Mapping the OO-Jacobson Approach to Function Point Analysis

Thomas Fetcke, Alain Abran and Tho-Hau Nguyen

Université du Québec 4 Montréal*

Abstract

The Function Point software measure does
not require the use of a particular development
technique. However, the high-level concepts of
object-oriented development methods cannot be
mapped directly to the concepts of Function
Point Analysis. In order to apply this software
measure early in the development process, the
object-oriented concepts corresponding to
transactional and data function types have to be
determined.

Object-oriented methods differ, especially in
their early development phases. The Object-
Oriented Software Engineering method of
Jacobson et al. is based on so-called use cases.
The viewpoint of this method is similar to
Function Point Analysis in the sense that it
concentrates on the application's functionality
from the user's perspective.

The OO-Jacobson approach identifies the
functionality of an application with the
requirements use case model. Data types are
described with a domain or analysis object
model on the requirements level. Our work
proposes rules to map these models to the
Function Point counting procedures. With the
proposed rules, it is possible to count software
developed with the OO-Jacobson method.
Experimental counts have been conducted for
three industry projects.

1. Introduction

Function Point Analysis was introduced by
Albrecht (1979) as a measure of the functional
size of information systems. Since then, the use

of Function Points has grown worldwide and the
counting procedures have been modified and
improved several times since their initial
publication. Function Point Analysis (FPA) is
now maintained by the International Function
Point Users Group (IFPUG). The current version
of the counting rules is recorded in the Counting
Practices Manual (IFPUG 1994).

Function Point Analysis as a measurement
technique is intended to be independent of the
technology used for implementation. It is
formulated as a counting procedure of several
steps in the Counting Practices Manual.

Though independent of implementation, the
rules are based on implicit assumptions on how
software applications are modeled. The items
counted in Function Point Analysis are
identified from the documentation, following the
counting rules. These items include fransaction
and file types. They are typically identified from
the documents of traditional, structured design
techniques, e. g. data flow diagrams, hierarchical
process models or database structures.

1.1. Function Point Analysis with object-
oriented design methods

Object-oriented design methods, by contrast,
model software systems as collections of
cooperating objects. The models created with
OO methods are different, especially in the early
phases. They typically do not provide the
documentation mentioned above.

However, the goal of measuring the
functionality that the user requests and receives
is still valid for applications developed with
object-oriented technology.

* Université du Québec 2 Montréal, Laboratoire de recherche en gestion des logiciels, Case postale 8888, succursale Centre-
Ville, Montreal (Quebec) Canada H3C 3P8, Telephone: +1 (514) 987-3000 (6667), Telefax: +1 (514) 987-8477, E-Mail:
¢3724@er.uqam.ca, fetcke@scs.tu-berlin.de, WWW: http://www.cs.tu-berlin.de/~fetcke.

6th Workshop on Software Metrics of the German Gesellschaft fir Informatik, held together with the Germany-Quebec
Workshop on Software Metrics, 1996 September 19-20 in Regensburg, Germany.

Use case model

>

-

y

O 00,
Analysis (object)
Domain object model mode!

D

Design model

O—0O

|

g

[] ok
[] ok
O fall

Testing model

class ...

Implementation
model

Figure I The use case model is the basis on which all other models of the OOSE approach are developed.

In the early phases of the software cycle,
distinct object-oriented methods differ in the
models developed. It is therefore necessary to
discuss individual counting approaches for each
method (see Jones 1995). In this project, we
focus on the approach of Jacobson, Christerson
et al. (1992). This method is called Object-
Oriented Software Engineering (OOSE).

The OOSE method defines a process to
transform formalized requirements into a
sequence of models. The steps include the
requirements, analysis, design, implementation
and testing models (see Fig. 1).

1.2. Related work

Little work has been published on Function
Point Analysis in the context of object-oriented
software engineering techniques. These
approaches are generally based on a model that
displays objects together with their methods.
Methods are then treated as transactions and
objects as files. These approaches do not,
however, properly reflect differences in OO
approaches, and, in particular, are not applicable
to early OOSE documents. It is also
questionable whether each individual method is
to be counted as a transaction'.

' The Function Point concept requires a transaction to
be the smallest unit of activity that is meaningful to the

Whitmire (1992) considers each class as an
internal logical file and treats messages sent
outside the system boundary as transactions.

The ASMA (1994) paper takes a similar
approach. Services delivered by objects to the
client are considered as transactions. The
complexity of services is weighted based on
accessed attributes and communications. Objects
are treated as files, their attributes determining
their complexity.

IFPUG (1995) is working on a case study
which illustrates the use of the counting
practices for object-oriented analysis and design.
This case study, which is currently in draft form,
uses object models in which the methods of
classes are identical with the services recorded
in the requirements. Under this assumption, the
methods can be directly counted as transactions.

Karner (1993) proposes a new measure
called Use Case Points for projects developed
with the OOSE method. The structure of this
measure is similar to Function Points, but it does
not conform with the concepts of Function
Points.

user. The elementary process has to be self-contained and
to leave the business of the application in a consistent state.

1.3. Function Point Analysis with OOSE

In order to apply the counting rules for
Function Points to the software applications
developed with OOSE, the Function Point and
OOSE concepts and terminologies have to be set
into relation to one other. The challenge of this
research project is to identify and clarify this
relationship and then to transform it into a
mapping of respective concepts. The mapping
must then be transformed into a set of rules and
procedures. This set of rules and procedures will
facilitate the counting of Function Points by
practitioners in the field, helping them to apply
the procedures of the Counting Practices
Manual.

Two quality factors will have an impact on
the ease of counting Function Points based on
the results of this research work.

The first quality factor will be the quality of
the mapping of the OOSE models to Function
Point concepts, i. e. how easy it is to use the
rules and procedures developed in this research
project in order to identify and measure, from
the OOSE documents, the components that
contribute to functional size.

The second factor will, of course, be the
degree of conformity between the project
documentation and OOSE standards, as well as
its quality and completeness. The measurement
process is indeed very dependent on the quality
and completeness of the project documentation,
i. e. completeness in terms of the parts that are
required for the count: if, for the project to be
measured, important parts of the method are not
used, it may be necessary to augment the
formally documented items with information
recorded differently, and determine their
additional contribution to the Function Point
count according to the counting rules.

analysis

Requirements Robustness
D analysis
Requirements %

Customer model!
requirements

Analysis model

- Use case model %
- Domain object model |3

Figure 2: Analysis phases of OOSE life cycle.

2. Brief introduction to OOSE

The OOSE method is divided into three
major consecutive processes: analysis,
construction and testing. The analysis phase is
further divided into two steps, called
requirements analysis and robustness analysis
(see Fig. 2). The first step derives the
requirements model from the informal customer
requirements. This model is expressed in terms
of a use case model, and may be augmented by a
domain object model. The second step,
robustness analysis, then structures the use case
model into the analysis model. The succeeding
processes further transform these models, as
indicated in Figure 1.

The focus of our work is the models
developed in the analysis phase. As Jacobson et
al. state, the requirements model can be regarded
as formulating the functional requirements
specification based on the needs of the users.
Our goal is to count Function Points early in the
life cycle, measuring the functionality requested
by the user from these models.

In the following paragraphs, we give a short
overview of the three models.

2.1. Use case model

The central model of OOSE is the use case
model (cp. Fig. 1), and therefore Jacobson et al.
call their approach “use case driven”. This
model has two types of entities, actors and use
cases.

Actors represent what interacts or exchanges
information with the system. They are outside
the system being described. When an actor uses
the system, he performs a behaviorally related
sequence of actions in a dialogue with the
system. Such a special sequence of actions is
called a use case. With the uses and extension
relationships, use cases can be structured into
further detail.

Operator communicates

— Add Customer
uses i)

Database

Figure 3: Use case model with the use case Add Customer
and two associated actors.

Each use case is a specific way of using the
system. The set of all use case descriptions
specifies the complete functionality of the
system. Figure 3 gives a small example of a use
case model.

Interface descriptions of the use cases can
support the use case model.

2.2. Domain object model

As an augmentation of the use case model,
the domain object model consists of the objects
found in the problem domain. Structuring these
objects with the inheritance and aggregation
relationships is an option. Some examples of
domain objects are shown in Figure 4.

This model is meant to support the
development of the requirements model. The
OOSE method does not explicitly require a

o O O

Customer Database User

Figure 4: Domain object model.
domain object model.

2.3. Analysis (object) model

The analysis model is based on typed objects.
The three object types are entity, control and
interface. The purpose of the typing is to support
the creation of a structure that is adaptable to
changes. Thus, for example, changes to the
interface requirements can be limited to
interface objects.

N
5T

receipt basis item

Customer

interface object \._Q ’
control object O
entity object Q

Figure 5: Analysis model for a use case.

Returning item

Entity objects model information that exists
in the system for a longer time, typically
surviving a use case. Domain objects often
become entity objects, but this is not necessarily
the case.

Interface objects model behavior and
information related to the presentation of the
system to the outside world.

Control objects model functionality that is
not naturally tied to other object types. A control
object could, for example, operate on several
entity objects, perform a computation and return
the result to an interface object that would
present it to the user.

The analysis model is derived from the use
case model. The functionality of each use case is
partitioned and allocated to the typed objects.

The use case example Returning item in
Figure 5 is structured into four objects that will
perform this service. The customer interacts
with the interface panel when returning an item.
The data on the items is stored in the entity
objects receipt base and item. The item receiver
object controls the process.

3. Function Point concepts

3.1. Function Point model

A high-level view of the Function Point
Analysis model is given in Figure 6. The
Function Point model specifies which
component types of the software application will
be measured and from which viewpoint this will
be done. What is to be counted, and measured,

Function Point Model

Application boundary- 3

-
! I
f i
| Measured ! Other
! application i applications
]
Inputs : I Inputs
. :
]
: Internal Files :
|
|
User Outputs | : Outputs
N [
i :
X External Files | «—| Internal Files
| i
I I
Inquiries | I Inquiries
: T
- ! i
; 1

Figure 6: High-level view of Function Point Analysis with users and links to other applications. The dotted
line marks the application boundary.

are the internal files and external files of the
application, together with the inputs, outputs and
inquiries from and to the user. Software
components or deliverables which are not visible
from a user viewpoint are not considered part of
the Function Point measurement model.

However, within the Function Point model,
the wser concept is not equivalent to, nor
restricted to, a human being as the user of the
software, and other types of users are therefore
admissible within its measurement model, such
as mechanical devices or other software
applications. Figure 6 also illustrates that, within
the Function Point model, inputs, outputs and
inquiries coming from, and going to, other
software applications qualify as admissible
items to be counted and measured.

3.2. Function Point measurement

procedure

The Function Point measurement procedure
for a software application consists of four major
steps of abstraction of user-visible components
of the software. The first abstraction step is
identification of the application's boundary. The

second major step is identification, within the
previously identified boundary, of the files and
transactions that have to be counted. The third
step classifies the files and transactions
identified in the second step into classes of file
and transactional types respectively. In the last
major step, the items to be counted are assigned
weights based on their number of
subcomponents.

The next section describes the proposed
mapping of OOSE models to Function Points
along these four major steps. The mapping has
been formulated as rules to support their
practical application.

4. Mapping of concepts

4.1. Step 1: Boundary concepts

The viewpoint of the user is essential in
Function Point Analysis to determine which
parts of the application contribute to the
delivered functionality. The concept of the
counting boundary is the high-level abstraction
of an application which determines the artifact
under measurement. Before any measurement

can take place, the object of the measurement
process has to be specified.

The Function Point counting boundary

indicates the border between the project or

application being measured and the
external applications or user domain.’?

In Figure 6, the counting boundary is
indicated by a dotted line. The counting
boundary is always dependent on the purpose
and the viewpoint of the count.

The view of the OOSE use case model
corresponds to the boundary concept of Function
Points, as the actors are outside the application
and the use cases define the application's
functionality3.

4.1.1. Actors, users and external applications

Since the OOSE concept of actors is broader
than the concept of wusers and external
applications in FPA, there cannot be a one-to-
one mapping of actors to users or external
applications. However, each user of the
application has to appear as an actor. Similarly,
every other application which communicates
with the application under consideration must
appear as an actor too.

In this sense, the set of actors gives us the
complete view of the users and external
applications outside the counting boundary. But
the set may contain actors that are not
considered as users in the Function Point view,
as OOSE makes it possible to view the
“functionality of the underlying system as an
actor.” Therefore we have to select those actors
that fall into the Function Point categories of
users and external applications.

The following rules have therefore been
formulated to ensure a consistent and coherent
mapping between the OOSE model and the
Function Point measurement procedures.

4.1.2. Proposed rules

1) Accept each human actor as a user of the
system.

2IFPUG (1994) p. 4-2.
’ Jacobson et al. call this boundary the “system
delimitation”.

2) Accept each non-human actor which is a
separate system not designed to provide
functionality solely to the system under
consideration as an external application.

3) Reject each non-human actor which is part
of the underlying system, e. g. a relational
database system or a printing device.

The documentation required for this step is
the use case model displaying actors and use
cases on a relatively high level.

4.2, Step 2: Identification of items within
the boundary

4.2.1. Step 2a: Transactional functions

The Function Point rules have two concepts
of items that have to be counted. The first of
these concepts is a user-visible elementary
process which leaves the system in a consistent
state, called a transaction. However, which user-
visible deliverables have to be counted as
transactions is determined by detailed counting
rules. There can be a one-to-one, one-to-many or
many-to-one relation between deliverables
visible to the user and transactions, e. g. a single
input screen can correspond to one external
input, while a complex screen can contain masks
for input and produce output from it
Furthermore, an input may have so many fields
that it is split up into several screens.

Determining what is a transactions is
therefore a process that requires analysis
according to the Function Point counting rules.

Use cases are the OOSE concept
corresponding to transactions. However, there is
no one-to-one relation between them. As stated
above, the view defined in the counting rules
may imply that one use case has to be counted as
one or as many transactions, depending on the
tasks it performs4. Nevertheless, the set of use
cases is the set of candidates for transactional
functions.

* This notion is not related to the number of actors that
can execute one use case (cardinality of relationships), but
to the abstract concept of different transactions performed.

Use cases and transactions

The level of detail in the use case model may
vary. On the one hand, different flows of
interaction may be grouped in one use case. On
the other hand, use cases can be broken down
into further detail, using the uses and extension
relationships. Generally, the use case model
does not provide enough information to make
decisions, whether and how to count a specific
use case according to the Function Point rules.
For this purpose, the use cases have to be
described in further detail. But, if use cases are
hierarchically — ordered using the uses
relationship, it is possible to choose those use
cases that directly communicate with users or
external applications, i. e. the actors that have
been identified as users or external applications
respectively.

These use cases are candidates for
transactions. Determining how many
transactions of which types one use case
corresponds to has to be made with more
detailed information from use case descriptions.

Proposed rules

4) Select every use case that has a direct
relation to an actor accepted by rule 1 or 2.
This use case will be a candidate for one or
several transactions.

5) Select every use case that extends a use
case selected by rule 4 as a candidate. The
extension may include interaction with a
user or external application.

6) No other use cases will be selected.

The documentation required for this step is
the use case model displaying actors and use
cases on a relatively high level, the same as for
rules 1-3.

4.2.2. Step 2b: Files

The second concept of items that have to be
counted is the file, and the corresponding
concept in OOSE is the domain object.

Domain objects and files

An optional part of the requirements analysis
in the Jacobson approach is a model of domain
objects. The domain objects are candidates for
files.

In the analysis model, the objects are typed
into three groups, namely entity, interface and
control objects. Among these, the entity objects
correspond to the Function Point notion of files,
while interface objects relate to a (technical)
presentation of data to the actor and control
objects model the internal processes.

If the analysis model of typed objects is
provided, the set of objects that have to be
analyzed is limited to the entity objects and is
thus typically smaller. In this case, rules 7a and
8a can be applied.

If, however, only the (untyped) domain
object model exists, the set of candidates for
files is the entire set of domain objects (rule 7b).
These have to be analyzed according to the FP
counting rules (see section 4.3 below).

Proposed rules

(a) for typed objects

7a) Select every object of entity type as a
candidate for a file type.

8a) No other objects will be selected.

The documentation required for this step is
the typed analysis (object) model.

(b) for untyped objects

7b) Select every domain object as a candidate
for a file type.

8b) No other objects will be selected.

The documentation required for this step is
the domain object model.

Additional candidates for files

Some data that are by Function Point
convention considered as internal/external files
may be not represented in an object model,
although that functionality is required by the
user. Error messages or help texts, for example,

may be a requirement and need a representation
according to Function Point rules. These data are
not normally modeled as objects, however.

9) If use cases make implicit use of logical files
that are not represented in the object model,
these files have to be included in the set of
files.

The documentation required for this step are
the use case descriptions and the object model
used under (a) or (b).

4.3. Step 3: Determination of types of the
items

4.3.1. Step 3a: Transactional function types

Determining the types of transactions is
based on a set of detailed rules in FPA. This
process involves interpretation of the rules. The
basis for the decisions made is the project
documentation.

The rules are recorded in the IFPUG
Counting Practices Manual. The relevant
sections are
e “External Input Counting Rules”,

e “External Output Counting Rules”, and
e “External Inquiry Counting Rules”.

4.3.2. Step 3b: File types

Determining file types is also based on a set
of detailed rules in FPA, and this process also
involves interpretation of the rules. The basis for
the decisions made is the project documentation.

The rules are recorded in the IFPUG
Counting Practices Manual. The relevant section
is “ILF/EIF Counting Rules”.

4.4. Step 4: Weighting factors

The weights of transactions and files are
based on detailed rules in the Counting Practices
Manual. The rules require the determination of
data elements, record types and files that are
referenced. This information has to be extracted
from detailed documentation of the use cases
(for transactions) and of the domain objects (for
files).

However, if this level of detailed
documentation is not (yet) available, the weights

can be estimated, based on expert judgment or
experience. This makes it possible to obtain an
estimate of the Function Point count in an early
development phase.

5. Experimental results

The rules proposed in section 4 have been
used to count three industry projects that were
developed with the OOSE approach. The
documentation provided included use case
models and domain object models together with
textual descriptions of these models.

The calculated sizes of the projects in
Function Points were:

Project 1 265
Project2 181
Project3 215

The rules proposed have been useful and
have made the Function Point counts for these
projects feasible.

6. Summary

In this work we have demonstrated the
applicability of Function Points as a measure of
functional software size to the object-oriented
Jacobson approach, OOSE. This supports the
thesis that Function Point Analysis measures
independent of the technology used for
implementation.

The high-level OOSE models had to be
mapped to Function Point concepts. This
mapping was divided into four levels of
abstraction. The mapping has been expressed in
a small set of rules, thus also supporting the
actual counting procedure.

These rules were successfully applied to
three industrial software projects.

Future work in the field has to deal with the
application of Function Point Analysis to other
object-oriented design techniques. This would
make the measure available for these new
techniques, and would make it possible to
compare the counts of projects that were
developed with different techniques. The
resulting mappings of concepts could be
incorporated in a future release of the IFPUG
case study.

Acknowledgements

We thank Ericsson for the support and
funding of this work. This research was carried
out at the Laboratoire de recherche en gestion
des logiciels at the Université du Québec a
Montréal. This laboratory is made possible
through a partnership with Bell Canada.
Additional funding is provided by the Natural
Sciences and Engineering Research Council of
Canada. The opinions expressed in this article
are solely those of the authors.

Literature

Albrecht, A. J. (1979). Measuring Application
Development Productivity. 1BM Applications
Development Symposium, Monterey, CA.

ASMA (1994). Sizing in Object-Oriented
Environments. Victoria, Australia, Australian
Software Metrics Association.

Goh, F. (1995). Function Points methodology for
object oriented software model, Ericsson Australia
Pty Ltd.

IFPUG (1994). Function Point Counting Practices
Manual, __Release 4.0. Westerville. Ohio,
International Function Point Users Group.

IFPUG (1995). Function Point Counting Practices:
Case Study 3 - Object-Oriented Analysis, Qbject-
Oriented Design (Draft), International Function
Point Users Group.

Jacobson, I., M. Christerson, et al. (1992). Qbject-
Oriented_ Software Engineering. A Use Case
Driven Approach, Addison-Wesley.

Jones, J. (1995). FP Issues for O-O and K-B Systems.
IFPUG 1995 Spring Conference, Masville.

Karner, G. (1993). Resource Estimation for Objectory
Projects, Objectory Systems.

Whitmire, S. A. (1992). Applying function points to
object-oriented software models. in Software

engineering productivity handbook. J. Keyes,
McGraw-Hill, pp. 229-244.

About the authors

Thomas Fetcke received his diploma in
computer science from the Technical University
of Berlin in 1995. From September to December
of 1994, he was with the Gesellschaft fiir
Mathematik und Datenverarbeitung (GMD),
where he studied object-oriented software

metrics. Currently, he is pursuing his Ph. D. on
the Function Point software measure in the
context of object-oriented software. In April of
1996, he joined the Software Engineering
Management Research Laboratory of the
Université du Québec & Montréal. He is also a
Certified Function Point Specialist.

Alain Abran is currently professor at the
Université du Québec 2 Montréal. He is the
research director of the Software Engineering
Management Research Laboratory and teaches
graduate courses in Software Engineering. He
has been in a university environment since
1993.

He has over 20 years of industry experience
in information systems development and
software engineering. The maintenance
measurement he developed and implemented at
Montreal Trust (Montreal, Canada) has
received one of the 1993 Best of the Best
awards from the Quality Assurance Institute
(Orlando, Florida, USA).

Dr. Abran received his M.B.A. and Master
of Engineering degrees from University of
Ottawa, and holds a Ph. D in software
engineering form Ecole Polytechnique de
Montréal. His research interests include
software productivity and estimation models,
software metrics, function points measurement
models and econometrics models of software
reuse. He has given presentations in various
countries including Canada, USA, France,
Germany, Italy and Australia.

Tho-Hau Nguyen graduated in Computer
Science, and Management from Ecole
Polytechnique de Montreal, McGill university
and Université du Québec & Montréal. Since
1979 he has worked in computer science in
private and educational sectors. In 1983, he
Jjoined the Université du Québec a Montréal as a
regular faculty member of the department of
Computer Science. His research areas include
object-oriented database design, and metrics.

