improvement initiative has been successful".2 The
second, the benchmarking paradigm, "depends on identifying an 'excellent' organization in a field and
documenting its practices and tools". Benchmarking assumes that if a less-proficient organization adopts
the practices of the excellent organization, it will also become excellent. Of course, both paradigms can
be followed at the same time, since they can provide different sources of information to guide
improvement efforts.

2 Although qualitative evidence also can play an important role.

R03 –22/07/99 6

The analytic paradigm is exemplified by the Quality Improvement Paradigm (QIP) consisting of a cycle of
understanding, assessing, and packaging [78]. The benchmarking paradigm is exemplified by the
software process assessment work (see below).

We use these paradigms as general titles to distinguish between different types of evaluation.

• Analytic Paradigm

• Qualitative Evaluation

Qualitative evaluation means reviewing a process definition (either a descriptive or a prescriptive
one, or both), and identifying deficiencies and potential process improvements. Typical examples
are [5][54].

With this approach, one does not collect data on process outcomes. The individuals performing
the analysis of the process definition use their knowledge and capabilities to decide what process
changes would potentially lead to desirable process outcomes.

• Root-Cause Analysis

This involves tracing back from detected problems (e.g., defects) to identify the process causes,
with the aim of changing the process to avoid the problems in the future. Examples of this for
different types of processes are described in [10][30][18][68].

With this approach, one starts from the process outcomes, and traces back along the path in the
above figure to identify the process causes of the undesirable outcomes.

• Process Simulation

The process simulation approach can be used to predict process outcomes if the current process
is changed in a certain way [75]. Initial data about the performance of the current process needs
to be collected, however, as a basis for the simulation.

• Orthogonal Defect Classification

Orthogonal Defect Classification is a technique that can be used to link defects found with
potential causes. It relies on a mapping between defect types and defect triggers [15][16].

• Experimental and Observational Studies

Experimentation involves setting up controlled or quasi experiments in the organization to
evaluate processes [63]. Usually, one would compare a new process with the current process to
determine whether the former has better process outcomes. Correlational (nonexperimental)
studies can also provide useful feedback for identifying process improvements (e.g., [2]).

• The Personal Software Process

This defines a series of improvements to an individual’s development practices in a specified
order [47]. It is ‘bottom-up’ in the sense that it stipulates personal data collection and
improvements based on the data interpretations.

• Benchmarking Paradigm

This paradigm involves measuring the capability/maturity of an organization’s processes. A general
introductory overview of the benchmarking paradigm and its application is provided in [86]

• Process assessment models

Architectures of assessment models

There are two general architectures for an assessment model that make different
assumptions about the order in which processes must be measured: the continuous and the
staged architectures [70].

Assessment models

R03 –22/07/99 7

The most commonly used assessment model in the software community is the SW-CMM
[77]. It is also important to recognize that ISO/IEC 15504 is an emerging international
standard on software process assessments [31][50]. It defines an exemplar assessment
model and conformance requirements on other assessment models. ISO 9001 is also a
common model that has been applied by software organizations [84]. Other notable
examples of assessment models are Trillium [13], Bootstrap [82], and the requirements
engineering capability model [81] (although, there have been many more capability/maturity
models that have been defined, for example, for testing, design, documentation, and formal
methods, to name a few). A voiced concern has been the applicability of assessment models
to small organizations. This is addressed in [52][76], where assessments models tailored to
small organizations are presented.

• Process assessment methods

Purpose

In addition to producing a quantitative score that characterizes the capability of the process
(or maturity of the organization), an important purpose of an assessment is to create a
climate for change within the organization [27]. In fact, it has been argued that the latter is
the most important purpose of doing an assessment [26].

Assessment methods

The most well known method that has a reasonable amount of publicly available
documentation is the CBA IPI [27]. Many other methods are refinements of this for particular
contexts. Another well known method for supplier selection is the SCE [6]. Requirements on
methods that reflect what are believed to be good assessment practices are provided in
[61][50].

4. Process Implementation and Change

• Paradigms for process implementation and change

Two general paradigms that have emerged for driving process change are the Quality Improvement
Paradigm [78] and the IDEAL model [62]. The two paradigms are compared in [78]. A concrete
instantiation of the QIP is described in [12].

• Infrastructure

An important element of successful process implementation and change is an appropriate
infrastructure, including the requisite roles and responsibilities. Two types of infrastructure are
embodied in the concepts of the Experience Factory [8] and the Software Engineering Process Group
[37].

• Guidelines for process implementation and change

Process implementation and change is an instance of organizational change. Guidelines about
process implementation and change within software engineering organizations, including action
planning, training, management sponsorship and commitment, and the selection of pilot projects, and
that cover both the transition of processes and tools, are given in [83][23][57][73][80][76]. An empirical
study evaluating success factors for process change is reported in [33].

• Evaluating process implementation and change

There are two ways that one can approach evaluation of process implementation and change. One
can evaluate it in terms of changes to the process itself, or in terms of changes to the process
outcomes. This issue is concerned with the distinction between cause and effect (as depicted in the
diagram above), and is discussed in [12].

Sometimes people have very high expectations about what can be achieved in studies that evaluate
the costs and benefits of process implementation and change. A pragmatic look at what can be
achieved from such evaluation studies is given in [45].

R03 –22/07/99 8

Evaluation implies measurement. See the sub-topic above on methodology in process measurement.

Overviews of how to evaluate process change, and examples of studies that do so can be found in
[32][42][53][58][57][63].

R03 –22/07/99 9

Key References vs. Topics Mapping
Below are the matrices linking the topics to key references. In an attempt to limit the number of references, as requested, some relevant articles
are not included in this matrix. The reference list above provides a more comprehensive coverage.

In the cells, where there is a tick indicates that the whole reference (or most of it) is relevant. Otherwise, specific chapter numbers are provided in
the cell.

R03 –22/07/99 10

Elements
[28]

SPICE
[31]

Pfleeger
[71]

CMM
[77]

Pressman
[72]

Jalote
[51]

Fuggetta
[39]

Messnarz
[66]

Dorfmann
[24]

Humphrey
[47]

Basic Concepts

Themes

Terminology √
Process Definition Ch. 2

Types of Defs. Ch. 2 √
Life Cycle Ch. 2 Ch. 2 Ch. 2 Ch. 11

Life Cycle Process Ch. 3

Notations Ch. 16 Ch. 2 Ch. 1 √
Methods Ch. 7

Automation Ch. 2 Ch. 2

Process Evaluation

Analytic Ch. 7, 14 Ch. 7

Benchmarking Ch. 1, 2,
3, 4, 5, 6

√ √

Methodology Ch. 8, 10 Ch. 7

Process Imp. & Change

Paradigms Ch. 7

Infrastructure

Guideline Ch. 11,
13, 15

Ch. 4 Ch. 16

Evaluations Ch. 7, 8,
9, 10

Ch. 7

R03 –22/07/99 11

12207
[49]

15504
[50]

Moore
[67]

Finkel.
[36]

SEL
[78]

SEPG
[37]

IDEAL
[62]

Wiegers
[83]

Madhavji
[60]

Dowson
[25]

Basic Concepts

Themes √
Terminology √

Process Definition √
Types of Defs. √
Life Cycle

Life Cycle Process √ √ Ch. 13

Notations √ √ √
Methods

Automation √
Process Evaluation

Analytic √
Benchmarking √
Methodology

Process Imp. & Change √ √
Paradigms √ √
Infrastructure √ √
Guideline √
Evaluations √

R03 –22/07/99 12

References

[1] T. Abdel-Hamid and S. Madnick: Software Project Dynamics: An Integrated Approach. Prentice-
Hall, 1991.

[2] W. Agresti: “The Role of Design and Analysis in Process Improvement”. In K. El Emam and N.
Madhavji (eds.): Elements of Software Process Assessment and Improvement, IEEE CS Press,
1999.

[3] L. Alexander and A. Davis: “Criteria for Selecting Software Process Models”. In Proceedings of
COMPSAC’91, pages 521-528, 1991.

[4] J. Armitage and M. Kellner: “A Conceptual Schema for Process Definitions and Models”. In
Proceedings of the Third International Conference on the Software Process, pages 153-165, 1994.

[5] S. Bandinalli, A. Fuggetta, L. Lavazza, M. Loi, and G. Picco: “Modeling and Improving an Industrial
Software Process”. In IEEE Transactions on Software Engineering, 21(5):440-454, 1995.

[6] R. Barbour: Software Capability Evaluation – Version 3.0 : Implementation Guide for Supplier
Selection. Software Engineering Institute, Technical Report CMU/SEI-95-TR012, 1996.

[7] N. Barghouti, D. Rosenblum, D. Belanger, and C. Alliegro: “Two Case Studies in Modeling Real,
Corporate Processes”. In Software Process – Improvement and Practice, Pilot Issue, 17-32, 1995.

[8] V. Basili, G. Caldiera, and G. Cantone: “A Reference Architecture for the Component Factory”. In
ACM Transactions on Software Engineering and Methodology, 1(1):53-80. 1992.

[9] B. Boehm: “A Spiral Model of Software Development and Enhancement”. In Computer, 21(5):61-72,
1988.

[10] L. Briand, V. Basili, Y. Kim, and D. Squire: “A Change Analysis Process to Characterize Software
Maintenance Projects”. In Proceedings of the International Conference on Software Maintenance,
1994.

[11] L. Briand, W. Melo, C. Seaman, and V. Basili: “Characterizing and Assessing a Large-Scale
Software Maintenance Organization”. In Proceedings of the 17th International Conference on
Software Engineering, 1995.

[12] L. Briand, K. El Emam, and W. Melo: “An Inductive Method for Software Process Improvement:
Concrete Steps and Guidelines”. In K. El Emam and N. Madhavji (eds.): Elements of Software
Process Assessment and Improvement, IEEE CS Press, 1999.

[13] F. Coallier, J. Mayrand, and B. Lague: “Risk Management in Software Product Procurement”. In K.
El Emam and N. Madhavji (eds.): Elements of Software Process Assessment and Improvement,
IEEE CS Press, 1999.

[14] D. Card: “Understanding Process Improvement”. In IEEE Software, pages 102-103, July 1991.
[15] R. Chillarege, I. Bhandhari, J. Chaar, M. Halliday, D. Moebus, B. Ray, and M. Wong: “Orthogonal

Defect Classification – A Concept for In-Process Measurement”. In IEEE Transactions on Software
Engineering, 18(11):943-956, 1992.

[16] R. Chillarege: “Orthogonal Defect Classification”. In M. Lyu (ed.): Handbook of Software Reliability
Engineering, IEEE CS Press, 1996.

[17] A. Christie: Software Process Automation: The Technology and its Adoption. Springer Verlag, 1995.
[18] J. Collofello and B. Gosalia: “An Application of Causal Analysis to the Software Production

Process”. In Software Practice and Experience, 23(10):1095-1105, 1993.
[19] E. Comer: “Alternative Software Life Cycle Models”. In M. Dorfmann and R. Thayer (eds.): Software

Engineering, IEEE CS Press, 1997.
[20] B. Curtis, M. Kellner, and J. Over: “Process Modeling”. In Communications of the ACM, 35(9):75-90,

1992.
[21] B. Curtis, W. Hefley, S. Miller, and M. Konrad: “The People Capability Maturity Model for Improving

the Software Workforce”. In K. El Emam and N. Madhavji (eds.): Elements of Software Process
Assessment and Improvement, IEEE CS Press, 1999.

[22] A. Davis, E. Bersoff, and E. Comer: “A Strategy for Comparing Alternative Software Development
Life Cycle Models”. In IEEE Transactions on Software Engineering, 14(10):1453-1461, 1988.

[23] R. Dion: “Starting the Climb Towards the CMM Level 2 Plateau”. In K. El Emam and N. Madhavji
(eds.): Elements of Software Process Assessment and Improvement, IEEE CS Press, 1999.

[24] M. Dorfmann and R. Thayer (eds.): Software Engineering, IEEE CS Press, 1997.

R03 –22/07/99 13

[25] M. Dowson: “Software Process Themes and Issues”. In Proceedings of the 2nd International
Conference on the Software Process, pages 54-62, 1993.

[26] K. Dymond: “Essence and Accidents in SEI-Style Assessments or ‘Maybe this Time the Voice of the
Engineer Will be Heard’”. In K. El Emam and N. Madhavji (eds.): Elements of Software Process
Assessment and Improvement, IEEE CS Press, 1999.

[27] D. Dunnaway and S. Masters: CMM-Based Appraisal for Internal Process Improvement (CBA IPI):
Method Description. Software Engineering Institute, Technical Report CMU/SEI-96-TR-007, 1996.

[28] K. El Emam and N. Madhavji (eds.): Elements of Software Process Assessment and Improvement,
IEEE CS Press, 1999.

[29] K. El Emam and D. R. Goldenson: “SPICE: An Empiricist’s Perspective”. In Proceedings of the
Second IEEE International Software Engineering Standards Symposium, pages 84-97, August
1995.

[30] K. El Emam, D. Holtje, and N. Madhavji: “Causal Analysis of the Requirements Change Process for
a Large System”. In Proceedings of the International Conference on Software Maintenance, pages
214-221, 1997.

[31] K. El Emam, J-N Drouin, W. Melo: SPICE: The Theory and Practice of Software Process
Improvement and Capability Determination. IEEE CS Press, 1998.

[32] K. El Emam and L. Briand: “Costs and Benefits of Software Process Improvement”. In R. Messnarz
and C. Tully (eds.): Better Software Practice for Business Benefit: Principles and Experiences, IEEE
CS Press, 1999.

[33] K. El Emam, B. Smith, P. Fusaro: “Success Factors and Barriers for Software Process
Improvement: An Empirical Study”. In R. Messnarz and C. Tully (eds.): Better Software Practice for
Business Benefit: Principles and Experiences, IEEE CS Press, 1999.

[34] K. El Emam: “Benchmarking Kappa: Interrater Agreement in Software Process Assessments”. In
Empirical Software Engineering: An International Journal, 4(2), 1999.

[35] P. Feiler and W. Humphrey: “Software Process Development and Enactment: Concepts and
Definitions”. In Proceedings of the Second International Conference on the Software Process,
pages 28-40, 1993.

[36] A. Finkelstein, J. Kramer, and B. Nuseibeh (eds.): Software Process Modeling and Technology.
Research Studies Press Ltd., 1994.

[37] P. Fowler and S. Rifkin: Software Engineering Process Group Guide. Software Engineering
Institute, Technical Report CMU/SEI-90-TR-24, 1990.

[38] D. Frailey: “Defining a Corporate-Wide Software Process”. In Proceedings of the 1st International
Conference on the Software Process, pages 113-121, 1991.

[39] A. Fuggetta and A. Wolf: Software Process, John Wiley & Sons, 1996.
[40] P. Garg and M. Jazayeri: Process-Centered Software Engineering Environments. IEEE CS Press,

1995.
[41] P. Garg and M. Jazayeri: “Process-Centered Software Engineering Environments: A Grand Tour”.

In A. Fuggetta and A. Wolf: Software Process, John Wiley & Sons, 1996.
[42] D. Goldenson, K. El Emam, J. Herbsleb, and C. Deephouse: “Empirical Studies of Software

Process Assessment Methods”. In K. El Emam and N. Madhavji (eds.): Elements of Software
Process Assessment and Improvement, IEEE CS Press, 1999.

[43] D. Harel and M. Politi: Modeling Reactive Systems with Statecharts: The Statemate Approach.
McGraw-Hill, 1998.

[44] J. Henry and B. Blasewitz: “Process Definition: Theory and Reality”. In IEEE Software, page 105,
November 1992.

[45] J. Herbsleb: “Hard Problems and Hard Science: On the Practical Limits of Experimentation”. In
IEEE TCSE Software Process Newsletter, No. 11, pages 18-21, 1998.

[46] K. Huff: “Software Process Modeling”. In A. Fuggetta and A. Wolf: Software Process, John Wiley &
Sons, 1996.

[47] W. Humphrey: Managing the Software Process. Addison Wesley, 1989.
[48] W. Humphrey: A Discipline for Software Engineering. Addison Wesley, 1995.
[49] ISO/IEC 12207: Information Technology – Software Life Cycle Processes. 1995.
[50] ISO/IEC TR 15504: Information Technology – Software Process Assessment, 1998. (parts 1-9; part

5 was published in 1999). Available from http://www.iese.fhg.de/SPICE.
[51] P. Jalote: An Integrated Approach to Software Engineering. Springer, 1997.

R03 –22/07/99 14

[52] D. Johnson and J. Brodman: “Tailoring the CMM for Small Businesses, Small Organizations, and
Small Projects”. In K. El Emam and N. Madhavji (eds.): Elements of Software Process Assessment
and Improvement, IEEE CS Press, 1999.

[53] C. Jones: “The Economics of Software Process Improvements”. In K. El Emam and N. Madhavji
(eds.): Elements of Software Process Assessment and Improvement, IEEE CS Press, 1999.

[54] M. Kellner and G. Hansen: “Software Process Modeling: A Case Study”. In Proceedings of the 22nd

International Conference on the System Sciences, 1989.
[55] M. Kellner, L. Briand, and J. Over: “A Method for Designing, Defining, and Evolving Software

Processes”. In Proceedings of the 4th International Conference on the Software Process, pages 37-
48, 1996.

[56] M. Kellner, U. Becker-Kornstaedt, W. Riddle, J. Tomal, and M. Verlage: “Process Guides: Effective
Guidance for Process Participants”. In Proceedings of the 5th International Conference on the
Software Process, pages 11-25, 1998.

[57] B. Kitchenham: “Selecting Projects for Technology Evaluation”. In IEEE TCSE Software Process
Newsletter, No. 11, pages 3-6, 1998.

[58] H. Krasner: “The Payoff for Software Process Improvement: What it is and How to Get it”. In K. El
Emam and N. Madhavji (eds.): Elements of Software Process Assessment and Improvement, IEEE
CS Press, 1999.

[59] J. Lonchamp: “A Structured Conceptual and Terminological Framework for Software Process
Engineering”. In Proceedings of the Second International Conference on the Software Process,
pages 41-53, 1993.

[60] N. Madhavji: “The Process Cycle”. In Software Engineering Journal, 6(5):234-242, 1991.
[61] S. Masters and C. Bothwell: CMM Appraisal Framework – Version 1.0. Software Engineering

Institute, Technical Report CMU/SEI-TR-95-001, 1995.
[62] B. McFeeley: IDEAL: A User’s Guide for Software Process Improvement. Software Engineering

Institute, Handbook CMU/SEI-96-HB-001, 1996.
[63] F. McGarry, R. Pajerski, G. Page, S. Waligora, V. Basili, and M. Zelkowitz: Software Process

Improvement in the NASA Software Engineering Laboratory. Software Engineering Institute,
Technical Report CMU/SEI-94-TR-22, 1994.

[64] C. McGowan and S. Bohner: “Model Based Process Assessments”. In Proceedings of the
International Conference on Software Engineering, pages 202-211, 1993.

[65] N. Madhavji, D. Hoeltje, W. Hong, T. Bruckhaus: “Elicit: A Method for Eliciting Process Models”. In
Proceedings of the Third International Conference on the Software Process, pages 111-122, 1994.

[66] R. Messnarz and C. Tully (eds.): Better Software Practice for Business Benefit: Principles and
Experiences, IEEE CS Press, 1999.

[67] J. Moore: Software Engineering Standards: A User’s Road Map. IEEE CS Press, 1998.
[68] T. Nakajo and H. Kume: “A Case History Analysis of Software Error Cause-Effect Relationship”. In

IEEE Transactions on Software Engineering, 17(8), 1991.
[69] Office of the Under Secretary of Defense for Acquisitions and Technology: Practical Software

Measurement: A Foundation for Objective Project Management, 1998 (available from
http://www.psmsc.com).

[70] M. Paulk and M. Konrad: “Measuring Process Capability Versus Organizational Process Maturity”.
In Proceedings of the 4th International Conference on Software Quality, 1994.

[71] S-L. Pfleeger: Software Engineering: Theory and Practice. Prentice-Hall, 1998.
[72] R. Pressman: Software Engineering: A Practitioner’s Approach. McGraw-Hill, 1997.
[73] J. Puffer: “Action Planning”. In K. El Emam and N. Madhavji (eds.): Elements of Software Process

Assessment and Improvement, IEEE CS Press, 1999.
[74] R. Radice, N. Roth, A. O’Hara Jr., and W. Ciarfella: “A Programming Process Architecture”. In IBM

Systems Journal, 24(2):79-90, 1985.
[75] D. Raffo and M. Kellner: “Modeling Software Processes Quantitatively and Evaluating the

Performance of Process Alternatives”. In K. El Emam and N. Madhavji (eds.): Elements of Software
Process Assessment and Improvement, IEEE CS Press, 1999.

[76] M. Sanders (ed.): The SPIRE Handbook: Better, Faster, Cheaper Software Development in Small
Organisations. Published by the European Comission, 1998.

[77] Software Engineering Institute: The Capability Maturity Model: Guidelines for Improving the
Software Process. Addison Wesley, 1995.

R03 –22/07/99 15

[78] Software Engineering Laboratory: Software Process Improvement Guidebook. NASA/GSFC,
Technical Report SEL-95-002, 1995.

[79] R. van Solingen and E. Berghout: The Goal/Question/Metric Method: A Practical Guide for Quality
Improvement of Software Development. McGraw Hill, 1999.

[80] I. Sommerville and T. Rodden: “Human, Social and Organisational Influences on the Software
Process”. In A. Fuggetta and A. Wolf: Software Process, John Wiley & Sons, 1996.

[81] I. Sommerville and P. Sawyer: Requirements Engineering: A Good Practice Guide. John Wiley &
Sons, 1997.

[82] H. Steinen: “Software Process Assessment and Improvement: 5 Years of Experiences with
Bootstrap”. In K. El Emam and N. Madhavji (eds.): Elements of Software Process Assessment and
Improvement, IEEE CS Press, 1999.

[83] K. Wiegers: Creating a Software Engineering Culture. Dorset house, 1996.
[84] S. Weissfelner: “ISO 9001 for Software Organizations”. In K. El Emam and N. Madhavji (eds.):

Elements of Software Process Assessment and Improvement, IEEE CS Press, 1999.
[85] E. Yu and J. Mylopolous: “Understanding ‘Why’ in Software Process Modeling, Analysis, and

Design”. In Proceedings of the 16th International Conference on Software Engineering, 1994.
[86] S. Zahran: Software Process Improvement: Practical Guidelines for Business Success. Addison

Wesley, 1998.

SWEBOK Knowledge Area Description for

Software Evolution and Maintenance (version 0.5)

Thomas M. Pigoski

Technical Software Services (TECHSOFT), Inc.

31 West Garden Street, Suite 100

Pensacola, Florida 32501

USA

+1 850 469 0086

tmpigoski@techsoft.com

NOTES FOR REVIEWERS

This section is intended to provide insight to reviewers and
will be deleted in the final document.

This is the current draft (version 0.5) of the knowledge
area description for software evolution and maintenance.
The title of the knowledge area comes from the list of
knowledge areas approved by the Industrial Advisory
Board for the Guide to the Software Engineering Body of
Knowledge Project. This draft builds on version 0.1 and
uses a tailored version of the outline provided in the jump-
start document. Style and technical guidelines conform to
the format for the International Conference on Software
Engineering (no more than 10 pages) and follow the IEEE
Computer Style Guide. Themes of quality, measurement,
tools, and standards are included.

ABSTRACT

This paper presents an overview of the knowledge area of
software evolution and maintenance for the Software
Engineering Body of Knowledge (SWEBOK) project. A
breakdown of topics is presented for the knowledge area
along with a short description of each topic. References
are given to materials that provide more in-depth coverage
of the key areas of software evolution and maintenance.
Important knowledge areas of related disciplines are also
identified.

Keywords

Software maintenance, software engineering, software
evolution, software maintenance measurement, software
maintenance planning.

1 INTRODUCTION

This document was prepared in accordance with the
“Knowledge Area Description Specifications for the Stone
Man Version of the Guide to the Software Engineering
Body of Knowledge” dated March 26, 1999. Thus, brief
descriptions of the topics are provided so the reader can
select the appropriate reference material according to
his/her needs.

The topic of this paper is software evolution and
maintenance. As many references and common practice is
to refer to this topic as maintenance, references in this
paper to maintenance refer to software evolution and
maintenance.

Software engineering is defined as the application of the
systemic, disciplined, quantifiable approach to the
development, operation, and maintenance of software. It
is the application of engineering to software. The classic
life-cycle paradigm for software engineering includes:
system engineering, analysis, design, code, testing, and
maintenance. This paper addresses the maintenance
portion of software engineering and the software life-cycle.

2 BREAKDOWN OF TOPICS FOR SOFTWARE
EVOLUTION AND MAINTENANCE

Rationale for the Breakdown

The breakdown of topics for software evolution and
maintenance is a decomposition of software engineering
topics that are “generally accepted” in the software
maintenance community. They are general in nature and
are not tied to any particular domain, model, or business

2

needs. They are consistent with what is found in current
software engineering literature and standards. The
common themes of quality, measurement, tools, and
standards are included in the breakdown of topics. The
breakdown of topics, along with a rationale for the
breakdown, is provided in the next section. The
breakdown of topics is contained in Appendix A.

A basic understanding of software evolution and
maintenance is needed as the foundation for the remainder
of the topics. Thus, the maintenance concepts section
provides the definition of maintenance, its basic concepts,
and how the concept of system evolution fits into software
engineering. Next in importance is what is performed in
maintenance. Maintenance activities and roles address the
formal types of maintenance and common activities. As
with software development, a process is critical to the
success and understanding of software evolution and
maintenance. Standard maintenance processes are
discussed. Appropriate standards are addressed.
Organizing for maintenance may be different than for
development. Approaches to organizing for maintenance
are addressed.

Software evolution and maintenance present unique and
different problems for software engineering. These are
addressed in the section titled Problems of Software
Maintenance. Cost is always a critical topic when
discussing software evolution and maintenance. The
section on Maintenance Cost and Maintenance Cost
Estimation looks at life cycle costs as well as costs for
individual evolution and maintenance tasks. Maintenance
measurements addresses the topics of quality and metrics.
The final topic, tools and techniques for maintenance,
aggregates many sub-topics that are not otherwise
addressed in this document.

3 BREAKDOWN OF TOPICS

The breakdown of topics, along with a brief description of
each, is provided in this section. Key references including
standards, are provided.

Maintenance Concepts

Software maintenance is defined as the modification of a
software product after delivery to correct faults, to improve
performance, or to adapt the product to a modified
environment [1]. A maintainer is an organization that
performs maintenance activities [2].

A common perception of maintenance is that it is merely
fixing bugs. However, studies over the years have
indicated that the majority, over 80%, of the maintenance
effort is used for non-corrective actions [3] [4] [5]. This
perception is perpetuated by users submitting problem
reports that in reality are major enhancements to the
system. This “lumping of enhancement requests with

problems” contributes to some of the misconceptions
regarding maintenance.

The focus of software development is on producing code
that implements stated requirements and operates
correctly. Maintenance is different than development [6].
Maintainers look back at development products and also
the present by working with users and operators.
Maintainers also look forward to anticipate problems and
to consider functional changes. Pfleeger [6] states that
maintenance has a broader scope, with more to track and
control. Thus, configuration management is an important
aspect of software evolution and maintenance.

Need for Maintenance

Maintenance is needed to ensure that the system continues
to satisfy user requirements. The system changes due to
corrective and non-corrective maintenance. According to
Martin and McClure [7], maintenance must be performed
in order to:

Correct errors.

Correct design flaws.

Interface with other systems.

Make enhancements.

Make necessary changes to the system.

Make changes in files or databases.

Improve the design.

Convert programs so that different hardware,
software, system features, and
telecommunications facilities can be used.

The four major aspects that maintenance focuses on are
[6]:

Maintaining control over the system’s day-to-day
functions.

Maintaining control over system modification.

Perfecting existing acceptable functions.

Preventing system performance from degrading to
unacceptable levels.

Accordingly, software must evolve and be maintained.

System Evolution

The previous section indicated that there is a need for
maintenance, that software is more than fixing bugs, and
that the software evolves. The concept of software
evolution and maintenance was first addressed by Lehman
in 1980. Simply put he stated that maintenance is really
evolutionary developments and that maintenance decisions
are aided by understanding what happens to systems over
time. His “Five Laws of Software Evolution” clearly
depict what happens over time. Key points from Lehman
include that large systems are never complete and continue
to evolve. As they evolve, they grow more complex unless

3

some action is taken to reduce the complexity. As systems
demonstrate regular behavior and trends, these can be
measured and predicted. Pfleeger [6], Sommerville [4],
and Arthur [8] have excellent discussions regarding
system evolution.

Planning

Software evolution and maintenance should be planned.
Whereas developments typically can last for 1-2 years, the
operation and maintenance phase, during which software
evolution and maintenance occurs, lasts for 5-6 years [6].
Maintenance planning should begin with the decision to
develop a new system [5]. A concept and then a
maintenance plan should be developed. The concept for
maintenance should address:

The scope of software maintenance.

The tailoring of the postdelivery process.

The designation of who will provide maintenance.

An estimate of life-cycle costs.

Once the maintenance concept is determined, the next step
is to develop the maintenance plan. The maintenance plan
should be prepared during software development and
should specify how users will request modifications or
report problems. Maintenance planning is addressed in
IEEE 1219 [1] and ISO/IEC [FDIS] 14764 [9]. ISO/IEC
[FDIS] 14764 [9] provides guidelines for a maintenance
plan.

Maintenance Activities and Roles

Maintenance activities are similar to those of software
development. Maintainers perform analysis, design,
coding, testing, and documenting. However, for software
evolution and maintenance, the activities involve processes
unique to maintenance. Maintainers must possess an
intimate knowledge of the code’s structure and content [6].
Unlike software development, maintainers must perform
impact analysis. Analysis is performed in order to
determine the cost of making a change. The change
request, sometimes called a modification request and often
called a problem report, must first be analyzed and
translated into software terms [10]. The maintainer then
identifies the affected components. Several potential
solutions are provided and then a recommendation is made
as to the best course of action.

Activities

Maintainers must perform other activities than those
commonly associated with software development.
Maintainers must also perform supporting activities such
as configuration management (CM), verification and
validation, quality assurance, reviews, audits, operating a
help desk, and conducting user training. CM is a critical
element of the maintenance process [1]. CM procedures

should provide for the verification, validation, and
certification of each step required to identify, authorize,
implement, and release the software product. Training of
maintainers, a supporting process, is also a needed activity
[5] [12] [13]. Maintenance also includes activities such as
planning, migration, and retiring of systems [1] [2] [5]
[9].

Categories of maintenance

E. B. Swanson of UCLA was one of the first to examine
what really happens in maintenance. He believed that by
studying the maintenance phase a better understanding of
maintenance would result. Swanson was able to create
three different categories of maintenance. These are
reflected in IEEE 1219 [1], ISO/IEC [FDIS] 14764 [9],
and numerous texts. Swanson’s categories of maintenance
and his definitions are as follows:

Corrective maintenance. Reactive modification of
a software product performed after delivery to
correct discovered faults.

Adaptive maintenance. Modification of a
software product performed after delivery to keep
a computer program usable in a changed or
changing environment.

Perfective maintenance. Modification of a
software product after delivery to improve
performance or maintainability.

Common practice is to refer to Adaptive and Perfective
maintenance as enhancements. Another type of
maintenance, preventive maintenance, is defined in the
IEEE Standard on Software Maintenance [1] and the ISO
Standard on Software Maintenance [9]. Preventive
maintenance is defined as maintenance performed for the
purpose of preventing problems before they occur. This
type of maintenance could easily fit under corrective
maintenance but the international community, and in
particular those who are concerned about safety, classify
preventive as a separate type of maintenance.

Of note is that Sommerville [4], Pfleeger [6] and others
address that the corrective portion of maintenance is only
about 20% of the total maintenance effort. The remaining
80% is for enhancements, i.e., the adaptive and perfective
categories of maintenance. This further substantiates
Lehman’s “Five Laws of Software Evolution.”

Maintenance Process

The need for software processes is well documented. The
Software Engineering Institute’s Software Capability
Maturity Model (CMM) provides a means to measure
levels of maturity. Of importance, is that there is a direct
correlation between levels of maturity and cost savings.
The higher the level of maturity, the greater the cost

4

savings. The CMM applies equally to maintenance and
maintainers should have a documented maintenance
process

Standards

Schneidewind [11] stressed the need for standardization of
maintenance and, as a result, the IEEE Computer Society
Software Engineering Standards Subcommittee published
the “IEEE Standard for Software Maintenance” [1] in
1993. Later the International Organization for Standards
(ISO), developed an international standard for software
life-cycle processes, ISO/IEC 12207 [2], which included a
maintenance process. ISO/IEC 14764 [9] [FDIS]
elaborates the maintenance process of ISO/IEC 12207 [2].
All maintainers should develop maintenance processes
bases on these standards. Often these are tailored to meet
local requirements.

Maintenance Process Models

Process models provide needed operations and detailed
inputs/outputs to those operations. Maintenance process
models are provided in ISO 1219 [1] and ISO/IEC 14764
[9].

The maintenance process model described in IEEE 1219
[1], the Standard for Software Maintenance, starts the
software maintenance effort during the post-delivery stage
and discusses items such as planning for maintenance and
metrics outside the process model. That process model
with the IEEE maintenance phases is depicted in Figure
2.1.

Figure 3.1: The IEEE Maintenance Process

ISO/IEC FDIS 14764 [9] is an elaboration of the
maintenance activity from ISO/IEC 12207 [2]. The
activities of the maintenance process are similar although
they are aggregated a little differently. The maintenance
process activities developed by ISO/IEC are shown in

Figure 2.2.

Figure 3.2: IEEE Maintenance Process Activities

Takang and Grubb [12] provide a history of maintenance
process models leading up to the development of the IEEE
and ISO/IEC process models. A good overview of the
maintenance process is given by Sommerville [4].

Organization Aspect of Maintenance

The team that develops the software is not always used to
maintain the system once it is operational. Often, a
separate team is employed to ensure that the system runs
properly and evolves to satisfy changing needs of the users.
There are many pros and cons to having the original
developer or a separate team maintain the software [5] [6]
[13]. That decision should be made on a case-by-case
basis. Outsourcing of maintenance is becoming a major
industry. Dorfman and Thayer [10] provide some guidance
in the area of outsourcing maintenance. Based on the fact
there are almost as many organizational structures as there
are software maintenance organizations, an organizational
structure for maintenance is best developed on a case-by-
case basis. What is important is the delegation or
designation of maintenance responsibility to a group [5],
regardless of the organizational structure.

Problems of Software Maintenance

It is important to understand that software evolution and
maintenance provide unique technical and management
problems for software engineers. Trying to find a defect in
a 500K line of code system that the maintainer did not
develop is a challenge for the maintainer. Similarly,
competing with software developers for resources is a
constant battle. The following discusses some of the
technical and management problems relating to software
evolution and maintenance.

Technical

Limited Understanding [6]. Several studies
indicate that some 40% to 60% of the maintenance effort
is devoted to understanding the software to be modified.
Thus, the topic of program comprehension is one of
extreme interest to maintainers. Pressman [3] relates that
it is often difficlt to trace the evolution of the software
through its versions, changes are not documented, and the
developers are usually not around to explain the code.
Thus, maintainers have a limited understanding of the

5

software and must learn the software on their own.

Testing. The cost of repeating full testing on a
major piece of software can be significant in terms of time
and money. Thus, determining a sub-sets of tests to
perform in order to verify changes are a constant challenge
to maintainers [10]. Finding time to test is often difficult
[6].

Impact Analysis. The software and the
organization must both undergo impact analysis. Critical
skills and processes are needed for this area. Impact
analysis is necessary for risk abatement.

Management

Alignment with organizational issues. Dorfman
and Thayer [10] relate that return on investment is not
clear with maintenance. Thus, there is a constant struggle
to obtain resources.

Staffing. Maintenance personnel often are viewed
as second class citizens [6] and morale suffers [10].
Maintenance is not viewed as glamorous work [3].
Deklava provides a list of staffing related problems based
on survey data [5].

Process issues. Maintenance requires several
activities that are not found in software development, e.g.
help desk support. These present challenges to
management [10].

Maintenance Cost and Maintenance Cost Estimation

Maintenance costs are high due to all the problems of
maintaining a system [6]. Software engineers must
understand the different categories of maintenance,
previously discussed, in order to address the cost of
maintenance. For planning purposes, estimating costs is
an important aspect of software evolution and
maintenance.

Cost

Maintenance now consumes a major share of the life cycle
costs. Prior to the mid-1980s, the majority of costs went to
development. Since that time, maintenance consumes the
majority of life-cycle costs. Understanding the categories
of maintenance helps to understand why maintenance is so
costly. Also understanding the factors that influence the
maintainability of a system can help to contain costs.
Sommerville [4] and Pfleeger [6] address some of the
technical and non-technical factors affecting maintenance.

Impact analysis identifies all systems and system products
affected by a change request and develops an estimate of
the resources needed to accomplish the change [8]. It is
performed after a change request enters the configuration
management process. It is used in concert with the cost

estimation techniques discussed below.

Cost estimation

Maintenance cost estimates are affected by many technical
and non-technical factors. Primary approaches to cost
estimating include use of parametric models and
experience. Most often a combination of these is used to
estimate costs.

Parametric models

The most significant and authoritative work in the area of
parametric models for estimating was performed by
Boehm [14]. His COCOMO model, derived from
COnstructive COst MOdel, puts the software life cycle and
the quantitative life-cycle relationships into a hierarchy of
software cost-estimation models [4] [5] [6]. Of
significance is that data from past projects is needed in
order to use the models. Jones [15] discusses all aspects of
estimating costs and provides a detailed chapter on
maintenance estimating.

Experience

If a parametric model is not used to estimate maintenance,
experience must be used. Sound judgement, reason, a
work breakdown structure, educated guesses, and use of
empirical/historical data are several approaches. Clearly
the best approach is to have empirical data. That data
should be provided as a result of a metrics program.

Maintenance Measurements

Software life cycle costs are growing and a strategy for
maintenance is needed. Software measurement or
software metrics need to be a part of that strategy.
Software measurement is the result of a software
measurement process [12]. Software metric is often
synonymous with software measurement. Grady and
Caswell [16] discuss establishing a corporate-wide metrics
program. Software metrics are vital for software process
improvement but the process must be measurable.

Takang and Grubb [12] state that measurement is
undertaken for evaluation, control, assessment,
improvement, and prediction. A program must be
established with specific goals in mind.

Establishing a metrics program

Successful implementation strategies were used at Hewlett-
Packard [16] and at the NASA/Software Engineering
Laboratory [5]. Common to many approaches is to use the
Goal, Question, Metric (GQM) paradigm put forth by
Basili [17]. This approach states that a metric program
would consist of: identifying organizational goals; defining
the questions relevant to the goals; and then selecting
measures that answer the questions.

The IEEE Standard For a Software Quality Metrics

6

Methodology, ANSI/IEEE 1061 992, [18] provides a
methodology for establishing quality requirements and
identifying, implementing, analyzing and validating
process and product software quality metrics. The
methodology applies to all software at all phases of any
software life cycle and is a valuable resource for software
evolution and maintenance.

There are two primary lessons learned from practitioners
about metrics programs. The first is to focus on a few key
characteristics. The second is not to measure everything.
Most organizations collect too much. Thus, a good
approach is to evolve a metrics program and to use the
GQM paradigm.

Specific Measures

There are metrics that are common to all efforts and the
Software Engineering Institute (SEI) identified these as:
size; effort; schedule; and quality [5]. Those metrics are a
good starting point for a maintainer. ANSI/IEEE 1061
[18] provides examples of metrics together with a complete
example of the use of the standard.

Takang and Grubb [12] group metrics into areas of: size;
complexity; quality; understandability; maintainability;
and cost estimation.

Documentation regarding specific metrics to use in
maintenance is not often published. Typically generic
software engineering metrics are used and the maintainer
determines which ones are appropriate for their
organization. IEEE 1219 [1] provides suggested metrics
for software programs. Stark, et al [17] provides a
suggested list of maintenance metrics used at NASA’s
Mission Operations Directorate.

Tools and Techniques for Maintenance

This section provides a number of related areas that
support software evolution and maintenance. Many other
topics, e.g., CM, are orthogonal in nature and are covered
in other papers in the Guidebook. Tools are crucial for
maintaining large systems. Often tools are integrated into
software engineering environments to support the
maintenance effort. It is one of the more important
supporting areas for maintenance. Program
comprehension, also referred to as program understanding,
is a necessary technique for performing maintenance. The
subtopics of re-engineering, and reverse engineering, are
important for legacy systems. These are discussed in the
subsections that follow.

Maintenance tools

Takang and Grubb [12] define a software tool as any
artifact that supports a maintainer in performing a task.
Tools have been in use for years. Debuggers and cross-
compilers go back to the early days of computing. Tools
have evolved over the years and are well known and used

heavily in software development. Tools and related
environments are less used in maintenance.

Tools have evolved and are now commonly referred to as
Computer-Aided Software Engineering (CASE) tools.
Often times these are placed in environments which is
defined as all of the automated facilities that a software
engineer has available for development or maintenance
[4].

Software development and maintenance are specialized
activities and need separate systems dedicated to them.
Takang and Grubb [12] classify maintenance tools based
on the specific tasks they support as follows:

Program understanding and reverse engineering

Testing

Configuration management

Documentation and measurement

For program understanding and reverse engineering, tools
include the program slicer, static analyzer, dynamic
analyzer, and cross-referencer. Tools that support testing
include simulators, test case generators, and test path
generators. Tools for configuration must perform code
management, version control, and change tracking.
Documentation tools include hypertext-based tools, data
flow and control chart generators, requirements tracers,
and CASE tools [12]. Measurement tools are the same
ones used in software development.

IEEE 1219 [1] provides a detailed table of methods and
tools mapped to the IEEE maintenance activities.

Program Comprehension

Studies indicate that 40% to 60% of a maintenance
programmer’s time is spent trying to understand the code.
Time is spent in reading and comprehending programs in
order to implement changes. Based on the importance of
this subtopic, an annual IEEE workshop is now held to
address program comprehension [10]. Additional research
and experience papers regarding comprehension are found
in the annual proceedings of the IEEE Computer Society’s
International Conference on Software Maintenance
(ICSM). Takang and Grubb [12] provide a detailed chapter
on comprehension.

Re-engineering

Re-engineering is the examination and alteration of the
subject system to reconstitute it in a new form, and the
subsequent implementation of the new form. Re-
engineering is the most radical (and expensive) form of
alteration [10]. It is not undertaken to improve
maintainability but is used to replace aging legacy systems.
Arnold [19] provides a comprehensive compendium of
topics, e.g., concepts, tools and techniques, case studies,
and risks and benefits associated with re-engineering.

7

Reverse engineering

Reverse engineering is the process of analyzing a subject
system to identify the system’s components and their inter-
relationships and to create representations of the system in
another form or at higher levels of abstraction. Reverse
engineering is passive, it does not change the system, or
result in a new one. A simple reverse engineering effort
may merely produce call graphs and control flow graphs
from source code. One type of reverse engineering is
redoucumentation. Another type is design recovery [10].

Impact Analysis

Impact analysis identifies all systems and system products
affected by a change request and develops an estimate of
the resources needed to accomplish the change [8]. It is
performed after a change request enters the configuration
management process. Arthur [8] states that the objectives
of impact analysis are:

Determine the scope of a change in order to plan
and implement work.

Develop accurate estimates of resources needed to
perform the work.

Analyze the cost/benefits of the requested change.

Communicate to others the complexity of a given
change.

4 RECOMMENDED REFERENCES FOR
SOFTWARE EVOLUTION AND
MAINTENANCE

The following set of references was chosen to provide
coverage of all aspects of software evolution and
maintenance. Priority was given to standards,
maintenance specific publications, and then general
software engineering publications.

References

[1] IEEE STD 1219: Standard for Software
Maintenance

[2] ISO/IEC 12207: Information Technology-
Software Life Cycle Processes

[3] R. S. Pressman. Software Engineering: A
Practitioner’s Approach. McGraw-Hill, fourth
edition, 1997.

[4] I. Sommerville. Software Engineering. McGraw-
Hill, fifth edition, 1996.

[5] T. M. Pigoski. Practical Software Maintenance:
Best Practices for Managing your Software
Investment. Wiley, 1997.

[6] S. L. Pfleeger. Software Engineering—Theory
and Practice. Prentice Hall, 1998.

[7] J. Martin and C. McClure. Software

Maintenance: The Problem and its Solutions.
Prentice-Hall, 1983.

[8] L. J. Arthur. Software Evolution: The Software
Maintenance Challenge. John Wiley & Sons,
1988.

[9] ISO/IEC 14764: [FDIS} Software Engineering-
Software Maintenance

[10] M. Dorfman and R. H. Thayer. Software
Engineering. IEEE Computer Society Press,
1997.

[11] N. F. Schneidewind. The State of Software
Maintenance. IEEE, 1987.

[12] A. Takang and P. Grubb. Software Maintenance
Concepts and Practice. International Thomson
Computer Press, 1997.

[13] G. Parikh. Handbook of Software Maintenance.
John Wiley & Sons, 1986.

[14] B. W. Boehm. Software Engineering Economics.
Prentice-Hall, 1981.

[15] T. C. Jones. Estimating Software Costs.
McGraw-Hill, 1998.

[16] R. B. Grady and D. L. Caswell. Software
Metrics: Establishing a Company-wide Program.
Prentice-Hall, 1987.

[17] G. E. Stark, L. C. Kern, and C. V. Vowell. A
Software Metric Set for Program Maintenance
Management. Journal of Systems and Software,
1994.

[18] R. S. Arnold. Software Engineering. IEEE
Computer Society, 1992.

 [19] ANSI/IEEE STD 1061. IEEE Standard for a
Software Quality Metrics Methodology. IEEE
Computer Society Press, 1992.

Coverage of the Software Evolution and Maintenance
Breakdown topics by the Recommended References.

The cross-reference is shown in Appendix B.

5 KNOWLEDGE AREAS OF RELATED
DISCIPLINES

The Guide to the Software Body of Knowledge presents
the core Body of Knowledge, i.e., the generally accepted
knowledge in the field expected from a graduate with four
years of experience. The document “A Baseline for a List
of Related Disciplines for the Stone Man Version of the
Guide to the Software Engineering Body of Knowledge,”
dated March 26, 1999 provides a list of potential
knowledge areas for software engineers from other
disciplines. The following provides a listing of Knowledge

8

Areas of the Related Disciples that are relevant to the
software evolution and maintenance knowledge area. All
are keyed to the breakdowns provided in that document.

Computer Science
Foundations

Complexity analysis

Complexity classes

Discrete mathematics

Program semantics

Algorithms and Data Structures

Basic data structures

Abstract data types

Sorting and searching

Parallel and distributed algorithms

Computer Architecture

Digital logic

Digital systems

Machine level representation of data

Number representations

Assembly level machine organization

Interfacing and communication

Alternative architectures

Digital signal processing

Performance

Intelligence Systems

Artificial intelligence

Agents

Soft computing

Information Management

Database models

Search Engines

Data mining/warehousing

Digital libraries

Transaction processing

Data compression

Computing at the Interface

Human-computer interaction

Graphics

Vision

Visualization

Multimedia

User-level application generators

Operating Systems

Tasks, processes and threads

Process coordination and synchronization

Scheduling and dispatching

Physical and virtual memory organizations

File systems

Networking fundamentals

Security

Protection

Distributed systems

Real-time computing

Embedded systems

Mobile computing infrastructure

Programming Fundamentals and Skills

Introduction to programming languages

Recursive algorithms/programming

Programming paradigms

Program-solving strategies

Compilers/translation

Code generation

Net-centric Computing

Computer-supported cooperative work

Collaboration Technology

Distributed objects computing

E-commerce

Enterprise computing

Network-level security

Computational Science

Numerical analysis

Scientific computing

Parrallel algorithms

Modeling and simulation

Social, Ethical, Legal and Professional Issues

Historical and social context of computing

Philosophical ethics

Intellectual property

Copyrights, patents, and trade secrets

Risks and liabilities

Responsibilities of computing professionals

Computer crime

9

Mathematics

Discrete Mathematics

Calculus

Probability

Linear Algebra

Mathematical Logic

Project Management

Project Integration Management

Project Scope Management

Project Time Management

Project Quality Management

Project Human Resource Management

Project Communications Management

Project Risk Management

Project procurement Management

Computer Engineering

Digital Data Manipulation

Processor Design

Digital Systems Design

Computer Organization

Storage Devices and Systems

Peripherals and Communication

High Performance Systems

System Design

Measurement and Instrumentation

Codes and Standards

Embedded Systems Software

Computer Modeling and Simulation

Systems Engineering

Process

Project Planning

System breakdown structure

Design

Component specification

Integration

Maintenance & Operations

Configuration Management

Documentation

Essential Functional Processes

Development

Test Distribution

Operations

Support

Training

Disposal

Techniques & Tools

Metrics

Privacy

Process Improvement

Reliability

Safety

Security

Vocabulary

Management and Management Science

Organizational Environment

Organizational Characteristics

Organizational Functions

Organizational Dynamics

Information Systems Management

Data Resource Management

IS Staffing

Training

Management Science

Optimization

Linear Programming

Mathematical Programming

Statistics

Simulation

Cognitive Science and Human Factors

The Nature of HCI

(Meta-) Models of HCI

Use and Context of Computers

Human Social Organization and Work

Application Areas

Human-Machine Fit and Adaptation

Human Characteristics

Language, Communication, Interaction

Computer System and Interface Architecture

Input and Output Devices

Computer Graphics

Development Process

10

Design Approaches

Implementation Techniques

Example Systems and Case Studies

6 SUMMARY
Appendix C identifies the software evolution and
maintenance topic areas and the associated Bloom’s
taxonomy level of understanding on each topic. The levels
of understanding from lower to higher are: knowledge,
comprehension, application, analysis, synthesis, and
evaluation.

Appendix D applies the Vincenti categorization to the
software evolution and maintenance topics.

11

APPENDIX A – SUMMARY OF THE SOFTWARE EVOLUTION AND MAINTENANCE BREAKDOWN

Maintenance Concepts

Need for Maintenance

System Evolution

Planning

Maintenance Activities and Roles

Activities

Categories of Maintenance

Maintenance Process

Standards

Maintenance Process Models

Organization Aspect of Maintenance

Problems of Software Maintenance

Technical

Limited Understanding

Testing

Impact Analysis

Management

Alignment with organizational issues

Staffing

Process issues

Maintenance cost and Maintenance Cost Estimation

Cost

Cost estimation

Parametric models

Experience

Maintenance Measurements

Establishing a Metrics Program

Specific Maintenance Measures

Tools and Techniques for Maintenance

Maintenance Tools

Program Comprehension

Re-engineering

Reverse Engineering

Impact Analysis

12

APPENDIX B - COVERAGE OF THE BREAKDOWN TOPICS BY THE RECOMMENDED REFERENCES

REFERENCE

IEEE
1219

ISO
12207

Pre
97

Som
96

Pig
97

Pfl
98

MM
83

Art
88

ISO
14764

DT
97

Sch
87

TG
97

Par
86

Boe
81

Jon
98

GC
87

SKV
94

AI
92

Arn
92

TOPIC

[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19]

Maintenance Concepts X X X X X X X X X X X X X X X X

Need for Maintenance X X X X X X

System Evolution X X X X

Planning X X X X X X

Maintenance Activities and Roles X X X X X X X

Activities X X X X X X X

Categories of Maintenance X X X X X X X X X X X X

Maintenance Process X X X X X X X X X X X

Standards X X X X X X

Maintenance Process Models X X X X X X

Organization Aspect of
Maintenance

X X X X X X X X

Problems of Software Maintenance X X X

Technical X X X

Limited Understanding X X X X

Testing X X X

Impact Analysis X X X

Management X X X

Alignment with
organizational issues

X X X X

Staffing X X X X

Process issues X

13

APPENDIX B - COVERAGE OF THE BREAKDOWN TOPICS BY THE RECOMMENDED REFERENCES (Continued)

REFERENCE

IEEE
1219

ISO
12207

Pre
97

Som
96

Pig
97

Pfl
98

MM
83

Art
88

ISO
14764

DT
97

Sch
87

TG
97

Par
86

Boe
81

Jon
98

GC
87

SKV
87

AI
92

Arn
92

TOPIC

[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19]

Maintenance cost and Maintenance
Cost Estimation

X X X X X X X

Cost X X X X X X

Cost estimation X X X X X X

Parametric models X X X X X X X

Experience X X X

Maintenance Measurements X X X X X X X X X

Establishing a Metrics
Program

X X X

Specific Maintenance Measures X X X X X X X X

Tools and Techniques for
Maintenance

X X X

Maintenance Tools X X X X X X X X

Program Comprehension X X X X

Re-engineering X X X X X X X X

Reverse Engineering X X X X X X

Impact Analysis X X

14

APPENDIX C - BLOOM’S TAXONOMY

TOPIC BLOOM LEVEL

Maintenance Concepts Comprehension

Need for Maintenance Comprehension

System Evolution Comprehension

Planning Comprehension

Maintenance Activities and Roles Comprehension

Activities Comprehension

Categories of Maintenance Comprehension

Maintenance Process Synthesis

Standards Comprehension

Maintenance Process Models Synthesis

Organization Aspect of Maintenance Comprehension

Problems of Software Maintenance Comprehension

Technical Synthesis

Limited Understanding Synthesis

Testing Synthesis

Process issues Synthesis

Management Comprehension

Alignment with organizational issues Comprehension

Staffing Comprehension

Impact Analysis Synthesis

Maintenance cost and Maintenance Cost
Estimation

Comprehension

Cost Comprehension

Cost estimation Synthesis

Parametric models Synthesis

Experience Synthesis

Maintenance Measurements Synthesis

Establishing a Metrics Program Comprehension

Specific Maintenance Measures Synthesis

Tools and Techniques for Maintenance Synthesis

Maintenance Tools Synthesis

Program Comprehension Synthesis

Re-engineering Synthesis

Reverse Engineering Synthesis

Impact Analysis Synthesis

15

APPENDIX D - VINCENTI CATEGORIZATION

FUNDAMENTAL DESIGN CONCEPTS

Maintenance concepts

 Need for maintenance

 System evolution

Maintenance activities and roles

 Activities

 Categories of maintenance

Organization aspect of maintenance

CRITERIA AND SPECIFICATIONS

Maintenance process

 Standards

Maintenance Measurements

 Establishing a metrics program

 Specific measures

THEORETICAL TOOLS

Tools and Techniques for Maintenance

 Maintenance tools

 Program comprehension

 Re-engineering

 Reverse engineering

 Impact Analysis

QUANTITATIVE DATA

Maintenance Cost and Cost Estimation

 Cost estimation

 Parametric models

16

PRACTICAL CONSIDERATIONS

Maintenance concepts

 Planning

Problems of software maintenance

 Technical

 Limited understanding

 Testing

 Impact analysis

 Management

 Alignment with organizational issues

 Staffing

 Process issues

Maintenance Cost and Cost Estimation

 Cost estimation

 Experience

DESIGN INSTRUMENTALITIES

Maintenance Process

 Maintenance process models

sqaswebokmay13 1 06/10/99

KNOWLEDGE AREA: SOFTWARE QUALITY ANALYSIS

The Software Quality Analysis knowledge area of the SWEBOK was defined as covering the following major
topics:

(1) Software Quality Assurance
(2) Verification and Validation
(3) Dependability / Quality

Considered together, these subjects are ubiquitous in software engineering, transcending software lifecycles. There
needs to be quality analysis and quality oversight on all activities and tasks of the planning, development and
support processes. Production of quality products is the key to customer satisfaction. Software without the requisite
features and degree of quality is an indicator of failed (or at least flawed) software engineering.

A principle of quality management in any kind of engineering task (and even outside of engineering) is “avoid
mistakes instead of repairing them”. The most important prevention occurs during all the product engineering steps,
and this prevention depends on the quality, training, and conscientiousness of the people, the adequacy and
appropriateness of the standards, practices, methodologies, and tools, appropriate schedules, and finally, the
commitment to improvement of all of the above. Elsewhere in the SWEBOK, knowledge is provided about these
issues designed to produce quality software conforming to the needs of the customer. Yet even with the best of
software engineering processes, requirement specifications can miss customer needs, code can fail to fulfill
requirements, and subtle errors can lie undetected until they cause minor or major problems - even catastrophic
failures. The software engineer who is building the product uses many of the techniques of this section as part of
"prevention", or building the quality in. This section of the SWEBOK discusses the knowledge needed for quality
analysis as part of SQA and V&V activities. The organizational quality management is addressed in the knowledge
areas Software Engineering Management and Software Engineering Process.

The quality analysis process is designed (1) to provide additional assurance that the product is of the requisite
quality and (2) to provide management with visibility into the process being used and the product being built . This
visibility can be used not only to improve the product being produced and the process being used in the immediate
project, but also to improve the process that will be used in future projects.

Quality oversight includes initial assessment that all selected processes are appropriate for the software product, and
then continuous monitoring as these are planned, implemented, and changed when necessary for quality
improvement (including new functionality) or when software maintenance is performed. But quality also needs to
be defined, since it has many facets. It is, like beauty, "in the mind of the beholder", so the facets that are important
need to be decided for the particular environment and purpose for which the software is required and is being
designed, as part of the system requirements. The degree of quality in each facet must also be decided, since there
are tradeoffs and costs to be considered.

Dependability / quality is an attribute of a system, and although we wish to apply it to the software for the purposes
of this exposition, it really refers to the impact of the software on the entire system. Software quality assurance
(SQA) is a process designed to assure a quality product; it is a planned and systematic pattern of all actions
necessary to provide adequate confidence that the product conforms to specified technical requirements. Software
Verification and Validation (V&V) is an important process to provide an objective assessment of software products
and processes throughout the software life cycle, that is, the V&V process provides management with visibility into
the quality of the product.

This knowledge area contains pointers to many other SWEBOK knowledge areas, such as Software Engineering
Process, Software Engineering Management, Software Engineering Infrastructure, Testing, and Requirements
Engineering. In each case, we have tried not to describe that knowledge area. For testing, however, there is a fair
amount of overlap. This knowledge area of the SWEBOK is arranged as follows:

I. Defining Quality Product

sqaswebokmay13 2 06/10/99

A. ISO2196 Quality Characteristics
1. Functionality
2. Reliability
3. Usability
4. Efficiency
5. Maintainability
6. Portability

B. Dependability
C. Quality Facets Related to Process and Special Situations

II. Software Quality Analysis
A. Definition of Quality Analysis

1. Software Quality Assurance
2. Software Verification and Validation

B. Process Plans
1. SQA Plan
2. V&V Plan

C. Activities and Techniques for Quality Analysis
1. Static Techniques

a. People Intensive Static Techniques
b. Analysis Intensive Static Techniques

2. Dynamic Techniques
D. Measurement in Software Quality Analysis

1. Fundamentals of Measurement
2. Metrics
3. Measurement Techniques
4. Defect Characterization
5. Additional Quality Analysis Concerns that Measurement Supports

III. Knowledge Topics and Reference Matrices
A. References Keyed to Text Sections
B. Standards

IV. References
A. Basic SWEBOK References
B. Additional References
C. Standards

V. Appendices
A. Bloom’s Taxonomy Related to Software Quality Analysis
B. Vincenti’s Categories Related to Software Quality Analysis

I. DEFINING QUALITY PRODUCT

The goal of software engineering is a quality product, but quality itself can mean different things. There is the set of
qualities specifically associated with system dependability such as security, safety, fault tolerance; quality that
makes for convenience of use, such as usability, adaptability, and clarity of displays; and quality that facilitates
future upgrades and maintenance. Although different terminology is used, there is some consensus about the
attributes that define software quality and dependability over a range of products. These definitions provide the base
knowledge from which individual quality products are planned, built, analyzed, measured, and improved.

The quality of a given software product is defined as "the totality of characteristics [of the product] that bear on
its ability to satisfy stated or implied needs" 1. The needs mentioned are the needs of all parties that hold a stake
in the product, including the system users. It is assumed that the needs are obtained from them through the process
of Requirements Engineering, which is addressed in another part of the SWEBOK. For the purposes of this section,
we stress that facets of quality must be addressed in the requirements and discussed with the stakeholders. A

1 From Quality—Vocabulary, Draft Intl. Standard 8402, International Organization for Standardization, Geneva,
1993.

sqaswebokmay13 3 06/10/99

thorough knowledge of these facets, some quantification of their priority and the degree to which they are expected
allows the software engineer(s) to plan and budget a project and go into the product development process with high
confidence of satisfying the needs, or alternatively, to return to the stakeholders for further discussion. For their
part, the stakeholders may not be aware of the implications of what they expect (costs, tradeoffs, alternatives) and
they may not have considered how the quality of the system they expect will be described or measured.

Some standard descriptions of software quality and quality attributes are discussed. But it is well to remember that a
particular aspect of quality that is important for one piece of software may be less important or even irrelevant for
another. The quality definition for a given product included in the requirements must take into consideration a
number of constraints, some of which are imposed by the environment and purpose for which the software
developed and some of which may be firm quality constraints. In addition, as seen in references for measurement in
Section II, metrics for quality attributes may be based on slightly different subcharacteristics for the primary quality
attributes. Viewpoints, or facets, about quality may not always be clear to the stakeholders, the realization of quality
and dependability attributes are to be optimized subject to the environment, to the firm quality constraints, and to
tradeoffs with one another.

A. ISO9126 Quality Characteristics

The software quality characteristics identified in this section with each major attribute are those given in the
ISO9126 standard. However, other authors provide different subsets, and often provide metrics for those
subcharacteristics. These definitions and metrics are not provided here, or in the measurement section, but are
provided in the reference material. For example, functionality could also be characterized by completeness,
correctness, security, compatibility, interoperability and portability could be measured by hardware independence,
software independence, installability, and reusability.

1. Functionality
Functionality is in some sense more fundamental to the working of the system than other attributes. The definition
in ISO/IEC 9126 of Functionality implies that the functionality is the short answer to the question "What do you
need for this software to do?" without going into details of how it is going to accomplish it. From the quality point
of view, the execution of the functionality is the baseline as to whether the needs of the customer are accomplished.
After that, the other quality attributes are to be realized as well as possible, but may be compromised for economy
purposes and traded off against one another. The attributes of functionality are defined as follows:

• Suitability: Attribute of software that bears on the presence and appropriateness of a set of functions for
specified tasks. (ISO 9126: 1991, A.2.1.1)

• Accuracy: Attributes of software that bear on the provision of right or agreed results or effects. (ISO 9126:
1991, A.2.1.2)

• Interoperability: Attributes of software that bear on its ability to interact with specified systems. (ISO
9126: 1991, A.2.1.3) (NOTE -- Interoperability is used in place of compatibility in order to avoid possible
ambiguity with replaceability. (ISO 9126: 1991, A.2.1.3)

• Compliance: Attributes of software that make the software adhere to application-related standards or
conventions or regulations in laws and similar prescriptions. (ISO 9126: 1991, A.2.1.4)

• Security: Attributes of software that bear on its ability to prevent unauthorized access, whether accidental
or deliberate, to programs and data. (ISO 9126: 1991, A.2.1.5)

2. Reliability

Reliability is a set of attributes that bear on the capability of software to maintain its level of performance under
stated conditions for a stated period of time. (ISO 9126: 1991, 4.2) [NOTE: Wear or aging does not occur in
software. Limitations in reliability are due to faults in requirements, design and implementation. Failures due to
these faults depend on the way the software product is used and the program options selected rather than on elapsed
time. (ISO 9126: 1991, 4.2)]. Subcharacteristics include the following:

• Maturity: Attributes of software that bear on the frequency of failure by faults in the software. (ISO 9126:
1991, A.2.2.1)

sqaswebokmay13 4 06/10/99

• Fault tolerance: Attributes of software that bear on its ability to maintain a specified level of performance
in cases of software faults or of infringement of its specified interface. (ISO 9126: 1991, A.2.2.2)

• Recoverability: Attributes of software that bear on the capability to re-establish its level of performance
and recover the data directly affected in case of a failure and on the time and effort needed for it. (ISO
9126: 1991, A.2.2.3)

3. Usability

Usability is a set of attributes that bear on the effort needed for use, and on the individual assessment of such use, by
a stated or implied set of users. [NOTES: 1. ``Users” may be interpreted as most directly meaning the users of
interactive software. Users may include operators, and users and indirect users who are under the influence of or
dependent on the use of the software. Usability must address all of the different user environments that the software
may affect, which may include preparation for usage and evaluation of results. 2.Usability defined in this
International Standard as a specific set of attributes of a software product differs from the definition from an
ergonomic point of view, where other characteristics such as efficiency and effectiveness are also seen as
constituents of usability.] Usability subcharacterisitcs include the following:

• Understandability: Attributes of software that bear on the users' effort for recognizing the logical concept
and its applicability. (ISO 9126: 1991, A.2.3.1)

• Learnability: Attributes of software that bear on the users' effort for learning its application (for example,
operation control, input, output). (ISO 9126: 1991, A.2.3.2)

• Operability: Attributes of software that bear on the users' effort for operation and
operation control. (ISO 9126: 1991, A.2.3.3)

4. Efficiency

Efficiency is a set of attributes that bear on the relationship between the level of performance of the software and the amount
of resources used, under stated conditions. (ISO 9126: 1991, 4.4) [NOTE -- Resources may include other software products,
hardware facilities, materials, (e.g. print paper, floppy disks) and services of operating, maintaining or sustaining staff. (ISO
9126: 1991, 4.4)] Efficiency subcharacteristics include the following:

• Time behavior : Attributes of software that bear on response and processing times and on throughput rates
in performing its function. (ISO 9126: 1991, A.2.4.1)

• Resource behavior : Attributes of software that bear on the amount of resources used and the duration of
such use in performing its function. (ISO 9126: 1991, A.2.4.2)

5. Maintainability

Maintainability is a set of attributes that bear on the effort needed to make specified modifications. (ISO 9126: 1991,
4.5) [NOTE -- Modifications may include corrections, improvements or adaptation of software to changes in
environment, and in requirements and functional specifications. (ISO 9126: 1991, 4.5)] Maintainability includes
the following subcharacteristics:

• Analyzability: Attributes of software that bear on the effort needed for diagnosis of deficiencies or causes
of failures, or for identification of parts to be modified. (ISO 9126: 1991, A.2.5.1)

• Changeability: Attributes of software that bear on the effort needed for modification, fault removal or for
environmental change. (ISO 9126: 1991, A.2.5.2)

• Stability: Attributes of software that bear on the risk of unexpected effect of modifications. (ISO 9126:
1991, A.2.5.3)

• Testability: Attributes of software that bear on the effort needed for validating the modified software.
(ISO 9126: 1991, A.2.5.4)

6. Portability

sqaswebokmay13 5 06/10/99

Portability is a set of attributes that bear on the ability of software to be transferred from one environment to another.
(ISO 9126: 1991, 4.6) [NOTE: The environment may include organizational, hardware or software environment.
(ISO 9126: 1991, 4.6)]. Portability includes the following subcharacteristics:

• Adaptability: Attributes of software that bear on the opportunity for its adaptation to different specified
environments without applying other actions or means than those provided for this purpose for the software
considered. (ISO 9126: 1991, A.2.6.1)

• Installability: Attributes of software that bear on the effort needed to install the software in a specified
environment. (ISO 9126: 1991, A.2.6.2)

• Conformance: Attributes of software that make the software adhere to standards or conventions relating
to portability. (ISO 9126: 1991, A.2.6.3)

• Replaceability: Attributes of software that bear on the opportunity and effort of using it in the place of
specified other software in the environment of that software. (ISO 9126: 1991, A.2.6.4) [NOTES:
1.Replaceability is used in place of compatibility in order to avoid possible ambiguity with interoperability.
2.Replaceability with a specific software does not imply that this software is replaceable with the software
under consideration. 3.Replaceability may include attributes of both installability and adaptability . The
concept has been introduced as a subcharacteristic of its own because of its importance.

B. Dependability

For many systems, dependability of the overall system (hardware, software, and humans) is the main goal after the
basic functionality is realized, and since software dependability is a major factor in that attribute, we define it
separately. There are sometimes tradeoffs in emphasizing one quality attribute over another, and there are costs
associated with achieving high quality. Some types of systems (e.g., radar control, defense communications,
medical devices) have particular needs for high dependability, including such attributes as fault tolerance, safety,
security, usability. Reliability is a criterion under dependability and also is found among the ISO/IEC 9126 (see
above). Reliability is defined similarly, but not identically, in the two places. In Moore’s treatment, Kiang’s factors
are used, and we have used them also, but added Trustability from Laprie.

• Availability: The product’s readiness for use on demand
• Reliability: The longevity of product performance
• Maintainability: The ease of maintenance and upgrade
• Maintenance support: Continuing support to achieve availability performance objectives
• Trustability: System’s ability to provide users with information about service correctness

Dependability is one way of expressing quality principally for systems requiring the highest integrity; that is, their
failure may cause grave consequences with respect to safety and / or security. The following are supporting
definitions for quantifying dependability factors:

• Threat (or hazard): A state of the system or its environment that can have adverse effects. Threat
generally refers to security, while hazard refers to safety.

• Risk: A combination of the probability of the threat and the adverse consequences of its occurrence.
• Risk Analysis: Study of threats or hazards, their frequency, and their consequences.
• Integrity: The capability of a system and software to contain risk.
• Software Integrity Level: A software property necessary to maintain system risks within acceptable

limits. For software that performs a [risk] mitigating function, the property is the reliability with which the
software must perform the mitigating function. For software whose failure can lead to a system threat, the
property is the frequency or probability of that failure (ISO DIS 15026).

C. Quality Facets Related to Process and Special Situations

Various other traits of software are considered important enough to be evaluated. Among these are ones that make software
useful at other parts in the current project or in future projects. For instance, one wants whole modules or objects to be
reusable. One wants software to be traceable to requirements insofar as possible (this may be thought of as a version of
understandability), and one knows that generally software is more easily understood and less liable to puzzling errors if the
individual software components have clean interfaces and are cohesive. So these attributes are often included in planning and
evaluation for quality purposes:

sqaswebokmay13 6 06/10/99

• Code/Object Reusability
• Requirements Traceability
• Module Cohesion and Coupling

There are special situations in which one needs additional quality criteria with some types of systems that may not be
common to other software. The software engineer has to be aware that these exist, in order to be able accurately to analyze
the quality of the product. But if near real time performance is needed and the system requires the best answer available to
that time, certain software can guarantee the best answer that is available by that time. It is said to have an “anytime”
property.
Since software is very versatile and requirements reflect this versatility regularly, it is hard to anticipate the requirements, so
we just list a few examples of these special types of systems:

• Intelligent and Knowledge Based Systems - Anytime property, Explanation Capability
• Human Interface and Interaction Systems - Adaptivity, Intelligent Help, Display Salience
• Information Systems - Ease of query, High Recall, High Precision
• Client/Server Systems – Efficient download

II. Software Quality Analysis

While the previous section, Defining Quality, provides a body of knowledge about the facets of software quality, this section
discusses a body of knowledge for software quality analysis. Software quality analysis consists of the processes to analyze
whether the software products under development or maintenance meet the definition of quality as tailored to the particular
project requirements. Planning for a specific quality product and its analysis takes into consideration many factors. Topics
include, but are not limited to, (1) the environment of the system in which the software will reside; (2) the system and
software requirements; (3) the standard components to be used in the system; (4) the specific software standards used in
developing the software; (5) the software standards used for quality; (6) the methods and software tools to be used for
development; (6) the methods, tools, and measurements used for quality; (7) the budget, staff, project organization, plans and
schedule, and (8) the intended users and use of the system.

Some quality attributes (e.g., safety, security) may be in conflict with each other or with other functional requirements, and
tradeoffs may be needed. Techniques may be used in the planning process to help identify where potential trouble spots may
be. Hazard and threat analyses help to identify potential problems for safety and security. Other techniques help to control the
product and changes to it. The possible consequences of failure of the system and the probability of failure are major factors
in defining the degree and scope of its quality requirements. Planning identifies how all of the means available can meet the
needs, as stated in the quality requirements, while ensuring they do not contradict the systems requirements and mandatory
standards. Planning also identifies additional resources and techniques that may be needed beyond those originally proposed
for the product.

A. Definition of Quality Analysis

While quality is the obligation and responsibility of every person on the project, quality analysis consists of processes that
evaluate risks, ensure plans are implemented properly, and examines work products for detects. Quality analysis supports the
goal of quality to provide an organized framework that prevents the introduction of defects in a work product. But, there will
be risks on a project, and there will be mistakes. While the management of risk is the responsibility of management, the
identification of risk items, and the presentation of their likelihood and expected impact in an understandable and practical
manner is the responsibility of the quality analysis program. The quality analysis program exercises processes to detect
defects before the work product containing them enters the next effort. The two principal processes are software quality
assurance (SQA) and verification and validation (V&V).

From the perspective of quality analysis, factors such as those identified in Section I affect the type of quality
analysis program planned for the product. Quality programs for the organization at large are discussed in the
sections on Software Engineering Process and Software Engineering management. In this section, the issue is
quality analysis for a product, where the term product means any output, or artifact, of any process used to build the
final software product. In this sense, a product can be a software requirements specification for one software

sqaswebokmay13 7 06/10/99

component of a system, or an entire system specification, or a design module, code, test documentation, reports from
quality analysis tasks, etc.

The role of quality analysis in building the quality product is to provide management with visibility through the
performance of tasks that assess (examine and measure) the quality of the outputs of the software development
processes while they are developed. These include assessment activities of SQA and V&V that can be performed
both without (static) and with (dynamic) program execution. They may be performed by different people, for
example, by an individual designer, a design team, or by an independent peer or group.

1. Software Quality Assurance

The SQA process provides assurance that the software products and processes in the project life cycle conform to their
specified requirements and adhere to their established plans. The SQA process is a planned systematic set of activities to help
build quality into software from the beginning, that is, by considering the factors above to ensure that the problem is clearly
and adequately stated and that the solution's requirements are properly defined, and expressed. Then SQA keeps the quality
maintained throughout the development of the product.

2. Software Verification and Validation

The V&V process determines whether development products of a given activity conform to the requirements of that
activity and those imposed by previous activities, and whether the final software product (through its evolution)
satisfies its intended use and user needs.2 V&V provides an examination of every product relative both to its
immediate predecessor and to the system requirements it must satisfy.

The V&V process may be conducted in various organizational arrangements. First, to re-emphasize, many V&V
techniques may be employed by the software engineers who are building the product. Second, the V&V process
may be conducted in varying degrees of independence from the development organization. Finally, the integrity
level of the product may drive the degree of independence.

For each process, (SQA or V&V), we discuss plans, activities and techniques, and measurement.

B. Process Plans

1. SQA Plan

The SQA plan defines the processes and procedures that will be used to ensure that software developed for a specific
product is of the highest quality possible and meets its requirements. This plan may be governed by software quality
standards, life cycle standards, quality management standards, and company policies and procedures for quality and
quality improvement. This plan defines SQA tasks, their management, and their schedule in relation to tasks in the
software development plan. The plan may encompass Software Configuration Management and V&V or may call
for separate plans for either of those processes.

The SQA plan identifies documents, standards, practices, conventions, and metrics that govern the project, how they
will be checked and monitored to ensure adequacy or compliance. The SQA plan identifies the procedures for
problem reporting and corrective action, resources such as tools, techniques and methodologies, security for physical
media, training, SQA documentation to be retained. The SQA plan addresses assurance of other supplier software to
the project. The SQA plan also addresses risk management methods and procedures.

2. V&V Plan

2 IEEE Std. 1012-1998

sqaswebokmay13 8 06/10/99

Verification activities yield confirmation by examination of a specific product, that is, output of a process, and
provisions of objective evidence that specified requirements have been fulfilled. Here, these requirements refer to
the requirements of that product, relative to the product from which it is derived; e.g., code is developed to satisfy
the requirements of a design description for a specific module. Validation yields confirmation by examination of a
specific product and provisions of objective evidence that the particular requirements for a specific intended use are
fulfilled. The validation confirms that the product traces back to the software system requirements and satisfies
them. Verification and validation activities are exercised at every step of the life cycle, often on the same product,
possibly using the same techniques in some instances. The difference is in the technique's objectives for that
product, and the supporting inputs to that technique. The V&V plan is the instrument that explains how each
technique will satisfy the objectives of V&V.

C. Activities and Techniques for Quality Analysis

Other sections of the SWEBOK address the actual construction of the software product, that is, the specification of
the software requirements and the design and construction of the product based on the specification. In the SQA or
V&V process, SQA and V&V results are collected into a report for management before corrective actions are taken.
The management of quality analysis is tasked with ensuring the quality of these reports, that is, that the results are
accurate.

The specific tasks a software engineer performs in quality analysis may depend upon both his personal role (e.g.,
programmer, quality assurance staff) and project organization (e.g., test group, independent V&V). To build or
analyze for quality, the software engineer understands development standards and methods and the genesis of other
resources on the project (e.g., components, automated tool support) and how they will be used. The software
engineer performing any quality analysis activities is aware of and understands all considerations affecting quality
analysis: standards for quality analysis, the various resources that influence the product, techniques, and
measurement (e.g., what to measure and how to evaluate the product from the measurements). Other sections of the
SWBOK address the software engineering process.

There are two principal categories for quality analysis:
• Static techniques (no code execution)
• Dynamic techniques (code execution).

Both are used in SQA and in V&V. Specific objectives and organization depend on the project and product
requirements.

1. Static Techniques

Static techniques may be people intensive activities or analytic activities conducted by individuals, with or without
the assistance of automated tools. These support both SQA and V&V. Their specific implementation can serve the
purpose of SQA, verification, or validation, at every stage of development. These static analysis techniques
frequently apply to more than one type of product and seem to fit into these groups:

• People intensive (conducted in some type of meeting)
• Analytic techniques for direct defect finding (intended to find faults)
• Analytic techniques to provide support or produce preliminary findings for use with other static or dynamic

techniques.

a. People Intensive Static Techniques

Two or more people perform these techniques in a meeting. Preparation may be performed ahead of time.
Resources may include checklists and results from analytic techniques and testing. The subject of the technique is
not necessarily the completed product, but may be a portion at any stage of its development. For example, a subset
of the software requirements may be reviewed for a particular set of functionality, or several design modules may be
inspected, or separate reviews may be conducted for each category of test for each of its associated documents
(plans, designs, cases and procedures, reports). With the exception of the walkthrough, these techniques are

sqaswebokmay13 9 06/10/99

traditionally considered to be SQA techniques, but may be performed by others. The technical objectives may also
change, depending on who performs them and whether they are conducted as verification or as validation activities.

Management reviews are discussed in the knowledge area Software Engineering Management. It should be noted
that management may request review support of various plans (e.g., contingency, Software Configuration
Management, software V&V) and reports (e.g., risk assessment, anomaly reports) by software engineers who are
performing quality analysis tasks.

C
on

ce
p

t

R
eq

m
t.

D
es

ig
n

C
od

e

T
es

t

In
st

al
l.

O
p

er
at

.

M
ai

n
te

n
.

Audit X X X X X X X
Inspection X X X X X
Review X X X X X X
Walkthrough X X X X

An audit is an independent evaluation of conformance of software products and processes to applicable regulations,
standards, plans, and procedures. Audits may examine plans like recovery, SQA, and maintenance, design
documentation. Software inspections generally involve the author of a product, while reviews likely do not.
Inspections are usually conducted on a relatively small section of the product, in a couple hour sessions, whereas
reviews and audits are usually broader. The reviews that fall under SQA are technical reviews, that is, on technical
products. Technical reviews and inspections examine products such as software requirement specifications,
software design documents, test documentation, user documentation, installation procedures but the coverage of the
material varies with the technique. The walkthrough is conducted by members of the development group to
examine a specific product.

Specific reviews and audits are sometimes known by the following names:

• System Requirements and System Design 3

• Software Specification (requirements)
• Preliminary Design
• Detailed Design
• Test Readiness
• Post-implementation
• Functional Audit
• Physical Audit

b. Analysis Intensive Static Techniques

These techniques are generally applied individually, although it may be that several people are assigned the
technique, in which case a review may be conducted on the results. Some are tool-driven; others are primarily
manual. Most techniques listed as support may of course find some defects directly but are typically used as support
to other techniques. Some however are listed in both categories because they are used either way. The support
group of techniques also includes various assessments as part of overall quality analysis.

2. Dynamic Techniques

Different kinds of testing are performed throughout the development of software systems. Some testing may fall
under the SQA process, and some under V&V, again depending on project organization. Because both the SQA and

3 Included for completeness, although these are at system level. Software quality analysis may be involved.

sqaswebokmay13 10 06/10/99

V&V plans address testing, this section includes some commentary about testing, but technical references to theory,
techniques for testing, and automation are fully provided in the knowledge area on Software Testing.

The quality analysis process examines every output relative to the software requirement specification to ensure the
output's traceability, consistency, completeness, correctness, and performance. This confirmation also includes
exercising the outputs of the development processes, that is, the analysis consists of validating the code by testing to
many objectives and strategies, and collects, analyzes and measures the results. SQA ensures that appropriate types
of tests are planned, developed, and implemented, and V&V develops plans, strategies, cases and procedures.

Two types of testing fall under SQA and V&V because of their responsibility for quality of materials used in the
project:

• Evaluation and test of tools to be used on the project
• Conformance test (or review of conformance test) of components to be used in the product.

The SWEBOK knowledge area on Software Testing addresses special purpose testing such as usability testing.
Many of these types are also considered and performed during planning for SQA or V&V testing. We list them here
only for completeness:

• Certification test
• Conformance test
• Configuration test
• Installation test
• Reliability test
• Usability test
• Security test
• Safety test
• Statistical test
• Stress test
• Volume test

Occasionally the V&V process may be asked to perform these other testing activities:

• Test monitoring
• Test witnessing
• Test evaluation

Supporting techniques for testing fall under test management, planning and documentation. And V&V testing
generally includes component or module, integration, system, and acceptance testing.

D. Measurement in Software Quality Analysis

The words “error”, “fault”, and “failure” are often used interchangeably and the word “defect” may be used in place
of any of these in describing software problems. IEEE Std 610.12-1990 (“IEEE Standard Glossary of Software
Engineering Terminology”) also gives the terms multiple, but more precise meanings, among which we will use the
following in our discussions:

• Error: “A difference…between a computed result and the correct result”
• Fault: “An incorrect step, process, or data definition in a computer program”
• Failure: “The [incorrect] result of a fault”
• Mistake: “A human action that produces an incorrect result”.

We will try to be consistent by using the terms as defined above in this section on measurement for quality analysis,
which is concerned with faults discovered through the quality analysis process. Mistakes (as defined) are the subject

sqaswebokmay13 11 06/10/99

of the quality improvement process, which is covered in the Knowledge Area Software Engineering Process.
Failures found in testing that are the results of software faults are also of interest in this section, but we will use
"Fault" as the primary term. It is the fault - its discovery, its measurement, and its removal from any software
product - that is the subject of measurement for quality analysis. “Defect” (not defined in 610.12-1990) is
considered here to be the same as fault. Note that "Failure" is the term used in reliability models, because these
models are built from failures (in the sense of the system being unable to perform its requirements) of systems
during testing.

Quality may be defined and planned for a project and its product, and various activities of quality analysis may be
applied to all the products related to the project, but without measurement one still does not know enough about the
product. Evaluations are effective when there is measurement against which to base the evaluations.

1. Fundamentals of Measurement

Theories of measurement establish the foundation on which meaningful measurements can be made. Measuring
implies numbers, and various scales apply to different types of data. Measurement models and frameworks for
software quality enable the software engineer to establish specific product measures as part of the product concept.
These are discussed in the following references:

• Theory
• Scales
• Models
• Framework

Measurement for measurement's sake does not help define the quality. Instead, the software engineer needs to define
specific questions about the product, and hence the objectives to be met to answer those questions. Only then can
specific measures be selected. Basili’s paradigm on Goal-Question-Metric has been used since the early 80's and
seems to be the basis for many software measurement programs. Other important elements deal with
experimentation and data collection. A measurement program has costs in time and money, but may also result in
savings, and methods exist to help estimate the costs of a measurement program. Key topics for measurement
planning are:

• GQM
• Example of applied GQM
• Experimentation
• Methods
• Costing
• Data Collection process
• Examples of company metrics programs

2. Metrics

Data can be collected on various characteristics of software products. Many of the metrics are related to the quality
characteristics defined in Section I of this Knowledge Area. Much of the data can be collected as results of the static
techniques previously discussed and from various testing activities (see Software Testing Knowledge Area). The
types of metrics for which data are collected fall into these categories:

• Quality Characteristics Measures
• Reliability Models & Measures
• Defect Features, .e.g., Counts, density
• Customer satisfaction
• Product features:

• Size (SLOC, function points, number of requirements)
• Structure metrics (e.g., modularity, complexity, control flow)

sqaswebokmay13 12 06/10/99

• Object-Oriented Metrics

3. Measurement Techniques

While the metrics for quality characteristics and product features may be useful in themselves (for example, the
number of defective requirements or the proportion of requirements that are defective), mathematical and graphical
techniques can be applied to aid in interpretation of the metrics. These fit into the following categories:

• Statistically based (e.g., Pareto analysis, run charts, scatter plots, normal distribution)
• Statistical tests (e.g., binomial test; chi-squared test)
• Trend analysis
• Prediction, e.g., Reliability models

4. Defect Characterization

The quality analysis processes may discover defects. Part of the quality analysis is to characterize those defects to
enable understanding of the product, to facilitate corrections to the process or the product and to inform the project
management or customer. Defects can be described in several manners:

• Defect Classification and Descriptions
• Defect Analysis
• Measuring adequacy of the quality analysis activities
• Test coverage
• Benchmarks, profiles, baselines, defect densities

5. Additional quality analysis concerns that measurement supports

• When to stop testing
• Debugging (McConnell)
• SQA and V&V reports

sqaswebokmay13 13 06/10/99

III. Knowledge topics and Reference Matrices

A. References Keyed to Text Sections

REFERENCES:
Section I.A
Defining Software
Quality D

or
fm

an

Fe
nt

on
&

Pf
.

K
ia

ng

L
ap

rie

Le
w

is

L
yu

M
oo

re

M
us

a

Pf
le

eg
er

Pr
es

sm
an

R
at

ik
in

So
m

m
er

vi
lle

W
al

la
ce

Functionality X
 Suitability
 Accuracy
 Interoperability
 Compliance
 Security
Reliability x X X X X X X X
 Maturity
 Fault Tolerance X X
 Recoverability
Efficiency X X X
 Time behavior
 Resource behavior
Usability X X X X X X
 Understandability X X X X
 Learnability
 Operability
Maintainability X X X X X X
 Analyzabiity
 Changeability
 Stability
 Testability X X X
Portability X X X X
 Adaptability X
 Installability
 Conformance
 Replaceability
Dependability X X X X X X
 Availability x X X X X X X
 Reliability X X X X X X X
 Trustability X X X
 Integrity X X X X X
Other facets X X
 Code/object Reusability X X X X X
 Reqts. Traceability X X X X X X
 Explanation Capability X

sqaswebokmay13 14 06/10/99

REFERENCES:
Section II.A and II.B

Definition &
Planning of Quality

Analysis

G
ra

dy

H
or

ch

K
az

m
an

Le
w

is

L
yu

M
cC

on
ne

ll

M
oo

re

M
us

a

Pf
le

eg
er

Pr
es

sm
an

R
at

ik
in

Sc
hu

lm
ye

r

So
m

m
er

vi
lle

W
al

la
ce

/F
uj

ii

W
al

la
ce

Overall X X X X
SQA X X X X X X X x X
VV X X X X X x X x X
Independent V&V X X X x X x X
Hazard, threat anal. X X X X X
Risk assessment x X X x X X X
Performance analysis X X X

REFERENCES:
Overall Quality Checks

K
an

Le
w

is

M
us

a

Pf
le

eg
er

Pr
es

sm
an

R
at

ik
in

So
m

m
er

vi
lle

W
ak

id

Cleanroom X x X X x X
Config. Mgt. Assessment X X X X X
Distr. Arch. Assessment x
Disast. Recov. Plan Assess. X X
Evaluation of New
Constraints
Reusability Assessment
Security Assessment

REFERENCES:
Section II.C.1.a
People-Intensive
Review Techniques

A
ck

er
m

an

G
ra

dy

H
or

ch

M
cC

on
ne

ll

Pf
le

eg
er

Pr
es

sm
an

R
at

ik
in

Sc
hu

lm
ye

r

So
m

m
er

vi
lle

W
al

l/
Fu

ji
i

W
al

la
ce

Le
w

is

Audit X x X X
Inspection x x X X X X X X X X X
Review X X X X X X x X
Walkthrough X X X X X x X

sqaswebokmay13 15 06/10/99

REFERENCES:
Direct Defect Finding

Techniques B
ei

ze
r

Fe
nt

;F
7P

f

Fr
ie

d.
/V

oa
s

H
et

ze
l

H
or

ch

Ip
po

lit
o

L
ev

es
on

Le
w

is

L
yu

M
oo

re

M
us

a

Pf
le

eg
er

Pr
es

sm
an

R
at

ik
in

R
ub

in

Sc
hu

lm
ey

er

So
m

m
er

vi
lle

W
ak

id

W
al

la
ce

Algorithm Analysis X X X X X
Boundary Value Anal. X X X X X X
Change Impact Anal. X X X X X X
Checklists X x
Consistency Analysis X X X
Control Flow Analysis X X X X X X X X
Database Analysis X X X X X X X
Data Flow Analysis X X X X X X X X X
Distrib. Arch. Assess. X
Evaluation of Doc.:
Concept,
Requirements

X X X X X X

Evaluation of Doc.:
Design, Code, Test

X X X X X

Evaluation of Doc.:
User, Installation

X X X X X

Event Tree Analysis X X
Fault Tree Analysis X X X X X
Graphical Analysis X X x X
Hazard Analysis X X X X X X X
Interface Analysis X X X X X X X
Formal Proofs X X X X X
Mutation Analysis X X X X
Perform. Monitoring X X
Prototyping X X X X X
Reading X X
Regression Analysis X X X X X X
Simulation X X
Sizing & Timing Anal. X x X X X X
Threat Analysis X X X

sqaswebokmay13 16 06/10/99

REFERENCES:
Support to Other
Techniques
An= Analysis

B
ei

ze
r

C
on

te

Fr
ie

d.
/V

oa
s

H
et

ze
l

H
ou

k

L
ev

es
on

Le
w

is

Ly
u

M
us

a

Pf
le

eg
er

Pr
es

sm
an

R
at

ik
in

R
ub

in

So
m

m
er

vi
lle

Fr
ei

d/
V

oa
s

W
al

la
ce

/F
uj

i

W
al

la
ce

Change Impact
An

X X X X

Checklists X X X X X
Complexity An X X X X X
Coverage An X X X
Consistency An x X X
Criticality An X X X X
Hazard An X X X X X
Sensitivity An X X
Slicing X x X
Test documents X x X X X x
Tool evaluation X X X
Traceability An X X X X X X
Threat An X X X X X

REFERENCES:
Testing Special to

SQA or V&V

Fr
ie

d.
/V

oa
s

L
ev

es
on

L
yu

M
us

a

Pf
le

eg
er

Pr
es

sm
an

R
at

ik
in

R
ub

in

Sc
hu

lm
ey

er

So
m

m
er

vi
lle

V
oa

s

W
ak

id

W
al

la
ce

/F
uj

i

Conformance Test. X X
Configuration Test. X
Certification Testing X X X X X X X
Reliability Testing X X X X X
Safety Testing X x x X
Security Testing X
Statistical Testing X x X X X X
Usability Testing X X
Test Monitoring X
Test Witnessing X

sqaswebokmay13 17 06/10/99

REFERENCES:
Section II.D
Measurement in
Software Quality
Analysis B

as
ili

B
ei

ze
r

C
on

te

C
hi

lla
ra

ge
*

Fe
nt

on

Fe
nt

on
/P

fl
eg

.
…

...
Fr

ie
d.

/V
oa

s

G
ra

dy

H
et

ze
l

H
or

ch

K
an

M
us

a/
A

ck
er

.
m

an
Le

w
is

L
yu

M
us

a

Pe
ng

Pf
le

eg
er

Pr
es

sm
an

M
cC

on
ne

ll

R
at

ik
in

Sc
hu

lm
ey

er

Sa
la

m
on

n

So
m

m
er

vi
lle

W
ak

id

Z
el

ko
w

it
z

Benchmarks, profiles, etc. X X X X X
Company Metric Progs. X X X X X X
Costing x x X X X X X X X X X
Customer satisfaction X X
Data Collection process X X X X X
Debugging x x X X X X
Defect Analysis x

x
x X X X X X X X X X X X X

Defect Classif. and Descr. X X X X X X X X X X X X
Defect Features X X X X X X x X
Example of applied GQM X X
Experimentation: X x X X X X
Framework X X
GQM X X X X X X
Methods X X X X X x x
Metrics X X X X X X X X X X X X X
Models X X X x
Prediction X X X X X
Prod. features: O/O Metr. X
Prod. Features: Structure X X X X X X
Product features: Size X X X X X
Quality Attributes X X X X
Quality Character. Meas. X X X X
Reliab. Models & Meas. X X X X X X X X
Scales X X X X
SQA & V&V reports *** X X X
Statistical tests X X X X X X
Statistical Analysis &
measurement

X x X X X x x X X

Test coverage X X
Theory X X X X
Trend analysis X
When to stop testing X X X

*

* Also see Reference 22, Musa-Ackerman

B. Standards

Standards for quality analysis address quality definitions, quality analysis planning specifically for SQA and V&V
processes and their documentation, security and safety tests, and measurement. For the most part, the standards do
not specify how to conduct specific techniques for quality analysis. One exception is the standard on software
reviews (IEEE Std 1028). Other standards may either govern the software quality analysis process (e.g., ISO 12207)
or enter into the planning process for software quality analysis, and these are addressed elsewhere in the SWEBOK,
e.g. Software Configuration Management.

sqaswebokmay13 18 06/10/99

Quality
Requirements
& planning

Reviews/
Audits

SQA/ V&V
planning

Safety/
security
analysis, tests

Documentation
of quality
analysis

Measurement

ISO 9126 X
IEC 61508 X
ISO/IEC 15026 X
ISO FDIS 15408 X X
FIPS 140-1 X X
IEEE 730 X X X
IEEE 1008 X
IEEE 1012 X X X X
IEEE 1028 X
IEEE 1228 X
IEEE 829 X
IEEE 982.1,.2 X
IEEE 1044 X
IEEE 1061 X

IV. References

A. Basic SWEBOK References

1. Dorfman, M., and R. H. Thayer, Software Engineering. IEEE Computer Society Press, 1997. [D]
2. Moore, J. W., Software Engineering Standards: A User’s Road Map. IEEE Computer Society Press, 1998. [M]
3. Pfleeger, S. L., Software Engineering – Theory and Practice. Prentice Hall, 1998. [Pf]
4. Pressman, R. S., Software Engineering: A Practitioner’s Approach (4th edition). McGraw-Hill, 1997. [Pr]
5. Sommerville, I., Software Engineering (5th edition). Addison-Wesley, 1996. [S]
6. Vincenti, W. G., What Engineers Know and How They Know It – Analytical Studies form Aeronautical

History. Baltimore and London: John Hopkins, 1990. [V]

B. Additional References

1. Ackerman , Frank A., "Software Inspections and the Cost Effective Production of Reliable Software," [Dorf]
pp. 235-255

2. Basili , Victor R. and David M. Weiss, A Methodology for Collecting Valid Software Engineering Data, IEEE
Transactions on Software Engineering, pp 728-738, November 1984.

3. Beizer. Boris, Software Testing Techniques, International Thomson Press, 1990.
4. Chillarege, Ram, Inderpal S. Bhandari, Jarir K Chaar et al, Orthogonal Defect Classification; a Concept for In-

process Measurements, IEEE Transactions in Software Engineering , November 1982, 943-956
5. Chilllarege, Ram, Chap 9, pp359-400, in [Lyu].
6. Conte, S.D., et al, Software Engineering Metrics and Models, The Benjamin / Cummings Publishing Company,

Inc. , 1986
7. Fenton, Norman E. and Shari Lawrence Pfleeger, Software Metrics, International Thomson Computer Press,

1996
8. Fenton, Norman E., Software Metrics, International Thomson Computer Press, 1995
9. Freidman, Michael A., and Jeffrey M. Voas, Software Assessment, John Wiley & Sons, Inc., 1995
10. Grady, Robert B, Practical Software Metrics for project Management and Process Management, Prentice Hall,

Englewood Cliffs, NJ 07632, 1992
11. Hetzel, William, The Complete Guide to Software Testing, QED Information Sciences, Inc., 1984, pp177-197
12. Horch, John W., Practical Guide to Software Quality Management, Artech-House Publishers, 1996

sqaswebokmay13 19 06/10/99

13. Ippolito, Laura M. and Dolores R. Wallace, NISTIR 5589, A Study on Hazard Analysis in High Integrity
Software Standards and Guidelines,@ U.S. Department. of Commerce, Technology Administration, National
Institute of Standards and Technology, Jan 1995. [Ipp] http:// hissa.nist.gov/HAZARD/

14. Kan, Stephen, H., Metrics and Models in Software Quality Engineering, Addison-Wesley Publishing Co., 1994]
15. Kazman, R., M. Barbacci, M. Klein, S. J. Carriere, S. G. Woods, Experience with Performing Architecture

Tradeoff Analysis, Proceedings of ICSE 21, (Los Angeles, CA), IEEE Computer Society, May 1999.
16. Kiang, David, Harmonization of International Software Standards on Integrity and Dependability, Proc. IEEE

International Software Engineering Standards Symposium, IEEE Computer Society Press, Los Alamitos, CA,
1995, pp. 98-104.

17. Laprie, J.C., Dependability: Basic Concepts and Terminology , IFIP WG 10.4, Springer-Verlag, New York
1991

18. Leveson, Nancy, SAFEWARE: system safety and requirements,Addison-Wesley, 1995
19. Lewis, Robert O., Independent Verification and Validation, John Wiley & Sons, Inc., 1992 [Lew]
20. Lyu, Michael, Handbook of Reliability Engineering
21. McConnell, Seven C., Code Complete: a practical handbook of software construction, Microsoft Press, 1993
22. Musa, John D., and A. Frank Ackerman, "Quantifying Software Validation: When to stop testing?" IEEE

Software, May 1989, 31-38.
23. Musa, John, Software Reliability Engineering, McGraw Hill, 1998
24. Palmer, James D., "Traceability," In: [Dorf], PP. 266-276
25. Peng, Wendy W. and Dolores R. Wallace, "Software Error Analysis," NIST SP 500-209, National Institute of

Standards and Technology, Gaithersburg, MD 20899, December 1992. http://hissa.nist.gov/SWERROR/
26. Ratikin, Steven R., Software Verification and Validation, A Practitioner's Guide, Artech House, Inc., 1997
27. Rubin, Jeffrey, Handbook of Usability Testing, JohnWiley & Sons, 1994
28. Salamon, W.J., D. R. Wallace, "Quality Characteristics and Metrics for Reusable Software (Preliminary

Report)," NISTIR 5459, May 1994. http://hissa.nist.gov/REUSEMET/
29. Schulmeyer, Gordon C., and James I. McManus, Handbook of Software Quality Assurance, Third Edition,

Prentice Hall, NJ, 1998.
30. Schulmeyer, Gordon C., and James L. McManus, Handbook of Software Quality Assurance, Van Nostrand

Reinhold Company, Inc., 1987SEE NEW BOOK 1998
31. Voas, Jeffrey , "Certifying Software For High Assurance Environments, " IEEE Software, July-August, 1999.
32. Wakid, Shukri, D. Richard Kuhn, and Dolores R. Wallace, "Software Measurement: Testing and Certification,"

IEEE Software, July-August 1999
33. Wallace, Dolores R., and Roger U. Fujii, "Software Verification and Validation: An Overview," IEEE Software,

May 1989, 10-17
34. Wallace, Dolores R., Laura Ippolito, and Barbara Cuthill, AReference Information for the Software Verification

and Validation Process,@ NIST SP 500-234, NIST, Gaithersburg, MD 20899, April, 1996.
http://hissa.nist.gov/VV234/

35. Zelkowitz, Marvin V. and Dolores R. Wallace, Experimental Models for Validating Computer Technology,
Computer, Vol. 31 No.5, 1998 pp.23-31.

C. Standards

1. FIPS 140-1, Jan. 1994, Security Requirements for Cryptographic Modules, Jan. 1994
2. IEC 61508 Functional Safety - Safety -related Systems Parts 1,2
3. IEEE 610.12-1990, Standard Glossary of Software Engineering Terminology
4. IEEE 730-1998 Software Quality Assurance Plans
5. IEEE 829 -1998 Software Test Documentation
6. IEEE Std 982.1 and 982.2 Standard Dictionary of Measures to Produce Reliable Software
7. IEEE 1008-1987 Software Unit Test
8. IEEE 1012-1998 Software Verification and Validation
9. IEEE 1028 -1997 Software Reviews
10. IEEE 1044 -1993 Standard Classification for Software Anomalies
11. IEEE Std 1061-1992 Standard for A Software Quality Metrics Methodology

sqaswebokmay13 20 06/10/99

12. IEEE Std 1228-1994 Software Safety Plans
13. ISO 9126 Software Product Evaluation - Quality Characteristics and Guidelines for Their Use, 1991
14. ISO 12207 Software Life Cycle Processes 1995
15. ISO/IEC 15026:1998, Information technology -- System and software integrity levels.
16. The Common Criteria for Information Technology Security Evaluation (CC) VERSION 2.0 / ISO FDIS 15408

V. Appendices

A. Bloom's Taxonomy Related to Software Quality Analysis

All software engineers are responsible for the quality of the products they build. We consider that the knowledge
requirements for topics in Software Quality Analysis vary depending on the role of the software engineer. We
choose the roles of programmer or designer who will design and build the system, possibly be involved in
inspections and reviews, analyze his work products statically, and possibly perform unit test. This person will turn
over the products to others who will conduct integration and higher levels of testing. This person may be asked to
submit data on development tasks, but will not conduct analyses on faults or on measurements. The Software
Quality Assurance or Verification and Validation specialist will plan and implement the processes for these two
areas. The project manager of the development project will use the information from the software quality analysis
processes to make decisions.

We use the following abbreviations for Bloom's taxonomy:
Knowledge: KN Analysis : AN
Comprehension: CO Synthesis SY
Application: AP Evaluation EV

Topic Programmer SQA/VV Project Manager
Definition of Quality SY SY AN
Definition of SQA, VV process AP SY AN
Plans AP SY AN
 Activities and Techniques
 Static- people intensive EV EV AN
 Static- Analysis EV EV AN
 Dynamic SY, EV* EV AN
Measurement
 Fundamentals AP EV AN
 Metrics AP EV AN
 Techniques AP EV AN
 Defect Characterization AP EV AN
 Additional concerns AP EV AN
* The knowledge level depends on the responsibility of the programmer regarding testing.

sqaswebokmay13 21 06/10/99

B. Vincinti’s Categories Related to Software Quality Analysis

Fundamental Design Concept Knowledge Area or Source

Concepts Related to Design Project:

Operating principles of hardware components Computer Science/ECE (see Appendix C)

Operating principles of operating systems Computer Science (see Appendix C)
Operating principles of programming languages, data
structures, algorithms, heuristic methods

Computer Science (see Appendix C)

Relevant data communication methods & protocols Computer Science/ECE (see Appendix C)

Necessary principles of human-computer interaction Computer Science/CogSci (see Appendix C)
SE Project Quality Management Software Engineering Management Knowledge Area
Specifically Related to Software Quality Analysis:

Quality plan requires identification of relevant
attributes and standards for project

QA §I: Defining Quality Project;
Requirements Engineering Knowledge Area

Prevention of problems is primary to building quality
product

Software Process, Software Infrastructure,
Configuration Control Knowledge Areas

Software quality assurance process QA §II.A.1: Software Quality Assurance

Customer satisfaction is primary goal QA §II.A.2: Software Verification & Validation

Criteria and Specifications Knowledge Area or Source

Product quality specifications QA §I: Defining Quality Product; Software Requirements Analysis
Knowledge Area

Quality process plans QA §II.B: Process Plans

Specifications of relevant
measurements and tests

QA §II.D: Measurement in Software Quality Analysis; Software Testing
Knowledge Area

Theoretical Tools Knowledge Area or Source

Formal/Mathematical V&V QA §II.D.1.a: Measurement in Software Quality Analysis; Logic and
Discrete Mathematics; Theory of Computing

Analysis of Algorithms Computer Science (see Appendix C)

Necessary Human Factors &
Interaction

Computer Science (see Appendix C)

Design of Quality Metrics QA §II.D: Measurement in Software Quality Analysis

Quantitative Data Knowledge Area or Source

Error, Fault, Failure Data QA §II.D.4: Defect Characterization
Comparative Metrics QA §II.D: Measurement in Software Quality Analysis

Human Performance Data Computer Science/CogSci*
Benchmark Data/Testing Data QA §II.D.1-3: Fundamentals of Measurement, Metrics, and Techniques

sqaswebokmay13 22 06/10/99

Practical Considerations Knowledge Areas

Dependability Needs QA §I.B: Dependability
Special Situation Measures QA §I.C Special Situations; Computer Science (see Appendix C)

Special Human Needs QA §I.3 Usability; Computer Science/CogSci (see Appendix C)
Saving Future Costs QA §I: Defining Quality Product (Design of reusable code); Software

Evolution and Maintenance Knowledge Area
Quality Criteria Tradeoffs QA §I: Defining Quality Product

Design Instrumentalities Knowledge Areas

Object Oriented Methods Software Process Knowledge Area

Structured Development Methods Software Process, Software Infrastructure Knowledge Areas
CASE Tools and Methods Software Infrastructure Knowledge Area
Code Reuse QA §I: Defining Quality Product: Software Infrastructure Knowledge

Area (Reuse Libraries)
Clean room QA §II.A.1: Software Quality Assurance

Independent V&V Teams QA §II.A.2: Software Verification & Validation
Testing Procedures QA §II.A.2: Software Verification & Validation; Software Testing

Knowledge Area
Misc. V&V Techniques QA §II.A.2: Software Verification & Validation

C. Knowledge from Related Disciplines

Knowledge Item Related Discipline/Subject Area Knowledge
Level (Bloom*)

Operating principles of hardware
components

Computer Science: AR or ECE: Digital
Systems

CO

Operating principles of operating systems Computer Science: OS CO/AP

Operating principles of programming
languages, data structures, algorithms,
heuristic methods

Computer Science: PF, AL, IM, AP

Relevant data communication methods &
protocols

Computer Science: AR, NC or
ECE: Data Communication

CO

Necessary principles of human-computer
interaction

Computer Science: CI or
Cognitive Science: HCI

AN

Analysis of Algorithms Computer Science: FO, AL CO

Necessary Human Factors & Interaction Computer Science: CI CO

Human Performance Data Computer Science/CogSci* AP

Special Situation Measures Computer Science: IS, IM, CN, NC, etc.
(as appropriate to situation)

AP

Special Human Needs Comp. Science: CI; Cognitive Science
(as appropriate to need)

CO

Metrics Design and Use Math/Stats: Applied Statistics AN/SY

* Abbreviations of Bloom Levels are those used in Appendix A

SWEBOK: Software Requirements Engineering Knowledge Area
Description

Version 0.5

Pete Sawyer and Gerald Kotonya
Computing Department,

Lancaster University
United Kingdom

{sawyer} {gerald} @comp.lancs.ac.uk

Table of contents

1. Introduction
2. Reference material used
3. Software requirements
4. The context of software requirements engineering
5. Software requirement engineering breakdown: processes and activities
Appendix A - Summary of requirements engineering breakdown
Appendix B - Matrix of topics and references
Appendix C - Software requirements engineering and Bloom's taxonomy
Appendix D - Software requirements engineering reference material

1. Introduction
This document proposes a breakdown of the SWEBOK Software Requirements Engineering Knowledge
Area. The knowledge area was originally proposed as 'Software Requirements Analysis'. However, as a
term to denote the whole process of acquiring and handling of software requirements, 'Requirements
Analysis' has been largely superceded by 'Requirements Engineering'. We therefore use 'Requirements
Engineering' to denote the knowledge area and 'Requirements Analysis' as one of the activities that
comprise SRE.

Requirements engineering is of great economic importance to the software industry. The cost of fixing
errors in the system requirements tends to increase exponentially the longer they remain undetected.
Projects waste enormous resources rewriting code that enshrines mistaken assumptions about customers'
needs and environmental constraints. There is therefore considerable risk involved in requirements
engineering yet the maturity of most software development organizations' requirements engineering
processes lags well behind that of their down-stream life-cycle processes. This is compounded by the fact
that requirements engineering is tightly time- and resource-bounded and time spent analysing requirements
is often wrongly perceived to be unproductive time. To help move forward from this situation, this
knowledge area description sets out a proposal for the fundamental knowledge needed by software
engineers to perform effective requirements engineering.

The issue of who should perform requirements engineering is, however, controversial. Requirements
engineering requires a set of skills that intersect with those of software engineering but which also includes
skills outside of this set. It is also important Requirements engineering is not always a 'software' only
activity. For certain classes of system (e.g. embedded systems), it may need expert input from disciplines.
For this reason, we refer in this document to the 'requirements engineer' rather than the 'software engineer'.
This is not to suggest that software engineers cannot 'do' requirements engineering, but rather to emphasize
that the role of the requirements engineer is a distinct one that mediates between the domain of software
development and the domain of the software's customer(s) (application domain). Requirements engineering
may not be the preserve of software engineers but it should be performed by people with software
engineering knowledge.

2. References used
All the references from the jump-start documents are used here, namely [Dor97, Pfl98, Pres97, Som96,
Tha97]. [Dor97, Pfl98, Pres97, Som96] place requirements engineering in the context of software
engineering. This is a useful first step in understanding requirements engineering. [Tha97] is an extensive
collection of papers tackling many issues in requirements engineering, and most of the topics that make up
the knowledge area (section .

This initial list of references has been supplemented with additional requirements engineering specific and
other relevant references1. Key additional references are [Dav93, Kot98, Lou95, Som97, Tha90, Tha93].
[Dav93] contains extensive discussion on requirements structuring, models and analysis. [Kot98] is an
extensive text on requirements engineering covering most of the knowledge area topics. [Som97] is a
useful practitioner’s guide to good requirements engineering. [Tha90] is an extensive and useful collection
of standards and guidelines for requirements engineering.

3. System requirements
At its most basic, a computer-based system requirement can be understood as a property that the system
must exhibit in order for it to adequately perform its function. This function may be to automate some part
of a task of the people who will use the system, to support the business processes of the organisation that
has commissioned the system, controlling a device in which the software is to be embedded, and many
more. The functioning of the users, or the business processes or the device will typically be complex and,
by extension, the requirements on the system will be a complex combination of requirements from different
people at different levels of an organisation and from the environment in which the system must execute.

1 [Ama97, And96, Che90,Gog93, Hal96, Har93, Hum88, Hum89, Pau96, Sid96, Rud94]

Clearly, requirements will vary in intent and in the kinds of properties they represent. A crude distinction is
often drawn between:
• Capabilities that the system must provide, such as saving a file or modulating a signal. Capabilities are

sometimes known as functional requirements.
• Constraints that the system must operate under, such as having a probability of generating a fatal error

during any hour of operation of less than 1 * 10-8. Constraints are sometimes known as non-functional
or quality requirements.

• A constraint on the development of the system (e.g. 'the system must be developed using Ada').
• A specific constraint on the system (e.g. 'the sensor must be polled 10 times per second').

In practice, this distinction is hard to apply rigidly and it is difficult to formulate a consistent definition of
the distinction between them. Constraints are particularly hard to define and tend to vary from vaguely
expressed goals to very specific bounds on the software's performance. Examples of these might be: that
the software must increase the call-center's throughput by 20%; and that the task will return a result within
10ms. In the former case, the requirement is at a very high level and will need to be elaborated into a
number of specific capabilities which, if all satisfied by the software, should achieve the required
improvement in throughput. In the latter case, the requirement will constrain the manner in which the
software engineers implement the functionality needed to compute the result.

This also illustrates the range of levels at which requirements are formulated. The standard, though rather
unsatisfactory, way of distinguishing levels of requirements is as 'user' or 'system' requirements. User
requirements are the direct requirements of the people who use or otherwise have a stake in (the
'stakeholders') the system. They consider the system to be a 'black box' and are only concerned with what is
externally exhibited by the system. Their collection, organisation and analysis is crucial to gaining a clear
understanding of the problem for which the computer system is to provide a solution and its likely cost.
This understanding has to be validated and trade-offs negotiated before further resources are committed to
the project. The user requirements therefore need to be expressed in terms that allow the stakeholders to do
this validation. This usually means the requirements are expressed using a structured form of natural
language to describe the system's effect on the stakeholders' business domain. Exceptionally, this may be
supplemented by models using specialized software and systems engineering notations, but used carefully
so that they can be understood with minimal explanation.

Software engineers who are experts in the stakeholders' domain are very rare so they cannot be expected to
take a list of user requirements, interpret their meaning and translate them into a configuration of software
and other system components that satisfy the user requirements. In most cases, therefore, user requirements
are elaborated by the requirements engineer (together with expert input on the application domain), into a
number of more detailed requirements that more precisely describe what the system must do. This usually
entails deploying engineering skills to construct models of the system in order to understanding the logical
partitioning of the system, its context in the operational environment and the data and control
communications between the logical entities. A side-effect of this is that new requirements (emergent
properties) will emerge as a conceptual architecture of the system starts to take shape. It is also likely to
reveal problems with the user requirements (such as missing information) which have to be resolved in
partnership with the stakeholders.

The result of this process is a set of detailed and more rigorously defined requirements. These are the
system requirements (software and system requirements). Because the intended readership is technical, the
system requirements can make use of modeling notations to supplement their textual descriptions. The
requirements enable a system architect to propose a solution architecture. They form the baseline for the
real development work so they should enable detailed planning and costs to be derived.

The above description implies a deterministic process where user requirements are elicited from the
stakeholders, elaborated into system requirements and passed over to the development team. This is an
idealized view. In practice, many things conspire to make requirements engineering one of the riskiest and
most poorly understood parts of the software life cycle. The requirements engineer may interpret the
stakeholders' requirements wrongly, the stakeholders may have difficulty articulating their requirements, or

technology, market conditions or the customer's business processes may change mid-way through
development.

All of these things militate against the ideal of having a requirements baseline frozen and in place before
development begins. Requirements will change and this change must be managed by continuing to 'do'
requirements engineering throughout the life-cycle of the project. In a typical project the activities of the
requirements engineer evolve over time from elicitation and modeling to impact analysis and trade-off
negotiation. To do this effectively requires that the requirements are carefully documented and managed so
that the impact of proposed changes can be traced back to the affected user requirements and forwards to
the affected implementation components.

What we have described above refers to requirements on the system (the 'product'). Requirements can also
be imposed on how the system is developed (the 'process'). Process requirements are also important
because they can impact on development schedules, development costs and the skills required of the
developers. Thus, it is important to (for example) understand the implications of working for a customer
who requires that the software contractor has achieved accreditation to CMM level 3. An important process
requirement that every project has is a cost constraint.

4. The context of software requirements engineering
For many types of system it is impossible to separate the requirements for the software from the broader
requirements for the system as a whole. As well as software, the system may include computer hardware
and other types of hardware device which are interfaced to the computer and operational processes which
are used when the system is installed in some working environment.

Computer-based systems fall into two broad types:

1. User-configured systems where a purchaser puts together a system from existing software products.
The vast majority of personal computer systems are of this type. ‘Systems engineering’ is the
responsibility of the buyer of the software, which is installed on a general-purpose computer. The
software requirements for this type of system are created by the companies which develop the different
software products from customer requests and from their perception of what is marketable.

2. Custom or bespoke systems where a customer produces a set of requirements for a hardware/software
system and a contractor develops and delivers that system. The customer and the contractor may be
different divisions within the same organization or may be separate companies. The system
requirements describe services to be provided by the system as a whole and, as part of the systems
engineering process, the specific requirements for the software in the system are derived. Custom
systems vary in size from very small embedded systems in consumer devices such as microwaves
ovens, to gigantic command and control systems such as military messaging systems.

There are three important classes of custom systems:
• Information systems

These are systems that are primarily concerned with processing information that is held in some
kind of database. They are usually implemented using standard computer hardware (e.g.
mainframe computers, workstations, PCs) and are built on top of commercial operating systems.
For these systems, requirements engineering is primarily software requirements engineering.

• Embedded systems
These are systems where software is used as a controller in some broader hardware system, They
range from simple systems (e.g. in a CD player) to very complex control systems (e.g. in a
chemical plant). They often rely on special purpose hardware and operating systems.
Requirements engineering for these systems involves both hardware and software requirements
engineering.

• Command and control systems
These are, essentially, a combination of information systems and embedded systems where
special-purpose computers provide information, which is collected and stored in a database and
then used to help people make decision. These systems usually involve a mix of different types of

computer, which are networked in some way. Within the whole system, there may be several
embedded systems and information systems. Air traffic control systems, railway signaling
systems, military communication systems are examples of command and control systems.
Requirements engineering for these systems includes hardware and software specification and a
specification of the operational procedures and processes.

The complete requirements engineering process spans several activities from the initial statement of
requirements through to the more detailed development specific software requirements. The process takes
place after a decision has been made to acquire a system. Before that, there are activities concerned with
establishing the business need for the system, assessing the feasibility of developing the system, and setting
the budget for the system development.

The requirements engineering process often includes some initial design activity where the overall structure
(architecture) of the system is defined. This activity has to be carried out at this stage to help structure the
system requirements and to allow the requirements for different sub-systems to be developed in parallel.

The requirements engineering processes will vary across organizations and projects. Important factors that
are likely to influence this variation include:
• The nature of the project. A market-driven project that is developing a software product for general

sale imposes different demands on the requirements engineering process than does a customer-driven
project that is developing bespoke software for a single customer. For example, a strategy of
incremental releases is often used in market-driven projects while this is often unacceptable for
bespoke software. Incremental release imposes a need for rigorous prioritisation and resource
estimation for the requirements to select the best subset of requirements for each release. Similarly,
requirements elicitation is usually easier where there is a single customer than where there are either
only potential customers (for a new product) or thousands of existing but heterogeneous existing
customers (for a new release of an existing product).

• The nature of the application. Software requirements engineering means different things to (for
example) information systems and embedded software. In the former case, a software development
organisation is usually the lead or the only contractor. The scale and complexity of information
systems projects can cause enormous difficulties, but at least the software developer is involved from
initial concept right through to hand-over. For embedded software the software developer may be a
subcontractor responsible for a single subsystem and have no direct involvement with eliciting the user
requirements, partitioning the requirements to subsystems or defining acceptance tests. The
requirements will simply be allocated to the software subsystem by a process that is opaque to the
software contractor. A complex customer / main contractor / subcontractor project hierarchy is just one
of many factors that can greatly complicate resolution of any problems that emerge as the software
contractor analyses the allocated requirements.

Because of the artificiality in distinguishing between system and software requirements, we henceforth
omit the word ‘software’ and talk about ‘requirements engineering’ except where it is helpful to make a
distinction. This is also reflected by the coverage of requirements engineering by standards. Requirements
documentation is the only aspect of requirements engineering that is covered by dedicated standards. Wider
requirements engineering issues tend to be covered only as activities of software engineering or systems
engineering. Current process improvement and quality standards offer only limited coverage of
requirements engineering issues despite its place at the root of software quality problems.

5. Software requirements engineering breakdown: processes and activities
There are broadly two common ways of decomposing requirements engineering knowledge. The first is
exemplified by the European Space Agency's software engineering standard PSS-05 [Maz96]. Here, the
knowledge area is decomposed at the first level into the 2 topics of user requirements definition and
software requirements specification. This is broadly what we described in section 2 and is a useful starting
point (which is why we described it). However, as a basis for the knowledge area breakdown it confuses
process activities and products with knowledge and practice.
Process knowledge is crucial but we prefer to separate out process issues from knowledge. The knowledge
area topics correspond approximately to process tasks but they tend to be enacted concurrently and

iteratively rather than in series as is implied by a breakdown based on PSS-05's model. The breakdown we
have chosen broadly corresponds to that in [Som97 and Kot98] and is orthogonal to PSS-05. It comprises 5
topics:

• The requirements engineering process.
• Requirements elicitation.
• Requirements analysis.
• Requirements validation.
• Requirements management.

Figure 1 shows the coarse-grain requirements engineering process model.

Figure 1 Coarse grain requirements engineering process

5.1 The requirements engineering process
This section is concerned with introducing the requirements engineering process and to orient the
remaining 4 topics and show how requirements engineering dovetails with the overall software life-cycle.
This section also deals with contractual and project organisation issues. The topic is broken down into 4
subtopics.

5.1.1 Process models.
This subtopic is concerned with introducing a small number of generic process models. The purpose is to
lead to an understanding that the requirements process:
• is not a discrete front-end activity of the software life-cycle but rather a process that is initiated at the

beginning of a project but continues to operate throughout the life-cycle;
• is connected to the overall software process by the life-cycle of requirements and the involvement of

the requirements engineer;
• will need to be tailored to the organisation and project context.

In particular, the subtopic provides the context that allows the software engineer to understand how
requirements elicitation, analysis, validation and management fit together.

5.1.2 Process actors.
This subtopic introduces the roles of the people who enact the requirements engineering process. The key
people are the system stakeholders (users and other people who have a stake in the software) and the
requirements engineer. The software engineering roles of (for example) system architect, tester and quality
assurance are also described with reference to requirements engineering.
5.1.3 Process support.
This subtopic introduces the resources required and consumed by the requirements engineering process.
This includes human resources, training requirements, methods and tools.

Requirements
elicitation

Requirements
analysis and
negotiations

Requirements
documentation

Requirements
validation

Requirements document

System document

User needs
Domain information

Existing system information
Regulations
Standards

etc
Agreed
requirements

5.1.4 Process improvement.
This subtopic is concerned with quality. Its purpose is to emphasize the key role requirements engineering
plays in terms of the cost, timeliness and customer satisfaction of software products. It will help orient the
requirements engineering process with quality standards and process improvement models for software and
systems.

Links to common themes
Quality Software process improvement (SPI) recognizes the link between

process and software quality. The process improvement subtopic is
the one most concerned with quality here. This contains links to
SPI standards such as the software and systems engineering
CMMs, the forthcoming ISO/IEC 15504 (SPICE) and ISO 9001-3.
Requirements engineering is at best peripheral to these and only
work to address requirements engineering processes specifically, is
the requirements engineering good practice guide (REGPG) [Som
97].

Standards SPI standards as above. In addition, life-cycle software engineering
standards ISO/IEC 12207 and ESA PSS-05 apply, in part, to the
software requirements engineering process.

Measurement Measurement is poorly developed for software requirements
engineering processes. Where measurement is applied at all it is at
a coarse level of granularity: e.g. total numbers of requirements,
numbers of requirements changes.

Tools We are aware of no application of tools to manage the
requirements engineering process although there may be a role for
workflow.

5.2 Requirements elicitation
This topic covers what is sometimes termed 'requirements capture', 'requirements discovery' or
'requirements acquisition'. It is concerned with where requirements come from and how they can be
collected by the requirements engineer. Requirements elicitation is the first stage in building an
understanding of the problem the software is required to solve. It is fundamentally a human activity and is
where the stakeholders are identified and relationships established between the development team (usually
in the form of the requirements engineer) and the customer. There are 2 main subtopics.

5.2.1 Requirements sources
In a typical system, there will be many sources of requirements and it is essential that all potential sources
are identified and evaluated for their impact on the system. This subtopic is designed to promote awareness
of different requirements sources and frameworks for managing them. The main points covered are:
• Goals. The term 'Goal' (sometimes called 'business concern' or 'critical success factor') refers to the

overall, high-level objectives of the system. Goals provide the motivation for a system but are often
vaguely formulated. Requirements engineers need to pay particular attention to assessing the impact
and feasibility of the goals.

• Domain knowledge. The requirements engineer needs to acquire or to have available knowledge about
the application domain. This enables them to infer tacit knowledge that the stakeholders don't
articulate, inform the trade-offs that will be necessary between conflicting requirements and sometimes
to act as a 'user' champion.

• System stakeholders. Many systems have proven unsatisfactory because they have stressed the
requirements for one group of stakeholders at the expense of others. Hence, systems are delivered that
are hard to use or which subvert the cultural or political structures of the customer organisation. This
subtopic is designed to alert the requirements engineer to the need to identify, represent and manage
the 'viewpoints' of many different types of stakeholder.

• The operational environment. Requirements will be derived from the environment in which the
software will execute. These may be, for example, timing constraints in a real-time system or

interoperability constraints in an office environment. These must be actively sought because they can
greatly affect system feasibility and cost.

• The organizational environment. Many systems are required to support a business process and this may
be conditioned by the structure, culture and internal politics of the organisation. The requirements
engineer needs to be sensitive to these since, in general, new software systems should not force
unplanned change to the business process.

5.2.2 Elicitation techniques
When the requirements sources have been identified the requirements engineer can start eliciting
requirements from them. This subtopic concentrates on techniques for getting human stakeholders to
articulate their requirements. This is a very difficult area and the requirements engineer needs to be
sensitized to the fact that (for example) users may have difficulty describing their tasks, may leave
important information unstated, or may be unwilling or unable to cooperate. It is particularly important to
understand that elicitation is not a passive activity and that even if cooperative and articulate stakeholders
are available, the requirements engineer has to work hard to elicit the right information. A number of
techniques will be covered but the principal ones are:
• Interviews. Interviews are a 'traditional' means of eliciting requirements. It is important to understand

the advantages and limitations of interviews and how they should be conducted.
• Observation. The importance of systems' context within the organizational environment has led to the

adaptation of observational techniques for requirements elicitation whereby the requirements engineer
learns about users' tasks by immersing themselves in the environment and observing how users interact
with their systems and each other. These techniques are relatively new and expensive but are
instructive because they illustrate that many user tasks and business processes are too subtle and
complex for their actors to describe easily.

• Scenarios. Scenarios are valuable for providing context to the elicitation of users' requirements. They
allow the requirements engineer to provide a framework for questions about users' tasks by permitting
'what if?' and 'how is this done?' questions to be asked. There is a link to 5.3.2. (conceptual modeling)
because recent modeling notations have attempted to integrate scenario notations with object-oriented
analysis techniques.

• Prototypes. Prototypes are a valuable tool for clarifying unclear requirements. They can act in a similar
way to scenarios by providing a context within which users better understand what information they
need to provide. There are a range of prototyping techniques which range from paper mock-ups of
screen designs to beta-test versions of software products. There is a strong overlap with the use of
prototypes for requirements validation (5.4.2).

Links to common themes
Quality The quality of requirements elicitation has a direct effect on

product quality. The critical issues are to recognise the relevant
sources, to strive to avoid missing important requirements and to
accurately report the requirements.

Standards Only very general guidance is available for elicitation from current
standards.

Measurement N/A
Tools Elicitation is relatively poorly supported by tools.

Some modern modeling tools support notations for scenarios.
Several programming environments support prototyping but the
applicability of these will depend on the application domain.

A number of tools are becoming available that support the use of
viewpoint analysis to manage requirements elicitation. These have
had little impact to date.

5.3 Requirements analysis
This subtopic is concerned with the process of analysing requirements to:
• detect and resolve conflicts between requirements;
• discover the bounds of the system and how it must interact with its environment;

• elaborate user requirements to software requirements.

The traditional view of requirements analysis was to reduce it to conceptual modeling using one of a
number of analysis methods such as SADT or OOA. While conceptual modeling is important, we include
the classification of requirements to help inform trade-offs between requirements (requirements
classification), and the process of establishing these trade-offs (requirements negotiation).

5.3.1 Requirements classification
Requirements can be classified on a number of dimensions. Common useful classifications include:
• As capabilities or constraints. Distinguishing between capabilities and constraints can be hard but is

worth-while, particularly where the software's 'qualities' (in safety-related system, for example) are
especially important. It is common to sub-classify constraints as, for example, performance, security,
reliability, maintainability, etc. requirements. Many such requirements imply the need for special
metrics to specify and validate the requirements and have implications for the resources that need to be
allocated to testing. It is useful to perform this classification early in the requirements engineering
process to help understand the full implication of user requirements.

• According to priority. In general, it will be impossible to implement every user requirement because of
mutual incompatibilities between requirements and because of insufficient resources. These conflicting
demands have to be traded-off and one of the most important items of information needed to do this is
the requirements' priorities. In practice, it can be hard to do this and for many organizations a 3-level
classification such as mandatory/highly desirable/desirable provides a crude but workable scheme.

• According to the requirements' cost/impact. This classification complements that of priority since if the
cost of implementing a mandatory requirement is unaffordable, this will reveal a serious problem with
the stakeholder's expectations. The impact of changing a requirement is also important since it strongly
affects the cost of doing so.

• According to their scope. The scope of a requirement can also affect its priority and cost. Requirements
with global scope (for example goals - see 5.2.1) tend to be costly and of high priority; responsibility
for their satisfaction cannot be allocated to a single component of the architecture.

• According to volatility/stability. Some requirements will change during the life-cycle of the software
and even during the development process itself. It is sometimes useful if some estimate of the
likelihood of a requirement changing can be made. For example, in a banking application,
requirements for functions to calculate and credit interest to customers' accounts are likely to be more
stable than a requirement to support a particular kind of tax-free account. The former reflect a
fundamental feature of the banking domain (that accounts can earn interest), while the latter may be
rendered obsolete by a change to government legislation. Flagging requirements that may be volatile
can help the software engineer establish a design that is more tolerant of change.

• According to whether they are product or process requirements.

Other classifications may be appropriate, depending upon the development organization's normal practice
and the application itself. There is a strong overlap between requirements classification and requirements
attributes (5.5.1).

5.3.2 Conceptual modeling
The development of models of the problem is fundamental to requirements analysis. The purpose is to aid
understanding of the problem rather than to initiate design of the solution. However, the boundary between
requirements engineering and design is often a blurred one in practice and the requirements engineer may
find themselves unavoidably having to model aspects of the solution. There are several kinds of models that
can be developed. These include data and control flows, state models, event traces, user interactions, object
models and many others. The factors that influence the choice of model include:
• The nature of the problem. Some types of application demand that certain aspects be analysed

particularly rigorously. For example, control flow and state models are likely to be more important for
real-time systems than for an information system.

• The expertise of the requirements engineer. It is generally better to adopt a modeling notation or
method that the requirements engineer has experience with.

• The process requirements of the customer. Customers may impose a particular notation or method on
the requirements engineer. This can conflict with the last factor.

• The availability of methods and tools. Notations or methods that are poorly supported by training and
tools may not reach widespread acceptance even if they are suited to particular types of problem.

Note that in almost all cases, it is useful to start by building a model of the 'system boundary'. This is
crucial to understanding the system's context in its operational environment and identify its interfaces to the
environment.

The issue of modeling is tightly coupled with that of methods. For practical purposes, a method is a
notation (or set of notations) supported by a process that guides the application of the notations. Methods
and notations come and go in fashion. Object-oriented notations are currently in vogue (especially UML)
but the issue of what is the 'best' notation is seldom clear. There is little empirical evidence to support
claims for the superiority of one notation over another.

Formal modeling using notations based upon discrete mathematics and which are tractable to logical
reasoning have made an impact in some specialized domains. These may be imposed by customers or
standards or may offer compelling advantages to the analysis of certain critical functions or components.

This topic does not seek to 'teach' a particular modeling style or notation but rather to provide guidance on
the purpose and intent of modeling.

5.3.3 Requirements negotiation
Another name commonly used for this subtopic is 'conflict resolution'. It is concerned with resolving
problems with requirements where conflicts occur; between two stakeholders' requiring mutually
incompatible features, or between requirements and resources or between capabilities and constraints, for
example. In most cases, it is unwise for the requirements to make a unilateral decision so it is necessary to
consult with the stakeholder(s) to reach a consensus on an appropriate trade-off. It is often important for
contractual reasons that such decisions are traceable back to the customer. We have classified this as a
requirements analysis topic because problems emerge as the result of analysis. However, a strong case can
also be made for counting it as part of requirements validation.

Links to common themes
Quality The quality of the analysis directly affects product quality. In

principle, the more rigorous the analysis, the more confidence can
be attached to the software quality.

Standards Software engineering standards stress the need for analysis. More
detailed guidance is provided only by de-facto modeling 'standards'
such as UML.

Measurement Part of the purpose of analysis is to quantify required properties.
This is particularly important for constraints such as reliability or
safety requirements where suitable metrics need to be identified to
allow the requirements to be quantified and verified.

Tools There are many tools that support conceptual modeling and a
number of tools that support formal specification.

There are a small number of tools that support conflict
identification and requirements negotiation through the use of
methods such as quality function deployment.

5.4 Requirements validation
It is normal for there to be one or more formally scheduled points in the requirements engineering process
where the requirements are validated. The aim is to pick up any problems before resources are committed
to addressing the requirements.

One of the key functions of requirements documents is the validation of their contents. Validation is
concerned with checking the documents for omissions, conflicts and ambiguities and for ensuring that the
requirements follow prescribed quality standards. The requirements should be necessary and sufficient and
should be described in a way that leaves as little room as possible for misinterpretation. There are four
important subtopics.

5.4.1 The conduct of requirements reviews.
Perhaps the most common means of validation is by the use of formal reviews of the requirements
document(s). A group of reviewers is constituted with a brief to look for errors, mistaken assumptions, lack
of clarity and deviation from standard practice. The composition of the group that conducts the review is
important (at least one representative of the customer should be included for a customer-driven project, for
example) and it may help to provide guidance on what to look for in the form of checklists.

Reviews may be constituted on completion of the user requirements definition document, the software
requirements specification document, the baseline specification for a new release, etc.

5.4.2 Prototyping.
Prototyping is commonly employed for validating the requirements engineer's interpretation of the user
requirements, as well as for eliciting new requirements. As with elicitation, there is a range of prototyping
techniques and a number of points in the process when prototype validation may be appropriate. The
advantage of prototypes is that they can make it easier to interpret the requirements engineer's assumptions
and give useful feedback on why they are wrong. For example, the dynamic behaviour of a user interface
can be better understood through an animated prototype than through textual description or graphical
models. There are also disadvantages, however. These include the danger of users attention being distracted
from the core underlying functionality by cosmetic issues or quality problems with the prototype. They may
also be costly to develop although if they avoid the wastage of resources caused by trying to satisfy
erroneous requirements, their cost can be more easily justified.

5.4.3 Model validation.
The quality of the models developed during analysis should be validated. For example, in object models, it
is useful to perform a static analysis to verify that communication paths exist between objects that, in the
stakeholders domain, exchange data. If formal specification notations are used, it is possible to use formal
reasoning to prove properties of the specification (e.g. completeness).

5.4.4 Acceptance tests.
An essential property of a user requirement is that it should be possible to verify that the finished product
satisfies the requirement. Requirements that can't be verified are really just 'wishes'. An important task is
therefore planning how to verify each requirement. In most cases, this is done by designing acceptance
tests. One of the most important requirements quality attributes to be checked by requirements validation is
the existence of adequate acceptance tests.

Links to common themes
Quality Validation is all about quality - both the quality of the requirements

and of the documentation.
Standards Software engineering life-cycle and documentation standards (e.g.

IEEE std 830) exist and are widely used in some domains to inform
validation exercises.

Measurement Measurement is important for acceptance tests and definitions of
how requirements are to be verified.

Tools Some limited tool support is available for model validation and
theorem provers can assist developing proofs for formal models.

5.5 Requirements management
Requirements management is an activity that should span the whole software life-cycle. It is fundamentally
about change management and the maintenance of the requirements in a state that accurately mirrors the
software to be, or that has been, built.

There are 4 main topics concerned with requirements management.

5.5.1 Change management
Change management is central to the management of requirements. This subtopic is intended to describe
the role of change management, the procedures that need to be in place and the analysis that should be
applied to proposed changes. It will have strong links to the configuration management knowledge area.

5.5.2 Requirements attributes
Requirements should consist not only of a specification of what is required, but also of ancillary
information that helps manage and interpret the requirements. This should include the various
classifications attached to the requirement (see 4.3.1) and the verification method or acceptance test plan. It
may also include additional information such as a summary rationale for each requirement, the source of
each requirement and a change history. The most fundamental requirements attribute, however, is an
identifier that allows the requirements to be uniquely and unambiguously identified. A naming scheme for
generating these IDs is an essential feature of a quality system for a requirements engineering process.

5.5.3 Requirements tracing
Requirements tracing is concerned with recovering the source of requirements and predicting the effects of
requirements. Tracing is fundamental to performing impact analysis when requirements change. A
requirement should be traceable backwards to the requirements and stakeholders that motivated it (from a
software requirement back to the user requirement(s) that it helps satisfy, for example). Conversely, a
requirement should be traceable forwards into requirements and design entities that satisfy it (for example,
from a user requirement into the software requirements that have been elaborated from it and on into the
code modules that implement it).

The requirements trace for a typical project will form a complex directed acyclic graph (DAG) of
requirements. In the past, development organizations either had to write bespoke tools or manage it
manually. This made tracing a short-term overhead on a project and vulnerable to expediency when
resources were short. In most cases, this resulted in it either not being done at all or being performed
poorly. The availability of modern requirements management tools has improved this situation and the
importance of tracing (and requirements management in general) is starting to make an impact in software
quality.

5.5.4 Requirements documentation
This subtopic is concerned with the role and readership of requirements documentation, with
documentation standards and with the establishment of good practice.

Requirements documents are the normal medium for recording and communicating requirements. It is good
practice to record the user requirements and the software requirements in different documents. The user
requirements definition document organizes the user requirements and makes them available to the
stakeholders for validation. Once validated, the user requirements can be elaborated and recorded in the
software requirements specification document (SRS). Once this has been validated, it serves as the basis for
subsequent development.

Requirements documents need to be subjected to version control as requirements change. Modern
requirements management tools allow requirements to be documented in electronic form along with their
associated attributes and traceability links. Such tools usually include document generators that allow
requirements documents to be generated in defined formats so, for example, the software requirements can
be used to (semi-) automatically generate an SRS that conforms to IEEE std 830.

Links to common themes
Quality Requirements management is a level 2 key practice area in the

software CMM and this has boosted recognition of its importance
for quality.

Standards Software engineering life-cycle and documentation standards (e.g.

IEEE std 830) exist and are widely used in some domains.
Measurement Mature organizations may measure the number of requirements

changes and use quantitative measures of impact assessment.
Tools There are a number of requirements management tools on the market

such as DOORS and RTM.

Appendix A - Summary of requirements engineering breakdown

Requirements engineering topics Subtopics
The requirement engineering process Process models

Process actors
Process support
Process improvement

Requirements elicitation Requirements sources
Elicitation techniques

Requirement analysis Requirements classification
Conceptual modelling
Requirements negotiation

Requirements validation Requirements reviews
Prototyping
Model validation
Acceptance tests

Requirements management Change management
Requirements attributes
Requirements tracing
Requirements documentation

Appendix B Matrix of topics and references

In Table 1 shows the topic/reference matrix. The table is organized according to requirements engineering topics in Appendix A. A ‘X’ indicates that the topic is
covered to a reasonable degree in the reference. A ‘X’ in appearing in main topic but not the sub-topic indicates that the main topic is reasonably covered (in
general) but the sub-topic is not covered to any appreciable depth. This situation is quite common in most software engineering texts, where the subject of
requirements engineering is viewed in the large context of software engineering.

TOPIC [Dav93] [Dor97] [Kot98] [Lou95] [Maz96] [Pfl98] [Pre97] [Som96] [Som97] [Tha90] [Tha97]
Requirements engineering process X X X X X X X X
Requirement process models X X X X X X
Requirement process actors X X X X X X
Requirement process support X X X
Requirement process improvement X X
Requirements elicitation X X X X X X X X
Requirements sources X X X X X X X X
Elicitation techniques X X X X X X
Requirements analysis X X X X X X X X X
Requirements classification X X X X X X X
Conceptual modeling X X X X X X X
Requirements negotiation X X
Requirements validation X X X X X X X
Requirements reviews X X X X
Prototyping X X X X X X
Model validation X X X
Acceptance tests X X X
Requirements management X X X X X X X X
Change management X X X
Requirement attributes X X X
Requirements tracing X X X X
Requirements documentation X X X X X X X

Table 1 Topics and their references

Appendix C - Software requirements engineering and Bloom's taxonomy

Appendix D – Software requirements engineering references

[Ama97] K, EL Amam, J. Drouin, et al. SPICE: The theory and Practice of Software Process
Improvement and Capability Determination. IEEE Computer Society Press, 1997.

[And96] S.J. Andriole, Managing Systems Requirements: Methods, Tools and Cases. McGraw-Hill,
1996.

[Che90] P. Checkland and J. Scholes, Soft Sysems Methodology in Action. John Wiley and Sons, 1990.

[Dav93] A.M. Davis, Software Requirements: Objects, Functions and States. Prentice-Hall, 1993.

[Dor97] M. Dorfman and R.H. Thayer, Software Engineering . IEEE Computer Society Press, 1997.

 [Gog93] J.A. Goguen and C. Linde, Techniques for requirements elicitation, Proc. Intl' Symp. On
Requirements Engineering. IEEE Press, 1993.

[Hal96] A. Hall, Using Formal Methods to Develop an ATC Information System. IEEE Software 13(2),
pp66-76, 1996.

[Har93] R. Harwell. et al, What is a Requirement. Proc 3rd Ann. Int'l Symp. Nat'l Council Systems Eng.,
pp17-24, 1993

[Hum89] W. Humphery, Managing the Software Process. Addison Wesley, 1989.

[Hum88] W. Humphery, Characterizing the Software Process, IEEE Software 5(2): 73-79, 1988.

[Pfl98] S.L. Pfleeger, Software Engineering-Theory and Practice . Prentice-Hall, 1998.

[Pres97] R.S. Pressman, Software Engineering: A Practitioner’s Approach (4 edition). McGraw-Hill,
1997.

[Tha90] R.H. Thayer and M. Dorfman, Standards, Guidelines and Examples on System and Software
Requirements Engineering. IEEE Computer Society, 1990.

 [Tha97] R.H. Thayer and M. Dorfman, Software Requirements Engineering (2nd Ed). IEEE Computer
Society Press, 1997.

 [Kot98] G. Kotonya, and I. Sommerville, Requirements Engineering: Processes and Techniques. John
Wiley and Sons, 1998.

[Lou95] P. Loucopolos and V. Karakostas, System Requirements Engineering. McGraw-Hill, 1995.

[Maz96] C. Mazza, J. Fairclough, B. Melton, et al, Software Engineering Guides. Prentice-Hall, 1996.

[Pau96] M.C. Paulk, C.V. Weber, et al., Capability Maturity Model: Guidelines for Improving the
Software Process. Addison-Wesley, 1995.

[Sid96] J. Siddiqi and M.C. Shekaran, Requirements Engineering: The Emerging Wisdom, IEEE
Software, pp15-19, 1996.

[Som96] I. Sommerville, Software Engineering (5 th edition). Addison-Wesley, 1996.

[Som97] I. Sommerville and P. Sawyer, Requirements engineering: A Good Practice Guide. John Wiley
and Sons, 1997

[Rud94] J. Rudd and S. Isense, Twenty-two Tips for a Happier, Healthier Prototype. ACM Interactions,
1(1), 1994.

1

KA Description of Software Testing V. 0.5
A. Bertolino

Istituto di Elaborazione della Informazione
Consiglio Nazionale delle Ricerche

via S. Maria, 46
56126 Pisa, Italy
+39 050 593478

bertolino@iei.pi.cnr.it

READ ME
This is Version 0.5 of the Software Testing KA
Description. I have done my best to provide -within the
close deadline- a preliminary document according to the
specifications. However, I am heavily relying on the
feedback from the first review round to improve this draft
document, as I am fully aware that it still needs more work
than that I could realistically put on it. Above all, some of
the topics certainly need more or better reference material: I
have left some reference fields annotated with "???", for
topics I would like to include, but for which I have not yet
been able to find adequate reference material. On the other
side, the number of references is already higher than the
suggested size of 15. In this regard, note that by referencing
books or survey articles that report on them, I have omitted
to include some famous papers in the testing literature, in
order to reduce the size of references list. For these matters,
I warmly ask reviewers to give suggestions for addition,
replacement and reduction of references. Some other
questions/comments are given within [[]].

Keywords
Test levels, Test techniques, Test related measures,
Organizing and controlling the test process, Automated
testing

RATIONALE OF BREAKDOWN
Software testing consists of the dynamic verification of the
behaviour of a program on a finite set of test cases, suitably
selected from the usually infinite executions domain, against
the specified expected behaviour.

In the above definition, and in the following as well,
underlined words correspond to key issues in identifying
the KA of software testing. In particular:

§ dynamic : this term means that testing always implies
executing the program on valued inputs. Static analysis
techniques, such as peer review and inspection (that
sometimes are improperly referred to as "static
testing"), are not considered as part of this KA;
[[maybe we should here point at where in the BOK they
are covered?]] nor is program execution on symbolic
inputs, or symbolic evaluation;

§ finite: the number of executions to be observed in

testing must be obviously finite, and -more than this- it
must be manageable. Indeed, testing always implies a
trade-off between limited resources and inherently
unlimited test requirements: this conflict points to well
known problems of testing, of both technical nature
(criteria for deciding test adequacy) and managerial
nature (estimating the effort to put in testing);

§ selected: the many proposed test techniques essentially
differ in how they select the (finite) test set, and testers
must be aware that different selection criteria may
yield largely different effectiveness. The problem of
identifying the most suitable selection criterion under
given conditions is still under research.

§ expected: it must be possible to decide about whether
the observed outcomes of program execution are
acceptable or not, otherwise the testing effort would be
useless. This is referred to as the oracle problem,
which can be addressed with different approaches. For
instance, the observed behaviour may be checked
against user's expectances (commonly referred to as
testing for validation) or against a specification of
allowed behavior (testing for verification).

When the outcome of a test execution diverges from the
expected, a failure is observed, whose cause is a fault.

These and other basic definitions within software testing area, as well as
an introduction to the terminology, will be provided in Part A Basic
Concepts and Definitions. In the same section, the scope of the KA will
be laid down.

Software testing is usually performed at different levels
along the development process. That is to say, the object of
the test can vary: a whole program, part of it (functionally or
structurally related), a single module.

The latter argument is expanded in Part B Test Levels. This consists of
two (orthogonal) subsections: B.1 lists the phases in which the testing of
large software systems is traditionally subdivided. In B.2 testing for
specific conditions or properties is instead considered, and is referred to
as "types of testing". Clearly not all listed types of testing apply to every
system, nor any possible type has been listed, but those most generally
applied.

Testing is conducted in view of a specific purpose (test
objective), which is stated more or less explicitly, and with
varying degrees of precision. Stating the objective in

precise, quantitative terms allows for establishing control
over the test process.

Very often, testing is aimed at exposing failures (as many
as possible), and many popular test techniques have been
developed for this objective. These techniques variously
attempt to "break" the program, by trying it over identified
classes of (deemed equivalent) executions: the leading
principle underlying such techniques is being as much
systematic as possible in identifying a representative set of
program behaviours (generally in the form of subclasses of
the input domain). However, a comprehensive view of the
KA of testing must include other as important objectives
for testing, e.g., reliability measurement, usability
evaluation, contractor acceptance, for which different
approaches would be taken. Note that the test objective
varies with the test object, i.e., different purposes are
addressed in different phases.

The test objective is strictly related with the identification
of the test set, both in its consistency -how much testing is
enough for achieving the stated objective?- and in its
composition -which test cases should be selected for
achieving the stated objective?-, although usually the "for
achieving the stated objective" part is left implicit and only
the first part of the two italicised questions above is posed.
Criteria for addressing the first question are referred to as
test adequacy criteria , while for the second as test selection
criteria.

As already said, several test techniques have been developed in the last
two decades according to various criteria, and new ones are still proposed.
"Generally accepted" techniques will be described in Part C.

Sometimes, it can happen that confusion is made between
test objectives and techniques. For instance, branch
coverage (see C.2) is a popular test technique. Achieving a
specified branch coverage measure should not be
considered per se as the objective of testing: it is a means to
improve the chances of finding failures (by systematically
exercising every program branch out of a decision point).

To avoid such misunderstandings, a clear distinction should
be made between test measures which evaluate the test set,
like measures of coverage, and those which instead provide
an evaluation of the program under test, based on the
observed test outputs, like reliability.

Test-related measures are dealt accordingly in Part D.

Testing concepts, strategies, techniques and metrics need to
be integrated into a defined and controlled process, which
is run by people. The test process should support testing
activities and testing teams, from test planning to test
outputs evaluation, in such a way as to provide justified
assurance that the test objectives are met cost-effectively.

Issues relative to organizing and controlling the test process are expanded
in Part E.

Software testing is a very expensive and labour-intensive
component of development. For this reason, a key issue in
testing has always been pushing automation as much as
possible.

Existing tools and concepts related to automating the constituent parts of
test process are addressed in Part F.

BREAKDOWN OF TOPICS WITH SUCCINT
DESCRIPTIONS
This section gives a list of topics for Software Testing KA,
according to the rationale explained in Sect.1. The topics
are accompanied by succint description and references.

A. Basic Concepts and Definitions
A.1 Faults vs. Failures
[[perhaps all part A.1 should be moved to the SQA KA?]]

ð The Fault-Error-Failure chain (Ly:p12-13; Ly:c2s2.2.2;
Jo:c1p3; Pe:c1p5-6; Pf:p278-279; ZH+:s3.5;
982.2:fig3.1.1-1; 982.2:fig6.1-1;)

 When speaking of software malfunctioning, there is some
inconsistency in the literature in the meaning given to
relevant terms such as fault or error. However, all
references agree that a malfunctioning perceived by the
user of a software system, a "failure", is one of the two
extremes of a cause-effect chain, that can be several steps
long. It is important to distinguish between:

• the cause for malfunctioning: fault

• a system state corruption, not yet propagated outside:
error

• an undesired effect on the delivered service: failure

Note that in this chain, not always the cause can be
univocally identified. This is why some authors instead of
faults prefer to speak in terms of failure-causing inputs
[FH+]. Testing can reveal failures (with appropriate
program instrumentation, also errors), but then to remove
them it is the fault that must be fixed.

ð Types, classification and statistics of faults (1044,
1044.1, Pf:p280-284; Be:c2; Be:Appendix; Jo:c1s1.5;
Ly:c9)

Most times, testing is aimed at finding (and removing)
defects. Therefore, it can be useful to know which types of
faults can occur in the application under test, and the
relative frequency with which these faults have occurred in
the past. This information can be very useful to make
quality predictions as well as for process improvement. The
testing literature is rich of classifications and taxonomy of
faults, including an IEEE standard on classification of
software "anomalies" [1044]. An important property for
fault classification is orthogonality, i.e., ensuring that each
fault can be univocally identified as belonging to one class
[Ly].

A.2 Theoretical foundations
ð Definitions of testing and related terminology (Be:c1;

Jo:c1; 610)

A comprehensive introduction to the topics dealt with
within the KA of software testing is provided in the first
chapter of the two referenced books. In the Standard
Glossary, definitions of software testing terms can be
found.

ð Test selection criteria/Test adequacy criteria (or
stopping rules) (Pf:c7s7.8; WW+; ZH+:s1)

A test criterion is a means of deciding which a suitable set
of test cases should be; in mathematical terminology it
would be a decision predicate defined on triples (P, S, T),
where P is a program, S is the specification (intended here
to mean in general sense any relevant source of information
for testing) and T is a test set. A criterion can be used for
selecting T, or for checking if a selected T is adequate, i.e.,
to decide if the testing can be stopped.

ð Testing effectiveness/Objectives for testing
(Be:c1s1.4; FH+; Pe:p61-65; Pe:p434-437; So:p447)

Testing amounts at observing a sample of program
executions. The selection of the sample can be guided by
different objectives: it is only in light of the objective
pursued that the effectiveness of the test set can be
evaluated. This important issue is discussed at some lenght
in the references provided.

ð Debug testing, or testing for defect removal (So:p464-
466; Be:c1s.1.3;)

In testing for defect removal a successful test is one that
causes the system to fail. This is quite different from testing
to demonstrate that the software meets its specification, or
other desired properties, whereby testing is successful if no
(important) failures are observed.

ð The oracle problem (Be:c1s4.1-4.2-4.3; We;)

An oracle is any (human or mechanical) agent that decides
whether a program behaved correctly on a given test, and
produces accordingly a verdict of "pass" or "fail". There
exist many different kinds of oracles; oracle automation
still poses several open problems.

ð Theoretical and practical limitations of testing (Ho)

Testing theory warns against putting too confidence on
series of passed tests. Unfortunately, most established
results of testing theory are negative ones, i.e., they state
what testing can never achieve (as opposed to what it
actually achieved). The most famous quotation in this
regard is Dijkstra aforism that testing can only show the
presence of bugs, but never their absence.

ð Path sensitizing/infeasible paths (Be:c3s4;)

Infeasible paths, i.e., control flow paths which cannot be

exercised by any input data, are a significant problem in
path-oriented testing, and particularly in the automated
derivation of test inputs for code-based testing techniques.
Finding a set of solutions to the compound predicate
expression corresponding a control flow path is called path
sensitization.

ð Software testability (VM; BM)

The term of software testability has been recently
introduced in the literature with two related, but different
meanings: on the one hand as the degree to which it is easy
for a system to fulfill a given criterion (e.g. [BM]); on the
other hand, as the likelihood (possibly measured
statistically) that the system exposes a failure under testing,
if it is faulty [Vo]. Both meanings are important.

A.3 Laying down the KA
Here the relation between the KA of software testing and
other related areas is briefly discussed. We see testing as
distinct from static analysis techniques, proofs of
correctness, debugging and programming. On the other
side, it is informative to consider testing from the point of
view of software quality analysts, users of CMM and
Cleanroom processes, and of certifiers.

[[I am in need for reference suggestions here]]

ð Testing vs. Static Analysis Techniques (Be:p.8;
Pe:p359-360; 1008:p19)

ð Testing vs. Correctness Proofs (Be:c1s5; Pf:p298; ???)

ð Testing vs. Debugging (Be:c1s2.1; 1008:p19)

ð Testing vs. Programming (Be:c1s2.3; ???)

ð Testing within SQA (???)

ð Testing within CMM (Po:p117-123)

ð Testing within Cleanroom (Pf:p381-386)

ð Testing and Certification (???)

B. Test Levels
B.1 Test phases (Jo:c12; Be:c1s3.7; Pf:p284-286)
Testing of large software systems usually involves several
stages.

ð Unit testing (Be:p.21; 1008)
Unit testing verifies the functioning in isolation of the
smallest testable pieces of software (the individual
subprograms).
ð Module ("Component") testing (Be:p21; 1008)

A module or a component in this context is a set of tightly
related units. Some authors do not even distinguish between
unit and module testing.

[[Is it useful to distinguish between unit and module, or
should I rather stay with one?]]
ð Integration testing (Be:p21; Jo:c13; Pf:c7s7.4)

Integration testing is the process of verifying the interaction
between system components (possibly already tested in
isolation). Systematic, incremental integration testing
strategies, such as top-down or bottom-up, are to be
preferred to putting all units together at once, that is
pictorially said "big-bang" testing.
ð System testing (Be:p.22; Jo:c14)
System testing is concerned with the behaviour of a whole
system, and at this level the main goal is not to find faults
(most of them should have been already found at finer
levels of testing), but rather to demonstrate performance in
general. The kind of properties one may want to verify at
this level, including conformance, reliability, usability
among others, are discussed below under part "Types of
testing".
ð Acceptance/qualification testing (Pe:c10; Pe:p447;

Pf:c8s8.5; 12207:s5.3.9)

Acceptance testing checks the system behavior against the
customer's requirements (the "contract"), and is usually
conducted by or with the customer.

ð Installation testing (Pe:c9; Pf:c8s8.4)
After completion of system and acceptance testing, the
system is verified upon installation in the target
environment.
ð Alpha and Beta Testing (???)
Before releasing the system, sometimes it is given in use to
a small representative set of potential users, in-house (alpha
testing) or external (beta testing), who report to the
developer experienced problems.

B.2 Types of Testing (Pe:p61-65; Pe:p178-180,
Pe:p196-212; Pf:p349-351)
Testing can be aimed at verifying different properties of a
system or subsystem. Test cases can be designed to
demonstrate that the functional specifications are correctly
implemented, which is variously referred to in the literature
as conformance testing, "correctness" testing, functional
testing. However several other non functional properties
need to be tested as well. References cited above give
essentially a collection of the potential different purposes.
The topics separately listed below (with the same or
additional references) are those most often found in the
literature.

ð Conformance testing/Functional testing/Correctness
testing (Pe:p179, p207; ???)

Conformance testing is aimed at verifying whether the
observed behaviour of the tested system conforms to its
specification.

ð Reliability achievement and evaluation by testing
(Pf:c8s.8.4; Ly:c6,c7; Musa and Ackermann in
Po:p146-154; So:c18s18.3)

By testing we can identify and fix faults, thereby making

the software more reliable. In this very general sense,
testing is a means to achieve reliability. On the other hand,
by randomly generating test cases accordingly to the
operational profile, we can derive statistical measures of
reliability. Using reliability growth models, we can pursue
together both objectives (see also part D.1).

ð Regression testing: (Jo:c14s14.7.3; Pe:c11, c12, p369-
370; Pf:p338-339; RH)

According to 610.12, regression testing is the "selective
retesting of a system or component to verify that
modifications have not caused unintended effects [...]".
Regression testing can be conducted at each of the test
levels in B.1. [Be] defines it as any repetition of tests
intended to show that the software's behaviour is
unchanged except insofar as required.

[[All topics listed below are very sketchy in the references
provided; on the other hand, I would think that just
knowing their different purposes could be sufficient here.
Open to suggestions]]

ð Performance testing (Pe:p180, p203, p363-364)

This is specifically aimed at verifying that the system meets
the specified performance requirements.
ð Stress testing (Pe:p179, p202, p361-362; Pf:p349;

So:c22s22.3.4)
Stress testing exercises a system beyond the maximum
design load.

ð Volume testing (Pe:p185, p487; Pf:p349)
Volume testing is concerned with evaluating system
behaviour when internal program or system limitations are
exceeded.
ð Back-to-back testing (So:c22s22.3.5)
A same test set is presented to two implemented versions of
a system, and the results are compared with each other.
ð Recovery testing (Pe:p179, p201, p364-365)
It is aimed at verifying system restart capabilities after a
"disaster".
ð Configuration testing (Pf:p349)
In those cases in which a system is built to serve different
users, configuration testing analyzes the system under the
various specified configurations.
ð Usability testing (Pe:p179, p208)

It evaluates the ease of use of the system for the end users.
C. Test Techniques
C.1 Specification-based
ð Boundary-value analysis (Jo:c5; Pe:p376, p448;)
Test cases are chosen on and near the boundaries of the
input domain of variables, with the underlying rationale
that many defects tend to concentrate near the extreme
values of inputs.
ð Equivalence partitioning (Jo:c6; Pe:p376;

So:c23s23.1.1)
The input domain is subdivided into a collection of subsets,
or "equivalent classes", which are deemed equivalent
according to a specified relation, and a representative set of
tests (sometimes even one) is taken from within each class.

ð Category-partition (OB)
This is a systematic, stepwise method to analyse informal
functional specifications, and decompose them into test
suites through a series of defined steps: first those
categories of information are identified that characterize
parameters and environment conditions affecting functional
behaviour. Each category, then, is partitioned into classes
of "similar" values, or choices.
ð Decision table (Be:c10s3; Jo:c7; Pe:p377)

Decision tables represent logical relationships between
conditions (roughly, inputs) and actions (roughly, outputs).
Test cases are systematically derived by considering every
possible combination of conditions and actions. A related
techniques is Cause-effect graphing (Pe:p449; Pf:p345-
349).

ð Finite-state machine-based (Be:c11; Pe:p377;
Jo:c4s4.3.2; ???)

By modelling a program as a finite state machine, tests can
be selected in order to cover states and transitions on it,
applying different techniques. This technique is suitable for
transaction-processing systems.

ð Testing from formal specifications (ZH+:s2.2)
Giving the specifications in a formal language (i.e., one
with precisely defined sintax and semantics) allows for
automatic derivation of functional test cases from the
specifications, and at the same time provides a reference
output, an oracle, for checking test results. Methods for
deriving test cases from model-based or algebraic
specifications are distinguished.
C.2 Code-based
ð Reference models for code-based testing (flowgraph,

call graph) (Be:c3s2.2; Jo:c4p41-50).
In code-based testing techniques, the control structure of a
program is graphically represented using a flowgraph, i.e.,
a directed graph whose nodes and arcs correspond to
program elements. For instance, nodes may represent
statements or uninterrupted sequences of statements, and
arcs the transfer of control between nodes.
ð Control flow-based criteria (Be:c3; Pe:p378;

ZH+:s2.1.1).
Control flow-based coverage criteria aim at covering all the
statements or the blocks in a program, or proper
combinations of them. Several coverage criteria have been
proposed (like Decision/Condition Coverage [???]), in the
attempt to get good approximations for the exhaustive
coverage of all control flow paths, that is unfeasible for all
but trivial programs.

ð Data flow-based criteria (Be:c5; Jo:c10; ZH+:s2.1.2)
In data flow-based testing, the control flowgraph is
annotated with information about how the program
variables are defined and used. Different criteria exercise
with varying degrees of precision how a value assigned to a
variable is used along different control flow paths. A
reference notion is a definition-use pair, which is a triple
(d,u,V) such that: V is a variable, d is a node in which V is
defined, and u is a node in which V is used; and such that
there exists a definition clear path between d and u w.r.t V,
i.e. definition d of V must reach use u.

C.3 Fault-based
With different degrees of formalisation, fault based testing
techniques devise test cases specifically aimed at revealing
categories of likely or pre-defined faults.

ð Error guessing (Pe:p370-371; ???)
In error guessing, test cases are ad hoc designed by testers
trying to figure out those which could be the most plausible
faults in the given program. A good source of information
is the history of faults discovered in earlier projects, as well
as tester's expertise.
ð Fault seeding (Pe:p379; Pf:p318-320; ZH+:s3.1)
Some faults are artificially introduced into the program
before test. By monitoring then which and how many of the
artificial faults are discovered by the executed tests, this
technique allows for measuring testing effectiveness, and
for estimating how many (original) faults remain.
ð Mutation (Pe:p380; ZH+:s3.2-s3.3)
A mutant is a slightly modified version of the program
under test, differing from it by a small, syntactic change.
Every test case exercises both the original and all generated
mutants: for the technique to be effective, a high number of
mutants must be automatically derived in systematic way.
If a test case is successful in identifying the difference
between the program and a mutant, the latter is said to be
killed. An underlying assumption of mutation testing, the
coupling effect, is that by looking for simple syntactic
faults, also more complex faults will be found. Strong and
weak mutation techniques have been developed.
C.4 Usage-based
ð Operational profile (Jo:c14s14.7.2; Ly:c5; Ly:p534-

539)
In testing for reliability evaluation, the test environment
must reproduce as closely as possible the product use in
operation. In fact, from the observed test results one wants
to infer the future reliability in operation. To do this, inputs
are assigned a probability distribution, or profile, according
to their occurrence in actual operation.
ð (Musa's) SRET (Ly:c6)
Software Reliability Engineered Testing is a testing
methodology encompassing the whole development
process, whereby testing is "designed and guided by
reliability objectives and expected relative usage and

criticality of different functions in the field".
C.5 Specialized techniques
The techniques above apply to all types of software.
However, for some kinds of applications some additional
knowhow is required. Here below a list of few
"specialized" testing techniques is provided. Of course, the
classification is not to be intended as mutually exlusive; for
instance, one can be interested in "operational testing" of
"object-oriented" "distributed" software systems.
ð Object-oriented testing (Jo:c15; Pf:c7s7.5; Bi;)
ð Component-based testing (???only have found

workshop refs so far)
ð GUI testing (OA+; ???)
ð Testing of concurrent programs (CT; ???)

ð Protocol conformance testing (Sidhu and Leung in
Po:p102-115; BP)

ð Testing of distributed systems (???)

ð Testing of hard-real-time systems (Sc).
C.6 Selecting and combining techniques (Pe:p359-
360;p381-383)
ð Functional and structural (Be:c1s.2.2; Jo:c11s11.3;

Pe:p358-359, p383; Po:p3-4; Po:Appendix 2)
Several authors have pointed out the complementarity of
functional and structural approaches to test selection: in
fact, they use different sources of information and highlight
different kinds of problems. They should be used in
combination, compatibly with budget availability.
ð Coverage and operational/Saturation effect (Ly:p541-

547)

This topic discusses the differences and complementarity of
deterministic and statistical approaches to test case
selection.

D. Test related measures
Test related measures can be divided into two classes: those
relative to evaluating the program under test, that count and
predict either faults (e.g., fault density) or failures (e.g.,
reliability). And those relative to evaluating the test suite
derived according to a selected criterion, as is usually done
by measuring code coverage achieved by the executed tests.
Measures relative to the test process for management
purposes are instead considered in part E.

D.1 Evaluation of the program under test (982.2)
ð Cyclomatic complexity (Be:c7s4.2; Jo:c9s9.3.3;

982.2:sA16)

This is a very popular static measure of program
complexity; it is reported here since it is often used to guide
structural testing.

[[Put cyclomatic complexity away from testing? Leave and
introduce reference to my own Beta metric-not as well
known, but performing better?]]

ð Remaining number of defects/Fault density (Pe:p515;

982.2:sA1; Ly:c9)
In common industrial practice a product under test is
assessed by counting and classifying the discovered faults
by their types (see also A1). For each fault class, fault
density is measured by the ratio between the number of
faults found and the size of the program.
ð Life test, reliability evaluation (Musa and Ackermann

in Po:p146-154)

A statistical estimate of software reliability, that can be
obtained by operational testing (see in B.2), can be used to
evaluate a product and decide if testing can be stopped.

ð Reliability growth models (Ly:c3, c4)
Reliability growth models provide a prediction of reliability
based on the failures observed under operational testing.
They assume in general that the faults that caused the
observed failures are fixed (although some models also
accept imperfect fixes) and thus, on average, the product
reliability exhibits an increasing trend. There exist now tens
of published models, laid down on some common
assumptions as well as on differing ones. Notably, the
models are divided into failures-count and time-between-
failures models.
D.2 Evaluation of the tests performed
ð Coverage/thoroughness measures (Jo:c9s9.2; Pf:p300-

301; Pe:p491; Pe:p457; 982.2:sA5-sA6)
Several test adequacy criteria require the test cases to
systematically exercise a set of elements identified in the
program or in the specification (see Part C). To evaluate the
thoroughness of the executed tests, testers can monitor the
elements covered, so that they can dynamically measure the
ratio (often expressed as a fraction of 100%) between
covered elements and the total number. For example, one
can measure the percentage of covered branches in the
program flowgraph, or of exercised functional requirements
among those listed in the specification document. Code-
based adequacy criteria require appropriate instrumentation
of the program under test.
ð Comparison and relative effectiveness of different

techniques (Jo:c8,c11; ZH+:s5; Weyuker in Po p64-72;
FH+)

Several studies have been recently conducted to compare
the relative effectiveness of different test techniques. It is
important to precise against which property we are
assessing the techniques, i.e., what we exactly mean for
"effectiveness". Possible interpretations are how many tests
are needed to find the first failure, or which technique
discovers a higher number of failures, or how much a
technique actually improves reliability. Analytical and
empirical comparisons between different techniques have
been conducted according to each of the above specified
notions of "effectiveness".

E. Organizing and Controlling the Test Process
E.1 Management concerns
ð Attitudes/Egoless programming (Be:c13s3.2; Pf:p286)
A very important component of successful testing is a
positive and collaborative attitude towards testing activities.
Managers should revert a negative vision of testers as the
destroyers of developers' work and as heavy budget
consumers. On the contrary, they should foster a common
culture towards software quality, by which early failure
discover is an objective for all involved people, and not
only of testers.

ð Test process (Be:c1s3.1-3.2; Jo:c12s12.1,12.2; Pe:c2-
c3; Pe:p183; Pf:p332-342; Po:p10-11; Po:Appendix 1;
12207:s5.3.9;s5.4.2;s6.4;s6.5)

A process is defined as "a set of interrelated activities,
which transform inputs into outputs"[12207]. Test activities
conducted at different levels (see B.1) must be organised,
together with people, tools, policies, measurements, into a
well defined process, which is integral part to the life cycle.
In the traditional view, test activities complete design and
code activities forming a V model.
ð Test documentation (829; Be:c13s5; Pe:c19; Pf:c8s8.8)
Documentation is an integral part of the formalization of
the test process. Beizer's reference provocatively proposes
to throw away software documentation, including the
source code, after a product is released, because the object
code is everything is needed to run it. Unfortunately, this
"insane proposal" is still common practice for tests after
they are run. More rationally, test documentation should be
performed and continually updated, at the same standards
as other types of documentation.

ð Internal vs. independent test team (Be:c13s2.2-2.3;
Pe:p58-61; Pf:p342-343)

Formalization of the test process requires formalising the
test team organization as well. The test team can be
composed of members internal to the project team, or of
external members, in the latter case bringing in an
unbiased, indepedent perspective, or finally of both internal
and external members. The decision will be determined by
considerations of costs, schedule and application criticality.
ð Cost/effort estimation and other process metrics

(Pe:p55-58; Pe:p437-441; Pe:Appendix B; Pf:p375;
Po:p139-145; 982.2:sA8-sA9)

In addition to those discussed in Part D, several metrics
relative to the resources spent on testing, as well as to the
relative effectiveness in fault finding of the different test
phases, are used by managers to control and improve the
test process. Evaluation of test phase reports is often
combined with root cause analysis to evaluate test process
effectiveness in finding faults as early as possible.

E.2 Test Activities
ð Planning (Pe p65; Pf c7s7.6; 829:s4; 1008:s1, s2, s3;)
ð Test case generation (Pe p484; Po c2; 1008:s4, s5;)

ð Test environment development (???)
ð Execution (1008:s6, s7;)

ð Test results evaluation (Pe c20; Po p18-20; Po p131-
138)

ð Trouble reporting/Test log (829:s9-s10;)

ð Defect Tracking (???)
F. Automated Testing
F.1 Testing tool support
ð What can be automated (and what cannot) (Be:c13s6;

Pe:p360-361; Po:p124-129; Po:p199-213)
This topic focuses on theoretical and practical issues about
which activities of the testing process can and/or should be
automated, also providing a description of available tool
support.

ð Tool selection criteria (Po:p214-223)
This topic provides guidance to managers and testers on
how to select those tools that will be most useful to their
organization.
Appendix/F.2 Tools
ð Surveys of available tools (Pe:c18; Lyu Appendix A;

Pf c7s7.7)
This appendix is intended to provide testers with an up-to-
date repertoire of available tools.

[[Not sure of what kind of reference should I provide here
for tools? web-sites?]]
Capture/Replay

Test harness (drivers, stubs) (Be:c13s6.3.3;
Test generators (Be:c13s6.4;
Oracle/file comparators/assertion checking (Pe:451;

Coverage analyzer/Instrumentor (Be:c13s6.2;
Tracers
Regression testing tools

Reliability evaluation tools (Lyu Appendix A)

REFERENCES
GENERAL BOOKS
Pf Pfleeger, S.L. Software Engineering Theory and

Practice, Prentice Hall, 1998.

So Sommerville, I. Software Engineering Fifth Edition,
Addison Wesley, 1996.

TESTING BOOKS
Be Beizer, B. Software Testing Techniques 2nd Edition.

Van Nostrand Reinhold, 1990.

Jo Jorgensen, P.C., Software Testing A Craftsman's
Approach, CRC Press, 1995.

Ly Lyu, M.R. (Ed.), Handbook of Software Reliability
Engineering, Mc-Graw-Hill/IEEE, 1996.

Pe Perry, W. Effective Methods for Software Testing,

Wiley, 1995.

Po Poston, R.M. Automating Specification-based Software
Testing, IEEE, 1996.

SURVEY PAPERS
Bi Binder, R.V. Testing Object-Oriented Software: a

Survey. STVR, 6, 3/4 (Sept-Dec. 1996) 125-252.

ZH+ Zhu, H., Hall, P.A.V., and May, J.H.R. Software
Unit Test Coverage and Adequacy. ACM Computing
Surveys, 29, 4 (Dec. 1997) 366-427.

SPECIFIC PAPERS
[[I am uncertain here about the opportunity to include
underlined references, as they are "specific" (i.e.,
perhapsthey do not fulfill the requirement of generally
accepted knowledge)]]

BM Bache, R., and Müllerburg, M. Measures of
Testability as a Basis for Quality Assurance. Software
Engineering Journal, 5 (March 1990) 86-92.

BP Bochmann, G.V., and Petrenko, A. Protocol Testing:
Review of Methods and Relevance for Software
Testing. ACM Proc. ISSTA 94 (Seattle, Washington,
USA, August 1994) 109-124.

CT Carver, R.H., and Tai, K.C., Replay and testing for
concurrent programs. IEEE Software (March 1991) 66-
74

FH+ Frankl, P., Hamlet, D., Littlewood B., and Strigini,
L. Evaluating testing methods by delivered reliability.
IEEE Transactions on Software Engineering, 24, 8,
(August 1998), 586-601.

Ho Howden, W.E., Reliability of the Path Analysis Testing
Strategy. IEEE Transactions on Software Engineering,
2, 3, (Sept. 1976) 208-215.

OA+ Ostrand, T., Anodide, A., Foster, H., and Goradia,
T. A Visual Test Development Environment for GUI
Systems. ACM Proc. ISSTA 98 (Clearwater Beach,
Florida, USA, March 1998) 82-92.

OBOstrand, T.J., and Balcer, M. J. The Category-Partition
Method for Specifying and Generating Functional
Tests. Communications of ACM, 31, 3 (June 1988),
676-686.

RHRothermel, G., and Harrold, M.J., Analyzing
Regression Test Selection Techniques. IEEE
Transactions on Software Engineering , 22, 8 (Aug.
1996) 529-

Sc Schütz, W. Fundamental Issues in Testing Distributed
Real-Time Systems. Real-Time Systems Journal. 7, 2,
(Sept. 1994) 129-157.

VM Voas, J.M., and Miller, K.W. Software Testability:
The New Verification. IEEE Software, (May 1995) 17-
28.

WeWeyuker, E.J. On Testing Non-testable Programs. The
Computer Journal, 25, 4, (1982) 465-470

WW+ Weyuker, E.J., Weiss, S.N, and Hamlet, D.
Comparison of Program Test Strategies in Proc.
Symposium on Testing, Analysis and Verification TAV 4
(Victoria, British Columbia, October 1991), ACM
Press, 1-10.

STANDARDS
610 IEEE Std 610.12-1990, Standard Glossary of

Software Engineering Terminology.

829 IEEE Std 829-1998, Standard for Software Test
Documentation.

982.2 IEEE Std 982.2-1998, Guide for the Use of IEEE
Standard Dictionary of Measures to Produce Reliable
Software.

1008 IEEE Std 1008-1987 (R 1993), Standard for
Software Unit Testing.

1044 IEEE Std 1044-1993, Standard Classification for
Software Anomalies.

1044.1 IEEE Std 1044.1-1995, Guide to Classification for
Software Anomalies.

12207 IEEE/EIA 12207.0-1996, Industry Implementation
of Int. Std. ISO/IEC 12207:1995, Standard for
Information Technology-Software Life cycle processes

Knowledge Area Description Specifications for the
Stone Man Version of the Guide to the Software

Engineering Body of Knowledge

Version 0.25

Approved by the Industrial Advisory Board

Prepared by

Pierre Bourque

Robert Dupuis

Alain Abran

James W. Moore

Leonard Tripp

March 26, 1999

2

Introduction1

This document presents and interim version (version 0.2) of the specifications for
the Knowledge Area Descriptions of the Guide to the Software Engineering Body
of Knowledge (Stone Man Version). The Editorial Team definitely views the
development of these specifications as an iterative process and strongly
encourages comments, suggested improvements and feedback on these
specifications from all involved. Version 0.1 of these specifications has been
given to the Knowledge Area Specialists. They have used them to produce version
0.1 of the Knowledge Area Descriptions and have commented on the
specifications. Their comments have been included in this version of the
document.

This baseline set of specifications may of course be improved through feedback
obtained from the two important review cycles of the Guide scheduled for this
spring and next fall.

This document begins by presenting specifications on the contents of the
Knowledge Area Description. Criteria and requirements are defined for proposed
breakdowns of topics, for the rationale underlying these breakdowns and the
succinct description of topics, for the rating of these topics according to Bloom’s
taxonomy, for selecting reference materials, and for identifying relevant
Knowledge Areas of Related Disciplines. Important input documents are also
identified and their role within the project is explained. Non-content issues such
as submission format and style guidelines are also discussed in the document.

Content Guidelines

The following guidelines are presented in a schematic form in the figure found on
page 8. While all components are part of the Knowledge Area Description, it must
be made very clear that some components are essential, while other are not. The
breakdown(s) of topics, the selected reference material and the matrix of reference
material versus topics are essential. Without them there is no Knowledge Area
Description. The other components could be produced by other means if, for
whatever reason, the Specialist cannot provide them within the given timeframe
and should not be viewed as major stumbling blocks.

Criteria and requirements for proposing the breakdown(s) of topics within a
Knowledge Area

The following requirements and criteria should be used when proposing a
breakdown of topics within a given Knowledge Area:

1Text in bold is for the benefit of the Knowledge Area Specialists and indicates changes between version 0.1
of this document and version 0.2.

3

a) Knowledge Area Specialists are expected to propose one or possibly two
complementary breakdowns that are specific to their Knowledge Area. The
topics found in all breakdowns within a given Knowledge Area must be
identical.

b) These breakdowns of topics are expected to be “reasonable”, not “perfect”.
The Guide to the Software Engineering Body of Knowledge is definitely
viewed as a multi-phase effort and many iterations within each phase as well as
multiple phases will be necessary to continuously improve these breakdowns.
At least for the Stone Man version, “soundness and reasonableness” are being
sought after, not “perfection”.

c) The proposed breakdown of topics within a Knowledge Area must decompose
the subset of the Software Engineering Body of Knowledge that is “generally
accepted”. See section entitled “What do we mean by “generally accepted
knowledge”?” found below for a more detailed discussion on this.

d) The proposed breakdown of topics within a Knowledge Area must not presume
specific application domains, business needs, sizes of organizations,
organizational structures, management philosophies, software life cycle
models, software technologies or software development methods.

e) The proposed breakdown of topics must, as much as possible, be compatible
with the various schools of thought within software engineering.

f) The proposed breakdown of topics within Knowledge Areas must be
compatible with the breakdown of software engineering generally found in
industry and in the software engineering literature and standards.

g) The proposed breakdown of topics is expected to be as inclusive as possible. It
is deemed better to suggest too many topics and have them be abandoned later
than the reverse.

h) The Knowledge Area Specialist are expected to adopt the position that even
though the following “themes” are common across all Knowledge Areas, they
are also an integral part of all Knowledge Areas and therefore must be
incorporated into the proposed breakdown of topics of each Knowledge Area.
These common themes are quality (in general), measurement, tools and
standards.

Please note that the issue of how to properly handle these “cross-running” or
“orthogonal topics” and whether or not they should be handled in a different
manner has not been completely resolved yet.

i) The proposed breakdowns should be at most two or three levels deep. Even
though no upper or lower limit is imposed on the number of topics within each
Knowledge Area, Knowledge Area Specialists are expected to propose a
reasonable and manageable number of topics per Knowledge Area. Emphasis

4

should also be put on the selection of the topics themselves rather than on their
organization in an appropriate hierarchy.

j) Proposed topic names must be significant enough to be meaningful even when
cited outside the Guide to the Software Engineering Body of Knowledge.

k) Knowledge Area Specialists are also expected to propose a breakdown of
topics based on the categories of engineering design knowledge defined in
Chapter 7 of Vincenti’s book. This exercise should be regarded by the
Knowledge Area specialists as a tool for viewing the proposed topics in an
alternate manner and for linking software engineering itself to engineering in
general. Please note that effort should not be spent on this classification at the
expense of the three essential components of the Knowledge Area Description.

Criteria and requirements for describing topics and for describing the rationale
underlying the proposed breakdown(s) within the Knowledge Area

l) Topics need only to be sufficiently described so the reader can select the
appropriate reference material according to his/her needs.

m) Knowledge Area Specialists are expected to provide a text describing the
rationale underlying the proposed breakdown(s).

Criteria and requirements for rating topics according to Bloom’s taxonomy

n) Knowledge Area Specialists are expected to provide an Appendix that states
for each topic at which level of Bloom’s taxonomy a “graduate plus four years
experience” should “master” this topic. This is seen by the Editorial Team as a
tool for the Knowledge Area Specialists to ensure that the proposed material
meets the criteria of being “generally accepted”. Additionally, the Editorial
Team views this as a means of ensuring that the Guide to the Software
Engineering Body of Knowledge is properly suited for the educators that will
design curricula and/or teaching material based on the Guide and
licensing/certification officials defining exam contents and criteria.

Please note that these appendices will all be combined together and published
as an Appendix to the Guide to the Software Engineering Body of Knowledge.
This Appendix will be reviewed in a separate process.

Criteria and Requirements for selecting Reference Material

o) Specific reference material must be identified for each topic. Each reference
material can of course cover multiple topics.

p) Proposed Reference Material can be book chapters, refereed journal papers,
refereed conference papers or refereed technical or industrial reports or any
other type of recognized artifact such as web documents. They must be
generally available and must not be confidential in nature.

5

q) Proposed Reference Material must be in English.

r) A maximum of 15 Reference Materials can be recommended for each
Knowledge Area.

s) If deemed feasible and cost-effective by the IEEE Computer Society, selected
reference material will be published on the Guide to the Software Engineering
Body of Knowledge web site. To facilitate this task, preference should be given
to reference material for which the copyrights already belong to the IEEE
Computer Society or the ACM. This should however not be seen as a
constraint or an obligation.

t) A matrix of reference material versus topics must be provided.

Criteria and Requirements for identifying Knowledge Areas of the Related
Disciplines

u) Knowledge Area Specialists are expected to identify in a separate section
which Knowledge Areas of the Related Disciplines that are sufficiently
relevant to the Software Engineering Knowledge Area that has been assigned
to them be expected knowledge by a graduate plus four years of experience.

This information will be particularly useful to and will engage much dialogue
between the Guide to the Software Engineering Body of Knowledge initiative
and our sister initiatives responsible for defining a common software
engineering curricula and standard performance norms for software engineers.

The list of Knowledge Areas of Related Disciplines can be found in the
Proposed Baseline List of Related Disciplines. If deemed necessary and if
accompanied by a justification, Knowledge Area Specialists can also propose
additional Related Disciplines not already included or identified in the
Proposed Baseline List of Related Disciplines.

What do we mean by “generally accepted knowledge”?

The software engineering body of knowledge is an all-inclusive term that describes
the sum of knowledge within the profession of software engineering. However,
the Guide to the Software Engineering Body of Knowledge seeks to identify and
describe that subset of the body of knowledge that is generally accepted or, in
other words, the core body of knowledge. To better illustrate what “generally
accepted knowledge” is relative to other types of knowledge, Figure 1 proposes a
draft three-category schema for classifying knowledge.

6

The Project Management Institute in its Guide to the Project Management Body of
Knowledge2 defines “generally accepted” knowledge for project management in
the following manner:

‘“Generally accepted” means that the knowledge and practices
described are applicable to most projects most of the time, and that
there is widespread consensus about their value and usefulness.
“Generally accepted” does not mean that the knowledge and practices
described are or should be applied uniformly on all projects; the
project management team is always responsible for determining what is
appropriate for any given project.’

The Guide to the Project Management Body of Knowledge is now an IEEE
Standard.

At the Mont-Tremblant kick off meeting, the Industrial Advisory Board better
defined “generally accepted” as knowledge to be included in the study material of
a software engineering licensing exam that a graduate would pass after completing
four years of work experience. These two definitions should be seen as
complementary.

Knowledge Area Specialists are also expected to be somewhat forward looking in
their interpretation by taking into consideration not only what is “generally
accepted” today and but what they expect will be “generally accepted” in a 3 to 5
years timeframe.

2 See [1] W. R. Duncan, “A Guide to the Project Management Body of Knowledge,” Project Management

Institute, Upper Darby, PA 1996. Can be downloaded from www.pmi.org

7

Generally Accepted

Established traditional practices
recommended by many organizations

Advanced and Research

Innovative practices tested and used only
by some organizations and concepts still
being developed and tested in research
organizations

S
p

ec
ia

li
ze

d

Pr
ac

tic
es

 u
se

d
on

ly
 fo

r c
er

ta
in

 ty
pe

s
 o

f s
of

tw
ar

e

Figure 1 Categories of knowledge

Length of Knowledge Area Description

Knowledge Area Descriptions are currently expected to be roughly in the 10 pages
range using the format of the International Conference on Software Engineering
format as defined below. This includes text, references, appendices and tables etc.
This, of course, does not include the reference materials themselves. This limit
should, however, not be seen as a constraint or an obligation.

Role of Editorial Team

Alain Abran and James W. Moore are the Executive Editors and are responsible
for maintaining good relations with the IEEE CS, the ACM, the Industrial
Advisory Board and the Panel of Experts as well as for the overall strategy,
approach, organization and funding of the project.

Pierre Bourque and Robert Dupuis are the Editors and are responsible for the
coordination, operation and logistics of this project. More specifically, the Editors
are responsible for developing the project plan, the Knowledge Area description
specification and for coordinating Knowledge Area Specialists and their
contribution, for recruiting the reviewers and the review captains as well as
coordinating the various review cycles.

The Editors are therefore responsible for the coherence of the entire Guide and for
identifying and establishing links between the Knowledge Areas. The resolution of
gaps and overlaps between Knowledge Areas will be negotiated by the Editors and
the Knowledge Area Specialists themselves.

Summary

The following figure presents in a schematic form the Knowledge Area
Description Specifications

Knowledge Area
Jumpstart Document

(9)

Baseline List of
Knowledge Area

(2)

Categories of
Engineering Design

Knowledge by
Vincenti (11)

Bloom's Taxonomy
(1)

Baseline List of
Related Disciplines

(3)

Straw Man
Version of Guide
to the SWEBOK

(5)

Plan for
Developing the

Stone Man
Version (4)

Standards
Road Map

(6)

IEEE 610.12
Terminology
Standard (7)

12207 Software
Life Cycle
Processes

Standard (8)

Breakdown of Topics
(a-j)

Rational of
Breakdown and

Succinct
Description of
Topics (l-m)

Classification of
Topics Based on

Vincenti's
Categories (k)

Rating of Topics
Based on
Bloom's

Taxonomy (n)

Relevant
Knowledge

Areas of Related
Disciplines (u)

Selected
Reference

Material (o-s)

Matrix of
Reference

Material Versus
Topics (t)

Context Documents Standards Documents

Input Documents

Stone Man Version
Deliverable

Reference to Criteria
and Requirements
letter or Document
number

()

Contents of Knowledge
Area Description

9

Important Related Documents (in alphabetical order of first author)

1) Bloom et al., Bloom's Taxonomy of the Cognitive Domain

Please refer to
http://www.valdosta.peachnet.edu/~whuitt/psy702/cogsys/bloom.html for a
description of this hierarchy of educational objectives.

2) P. Bourque, R. Dupuis, A. Abran, J. W. Moore, L. Tripp, D. Frailey, A
Baseline List of Knowledge Areas for the Stone Man Version of the Guide
to the Software Engineering Body of Knowledge, Université du Québec à
Montréal, Montréal, February 1999.

Based on the Straw Man version, on the discussions held and the expectations
stated at the kick off meeting of the Industrial Advisory Board, on other body
of knowledge proposals, and on criteria defined in this document, this
document proposes a baseline list of ten Knowledge Areas for the Stone Man
Version of the Guide to the Software Engineering Body of Knowledge. This
baseline may of course evolve as work progresses and issues are identified
during the course of the project.

This document is available at www.swebok.org.

3) P. Bourque, R. Dupuis, A. Abran, J. W. Moore, L. Tripp. A Proposed
Baseline List of Related Disciplines for the Stone Man Version of the
Guide to the Software Engineering Body of Knowledge, Université du
Québec à Montréal, Montréal, February 1999.

Based on the Straw Man version, on the discussions held and the expectations
stated at the kick off meeting of the Industrial Advisory Board and on
subsequent work, this document proposes a baseline list of Related Disciplines
and Knowledge Areas within these Related Disciplines. This document has
been submitted to and discussed with the Industrial Advisory Board and a
recognized list of Knowledge Areas still has to be identified for certain Related
Disciplines. Knowledge Area Specialists will be informed of the evolution of
this document.

The current version is available at www.swebok.org

4) P. Bourque, R. Dupuis, A. Abran, J. W. Moore, L. Tripp, D. Frailey,
Approved Plan, Stone Man Version of the Guide to the Software
Engineering Body of Knowledge, Université du Québec à Montréal,
Montréal, February 1999.

This report describes the project objectives, deliverables and underlying
principles. The intended audience of the Guide is identified. The
responsibilities of the various contributors are defined and an outline of the
schedule is traced. This documents defines notably the review process that
will be used to develop the Stone Man version. This plan has been approved
by the Industrial Advisory Board.

10

This document is available at www.swebok.org

5) P. Bourque, R. Dupuis, A. Abran, J. W. Moore, L. Tripp, K. Shyne, B. Pflug,
M. Maya, and G. Tremblay, Guide to the Software Engineering Body of
Knowledge - A Straw Man Version, Université du Québec à Montréal,
Montréal, Technical Report, September 1998.

This report is the basis for the entire project. It defines general project
strategy, rationale and underlying principles and proposes an initial list of
Knowledge Areas and Related Disciplines.

This report is available at www.swebok.org.

6) J. W. Moore, Software Engineering Standards, A User's Road Map. Los
Alamitos: IEEE Computer Society Press, 1998.

This book describes the scope, roles, uses, and development trends of the most
widely used software engineering standards. It concentrates on important
software engineering activities — quality and project management, system
engineering, dependability, and safety. The analysis and regrouping of the
standard collections exposes you to key relationships between standards.

Even though the Guide to the Software Engineering Body of Knowledge is not
a software engineering standards development project per se, special care will
be taken throughout the project regarding the compatibility of the Guide with
the current IEEE and ISO Software Engineering Standards Collection.

7) IEEE Standard Glossary of Software Engineering Terminology, IEEE,
Piscataway, NJ std 610.12-1990, 1990.

The hierarchy of references for terminology is Merriam Webster's Collegiate
Dictionary (10th Edition), IEEE Standard 610.12 and new proposed definitions
if required.

8) Information Technology – Software Life Cycle Processes, International
Standard, Technical ISO/IEC 12207:1995(E), 1995.

This standard is considered the key standard regarding the definition of life
cycle process and has been adopted by the two main standardization bodies in
software engineering: ISO/IEC JTC1 SC7 and the IEEE Computer Society
Software Engineering Standards Committee. It also has been designated as the
pivotal standard around which the Software Engineering Standards Committee
(SESC) is currently harmonizing its entire collection of standards. This
standard was a key input to the Straw Man version.

Even though we do not intend that the Guide to the Software Engineering
Body of Knowledge be fully 12207-compliant, this standard remains a key
input to the Stone Man version and special care will be taken throughout the
project regarding the compatibility of the Guide with the 12207 standard.

11

9) Knowledge Area Jumpstart Documents

A “jumpstart document” has already been provided to all Knowledge Area
Specialists. These “jumpstart documents” propose a breakdown of topics for
each Knowledge Area based on the analysis of the four most widely sold
generic software engineering textbooks. As implied by their title, they have
been prepared as an enabler for the Knowledge Area Specialist and the
Knowledge Area Specialist are not of course constrained to the proposed list of
topics nor to the proposed breakdown in these “jumpstart documents”.

10) Merriam Webster's Collegiate Dictionary (10th Edition).

See note for IEEE 610.12 Standard.

11) W. G. Vincenti, What Engineers Know and How They Know It - Analytical
Studies from Aeronautical History. Baltimore and London: Johns Hopkins,
1990.

The categories of engineering design knowledge defined in Chapter 7 (The
Anatomy of Engineering Design Knowledge) of this book were used as a
framework for organizing topics in the various Knowledge Area “jumpstart
documents “ and are imposed as decomposition framework in the Knowledge
Area Descriptions because:

• they are based on a detailed historical analysis of an established branch of
engineering: aeronautical engineering. A breakdown of software
engineering topics based on these categories is therefore seen as an
important mechanism for linking software engineering with engineering at
large and the more established engineering disciplines;

• they are viewed by Vincenti as applicable to all branches of engineering;

• gaps in the software engineering body of knowledge within certain
categories as well as efforts to reduce these gaps over time will be made
apparent;

• due to generic nature of the categories, knowledge within each knowledge
area could evolve and progress significantly while the framework itself
would remain stable;

Authorship of Knowledge Area Description

The Editorial Team will submit a proposal to the project’s Industrial Advisory
Board to have Knowledge Area Specialists recognized as authors of the
Knowledge Area description.

12

Style and Technical Guidelines

Knowledge Area Descriptions should conform to the International Conference on
Software Engineering Proceedings format (templates are available at
http://sunset.usc.edu/icse99/cfp/technical_papers.html).

Knowledge Area Descriptions are expected to follow the IEEE Computer Society
Style Guide. See http://computer.org/author/style/cs-style.htm

Microsoft Word 97 is the preferred submission format. Please contact the
Editorial Team if this is not feasible for you.

Editing (to be confirmed)

Knowledge Area Descriptions will be edited by IEEE Computer Society staff
editors. Editing includes copy editing (grammar, punctuation, and capitalization),
style editing (conformance to the Computer Society magazines' house style), and
content editing (flow, meaning, clarity, directness, and organization). The final
editing will be a collaborative process in which IEEE Computer Society staff
editors and the authors work together to achieve a concise, well-worded, and
useful a Knowledge Area Description.

Release of copyright

All intellectual properties associated with the Guide to the Software Engineering
Body of Knowledge will remain with the IEEE Computer Society. Knowledge
Area Specialists will be asked to sign a copyright release form.

It is also understood that the Guide to the Software Engineering Body of
Knowledge will be put in the public domain by the IEEE Computer Society, free
of charge through web technology, or other means.

For more information, See http://computer.org/copyright.htm

