## II ÉCOLE DE TECHNOLOGIE SUPÉRIEURE - MONTRÉAL - CANADA

# Suggestions for Improving Measurement Plans: First Results from a BMP Application 

## Reiner Dumke, Alain Abran \& Luigi Buglione


$3^{\text {nd }}$ Software Measurement European Forum 10-12 May 2006, Rome, I taly

## Agenda

## I ntroduction

$\checkmark$ Multidimensional Analysis in Project Management
$\checkmark$ Rationale \& Objectives

- BMP: Balancing Multiple Perspectives
$\checkmark$ Objectives
$\checkmark$ The proposed measurement procedure
$\checkmark$ Causal Relationships
- I nitial Results from a BMP application
$\checkmark$ The BMP Questionnaire (BMP-Q)
$\checkmark$ Presentation of the samples
$\checkmark$ BMP-Q: the measures
$\checkmark$ First results \& feedback
- Conclusions \& Prospects


## I ntroduction

## Multidimensional Analysis in PM

- Growing interest in Integrated Software Measurement...
$\checkmark$ E.g. BSC, EFQM, MBQA, QEST/LIME
- ...but still few documented industrial implementations
$\checkmark$ Usually Time and Cost dimensions used, while at least 3 dimensions should be considered
- Other possible dimensions of analysis (eg: Quality, Risk, ...) are not often taken into account
$\checkmark$ Q: How much does it cost for project monitoring \& control?
$\checkmark$ Q: How many measures/indicators are usually tracked during the project lifecycle? And from which perspectives?


## I ntroduction

## Rationale \& Objectives

- Rationale:
$\checkmark$ Loss of project control is one of the most frequent causes of failure in Project Management
$\checkmark$ Prevention: Detailed analysis of content and quality of project tracking
- Some basic questions:
$\checkmark$ Right number of perspectives?
$\checkmark$ Right number of indicators?
$\checkmark$ What about hypotheses of relationships among processes?
- Objective:


At least, 3 dimensions:
$\checkmark$ Management
$\checkmark$ Users
$\checkmark$ Technical
$\checkmark$ Optimize the costs/benefits of tracking \& control projects, by balancing the number of measures/indicators used by each perspective of analysis useful to the project.

## I ntroduction

- Q: What is the right number of indicators to use?
- The Miller's "magic number" $7 \pm 2$ ?
- General suggestion to avoid misbalancing in selecting the measures critical to success, whatever the number
> "Select a small suite of key measures that will help you understand your group's work better, and begin collecting them right away, measuring several complementary aspects of your work, such as quality, complexity, and schedule." (Karl Wiegers)


## Agenda

- I ntroduction
$\checkmark$ Multidimensional Analysis in Project Management
$\checkmark$ Rationale \& Objectives


## BMP: Balancing Multiple Perspectives

$\checkmark$ Objectives
$\checkmark$ The proposed measurement procedure
$\checkmark$ Causal Relationships

- I nitial Results from a BMP application
$\checkmark$ The BMP Questionnaire (BMP-Q)
$\checkmark$ BMP-Q: the measures
$\checkmark$ Presentation of the samples
$\checkmark$ First results \& feedbacks
- Conclusions \& Prospects


## BMP: Balancing Multiple Perspectives

## General issue and Objective

- Q: how can a proper balance of perspectives and indicators be selected when managing a portfolio of projects?


The real issue is not to reduce the cost of measurement, but optimising it against the informative value provided by the number of measures/indicators balancing them by each perspective of analysis.

## BMP: Balancing Multiple Perspectives

## The proposed Measurement Procedure

(1) Determine the dimensions of interest in the project.
(2) Determine the list of the most representative measures associated with each dimension.
(3) For each of the measures selected, identify which other control variables might be impacted negatively.
(4) Figure out the best combination of indicators and the causal relations between them in order to build a measurement plan for the project.

## BMP: Balancing Multiple Perspectives

## A Generic four-dimensional BMP template



## BMP: Balancing Multiple Perspectives

## Causal Relationships

- Not sufficient to perform steps\#1 and \#2 (design a measurement plan)
- Next (required) step: establish coherent and proper relationships among goals through measures (i.e. the BSC strategic map) for achieving both single perspective goals, as well as overall organizational ones


| Time | - $\mathrm{MT}_{11}$ - Milestone Dates <br> - $\mathrm{MT}_{22}$ - Probilem Report Status <br> - $\mathrm{MT}_{24}$ - Change Request Status <br> - $\mathrm{MT}_{26}$ - Test Status |
| :---: | :---: |
| Cost | - $\mathrm{MC}_{11}$ - Earned Value <br> - $\mathrm{MC}_{12}-$ Cost |
| Quality | - $\mathrm{MQ}_{11}$ - Defects <br> - $\mathrm{MQ}_{21}$ - Defect Contairment <br> - $\mathrm{MQ}_{22}$-Rework |
| Risk | - $\mathrm{NR}_{11}$ - Staff Experience <br> - $\mathrm{MR}_{12}$-Staff Turnover <br> - $\mathrm{MR}_{22}$ - Functional Change Workload <br> - $\quad \mathrm{MR}_{32}$ - Resource Utilization |

## Agenda

- Introduction
$\checkmark$ Multidimensional Analysis in Project Management
$\checkmark$ Rationale \& Objectives
- BMP: Balancing Multiple Perspectives
$\checkmark$ Objectives
$\checkmark$ The proposed measurement procedure
$\checkmark$ Causal Relationships


## Initial Results from a BMP application

$\checkmark$ The BMP Questionnaire (BMP-Q)
$\checkmark$ BMP-Q: the measures
$\checkmark$ Presentation of the samples
$\checkmark$ First results \& feedbacks

- Conclusions \& Prospects

```
4 sections:
\checkmark Respondents profile & viewpoints
\checkmark ~ M e a s u r e s
\checkmark Causal Relationships
\checkmark Cost for "Tracking & Control" (T&C) process
```



## Applying BMP

## BMP-Q: the Measures

| $\mathbf{1 a}$ | $\mathbf{1}$ | Respondents profile by project role (\# and \%) |
| :--- | :--- | :--- |
|  | 2 | Experience profiles for current project role (\# and \%) |
| $\mathbf{1 b}$ | 3 | \# analysis viewpoints (OLD) |
| $\mathbf{1 c}$ | 4 | \# analysis viewpoints (NEW) |
| $\mathbf{2}$ | 1 | \# selected measures (OLD) |
|  | 2 | \# selected metrics (NEW) |
|  | 3 | \# affected viewpoints (NEW) |
|  | 4 | Avg of measures by viewpoint (\# and \%) |
| $\mathbf{3 a}$ | 1 | List of causal relationships among measures |
| $\mathbf{4 a}$ | 2 | Ranking of relationships by: abs value, respondent project role, analysis viewpoint |
| $\mathbf{4 b}$ | 1 | \% respondents knowing amount of costs for m\&c (monitoring \& control) activities |
| $\mathbf{4 c}$ | 1 | Max, Min, Avg and Med for the returned values (\%) - OLD |

## Applying BMP

The samples

|  | Canada | Germany |
| :--- | :--- | :--- |
| Sample /d. | S1 | S2 |
| \# of Respondents | 6 | 10 |
| Type of Respondents | Graduate Students- <br> (including professionals) | SE professionals |
| BMP-Q gathering time | Q1/2005 | Q1/2006 |

Q1a. Profiles



## Applying BMP

## Results

## Q1b-c. \# of PoV - Current \& Past Projects vs Next Projects



S1 IWI


S2

## Q2.1-2.2. \# of Measures - Current \& Past Projects vs Next Projects



## Applying BMP <br> Results

## Q2.3. PoV affected and Avg \# of measures by viewpoint




## Applying BMP <br> Results

## Q2.4. \# of Measures - by Project Role



| Project Role | \# | \# OLD | \# NEW | Avg \# <br> (OLD) | Avg \# <br> (NEW) | Comments |
| :--- | :---: | :---: | :---: | :---: | :---: | :--- |
| Developer | 4 | 10 | 9 | 2.5 | 2.25 | No usage of measures in 50\% of the respondents' companies |
| Project Manager | 1 | 14 | 1 | 14 | 1 |  |
| Tester | 1 | 0 | 0 | 0 | 0 | No usage of measures in his/her company |

## S2

| Project Role | \# | \# OLD | \# NEW | Avg \# <br> (OLD) | Avg \# <br> (NEW) | Comments |
| :--- | :---: | :---: | :---: | :---: | :---: | :--- |
| Project Manager | 5 | 53 | 7 | 5.3 | 0.7 | More than 7:1 (old-new) ratio |
| Developer | 2 | 12 | 24 | 1.2 | 2.4 | $1: 2$ (old-new) ratio |
| QA/QM | 2 | 31 | 5 | 3.1 | 0.5 | c.a. 6:1 (old-new) ratio |
| Project Office | 1 | 31 | 0 | 3.1 | 0 | Really conservative |

## Applying BMP <br> Results

## Q2.5. Top selected measures by project role

## General ( $\mathbf{n}=23$ )

| \# Id. | Category | Measure | Indicator | Did | New | Tot |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | Milestone Ferformance | Mlestone Dates | DevMlestone Schedule | 2 | 1 | 3 |
| 9 | Work Lhit Progress | Component Stas | Design Frogres wipreplan | 1 | 2 | 3 |
| 17 | Financial Peformance | Earmed value | Coste Schedule vaiance | 3 | 0 | 3 |
| 20 | Eroir.-Support Resour. | Resoume Ltiliz. | Resource Ltrilization | 3 | 0 | 3 |

Developers ( $\mathrm{n}=14$ )

| \# Id. | Category | Measure | Indicator | Cid | New | Tot |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | Milestone Ferformane | Mlestone Dites | LewiMlestone Schedule | 1 | 1 | 2 |
| 16 | Personnel | Gaff Experience | Gaffexpreience | 2 | 0 | 2 |
| 20 | Erwir--Support Resour. | Resource Ltriliz. | Resource Ltrilization | 2 | 0 | 2 |
| 40 | Fortability | St Compliance | Interface Compliance Validation | 2 | - | 2 |

Project Managers ( $\mathrm{n}=15$ )

| \# Id. | Category | Measure | Indicator | Old New | Tot |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 9 | Work Lhit Frogress | Component Stus | Design Frogres wi replan | 02 | 2 |
| 11 | Work Lhit Progress | Adtion Item Stt. | Astion Item 9 stus | 20 | 2 |
| 17 | Financial Performance | Earmed Walue | Goste Schedule Vriance | 20 | 2 |

## Applying BMP <br> Results

Q2.5. Top selected measures by project role
S2
General ( $\mathrm{n}=59$ )

| \# Id. | Category | Measure | Indicator | Cld | New |
| :---: | :--- | :--- | :--- | :--- | :--- |
| 2 | Totestone Performance | Mlestone Dates | Mlestone Progress | 12 | 1 |
| 4 | Work Lhit Progress | ProblReport Sat | FR Satus | 13 |  |
| 9 | Work Lhit Progres | Component Satus | Design Progress w replan | 0 | 13 |
| 1 | Mlestone Performance | Mlestone Dates | DevMlestone Schedule | 11 | 1 |
| 12 |  |  |  |  |  |
| 13 | Personnel | EFfort | Efort Allocation Wireplan | 11 | 0 |
| 16 | Personnel | Saffexperience | Saff Experience | 11 | 0 |

Developers ( $\mathrm{n}=11$ )

| \# Id. | Category | Measure | Indicator | Cid | New | Tot |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 34 | Supportability-Maint. | Time to Restore | Syst. Failures and Restoration | 4 | 0 | 4 |
| 2 | Mlestone Performance | Milestone Dates | Miestone Progress | 2 | 0 | 2 |
| 4 | Work Lhit Progress | Prob. Report Satus | FR Satus | 2 | 0 | 2 |
| 11 | Work Lnit Progress | Action Item Satus | Action Item Satus | 2 | 0 | 2 |
| 23 | Fhysical Size-Sxability | Lines of Code | SNI Size - Liner of Gode | 2 | 0 | 2 |
| 35 | Supportability Maint. | Time to Restore | Mean Time to Repar or Fix | 2 | 0 | 2 |

## Applying BMP <br> Results

## Q2.5. Top selected measures by project role S2

Project Managers ( $\mathrm{n}=52$ )

| \# Id. | Category | Mearure | Indicator | Cid | New | Tot |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | Mlestone Performance | Mlertone Dates | DevMlestone Schedule | $E$ | 0 | 5 |
| 12 | Incremental Cqubility | Incrementhontent | Incremental Content | 5 | 0 | 5 |
| 46 | Frocess Compliance | RefModel Rating | RefiModel Level -Continuous type | 5 | 0 | 5 |
| 2 | Mlestone Performance | Mlestone Dates | Mlestone Frogress | 4 | 0 | 4 |
| 4 | Work Lhit Progres | Problreport Sts | FR Stus | 3 | 1 | 4 |

QM/ QA ( $n=32$ )

| \# Id. Category | Measure | Indicator | T | C | 0 | R | Q(1) | O(2) | Oid | New | Tot |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 9 Nork Lhit Progress | Component Satus | Design Progress wi replan | 2 | 2 | 2 | 2 | 0 | 0 | 8 | 0 | 8 |
| ZVlestone Performance | Mlestone Dates | Mlestone Progress | 2 | 2 | 1 | 1 | 0 | 0 | 6 | 0 | 6 |
| 4Nork Lhit Progress | ProblReport Sat | PR Sabus | 1 | 1 | 2 | 2 | 0 | 0 | 6 | 0 | 6 |
| 28 Functional Size-Sabil | Funct, Change WL | Cest by Priority | 2 | 1 | 1 | 2 | 0 | 0 | 6 | 0 | 6 |
| 46 Process Compliance | Ref.Model Raxing | Ref.Model Level - Continuous type | 2 | 2 | 2 | 0 | 0 | 0 | 6 | 0 | 6 |
| 13Personnel | Efort | Effort Allocation wreplan | 2 | 1 | 0 | 2 | 0 | 0 | 5 | 0 | 5 |

## Applying BMP <br> Results

## Q3. Causal Relationships

## S1 |*|

- $100 \%$ of silent respondents $\rightarrow$ measures often used as islands within the T\&C process
- Proposal for revision: introduce a question asking if the respondent's company is (or not) certified ISO 9001:2000 and/or has an SPI program in place
- Rationale: In such cases rules exist Clause 8 in ISO 9001:2000 (asking for continuous improvement through a measurement process and analysis of gathered data) and the Measurement process in SPI models (i.e. MA in CMMI; ORG. 5 in SPICE, ...), but are not properly applied. Why?
- Again: Clause 4.1b in ISO 9001:2000 asks an organization to "determine the sequence and interaction of (QMS) processes"


## S2

- $40 \%$ of silent respondents
- $60 \%$ pointed out on
- measuring the whole SLC
- Process compliance indicators, as a result of establishing causal relationships among processes


## Applying BMP <br> Results

## Q4. Cost of the T\&C process

## S1 |iw

- Only one respondent had an idea about the "how much" could cost T\&C
- T\&C process costs absorbed within Project Management ones
- Expectations: allocation of between $5 \%$ and $20 \%$ of project budget (avg: 10\%)
- Note: higher value proposed by a developer


## S2

- 70\% of respondents (typically PM)
- Project roles: the non-respondents were developers and QA/QM
- Expectations: allocation of between 5\% and 35\% of project budget (avg: 17\%)
- Note: higher value proposed by a developer


## Applying BMP <br> First Results \& Feedlbacks (1/ 2)

## Teaching viewpoint:

- Simplify the way for explaining the ISO/IEC 15939:2002 Information Model and introducing the cause-effect linkage among development processes, as a as a useful foundation for ICT Balanced Scorecards (BSC)
- Help in pointing out to practitioners and students that there are plenty of well-proven and established measures within the Software Engineering domain, but also that each Measurement Program must be built having in mind that unique situation and that every measure should be designed and verified to be effectively goal-driven


## Applying BMP <br> First Results \& Feedlbacks (2/ 2)

## /ndustria/ viewpoint:

- Increase awareness about cost-benefit analysis in implementing (or not) a certain measure/indicator within their current QMSs.
$\checkmark$ Stimulus for industry people to know more and more about the effort/cost splitting of their projects by SDLC phase (in many cases the answer is: don't know).
$\checkmark$ Proposed the Test Selection Algorithm: each measure has its own cost from its definition till the project closure, within a budget constraint.
$\checkmark$ Key point: balancing the current available amount of budget and not to simply cut controls. And in that eventuality, the point to face was: but which drawbacks of deleting or adding some controls?
- Proposed to re-label such measures and indicators as project "controls", to provide a better match with managers' responsibilities


## Agenda

- Introduction
$\checkmark$ Multidimensional Analysis in Project Management
$\checkmark$ Rationale \& Objectives
- BMP: Balancing Multiple Perspectives
$\checkmark$ Objectives
$\checkmark$ The proposed measurement procedure
$\checkmark$ Causal Relationships
- I nitial Results from a BMP application
$\checkmark$ The BMP Questionnaire (BMP-Q)
$\checkmark$ BMP-Q: the measures
$\checkmark$ Presentation of the samples
$\checkmark$ First results \& feedbacks


## Conclusions \& Prospects

## Conclusions \& Prospects

- Project managers often consider only two dimensions for tracking \& control of their projects (Time, Cost): at least, the Quality perspective should be also taken into account;
- further perspectives (eg: Risk) could be also be useful if considered from the planning phase on. Even more challenging, a multi-perspective approach - as in the BSC - is suggested.
- There does not exist a "magic number" of indicators to track, but the goal is to optimize costs and informative value derived from that amount of indicators, establishing also the causal relationships among their related goals.
- BMP (Balancing Multiple Perspectives) proposes a 4-step procedure to select an appropriate balance of indicators from the various perspectives taken into account (e.g. Time, Cost, Risk and Quality) and focus on the core indicators from each of them, thereby helping the project manager in tracking and control activities.


## Conclusions \& Prospects (1/2)



- A first application with two samples of respondents (from Canada and Germany) revealed that there is enough room to work on about:
- The amount of budget to allocate in software projects for T\&C
- Usually measures are chosen mainly taking care to Time and Cost perspectives; the new desired perspectives would be Risk and Quality
- Developers are more open to introducing new measures on projects, while Project Managers pay more attention to not increasing costs and Testers did not use any measures.
- Usually the selection of measures is not done taking care of how they are/will be linked in a cause-effect chain (BSC-like)
- The greater the experience (\# of years), the greater the number of measures selected
- Due to its inner multidimensional nature, future joint usages with methods, tools and frameworks taking into account concurrent dimensions (eg: QEST/LIME) will be investigated.


## Q \& A



## Thank you!


umke@ivs.cs.uni-magdeburg.de, aabran@ele.etsmtl.ca, /uigi.buglione@computer.org

