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Abstract 

Providing a timely estimation of the likely software development effort has 
been the focus of intensive research investigations in the field of software 
engineering, especially software project management. As a result, various 
cost estimation techniques have been proposed and validated. Due to the 
nature of the software-engineering domain, software project attributes are 
often measured in terms of linguistic values, such as very low, low, high 
and very high. The imprecise nature of such attributes constitutes uncer-
tainty and vagueness in their subsequent interpretation. We feel that soft-
ware cost estimation models should be able to deal with imprecision and 
uncertainty associated with such values. However, there are no cost esti-
mation models that can directly tolerate such imprecision and uncertainty 
when describing software projects, without taking the classical intervals 
and numeric-values approaches. This chapter presents a new technique 
based on fuzzy logic, linguistic quantifiers, and analogy-based reasoning to 
estimate the cost or effort of software projects when they are described by 
either numerical data or linguistic values. We refer to this approach as 
Fuzzy Analogy. In addition to presenting the proposed technique, this 
chapter also illustrates an empirical validation based on the historical 
COCOMO’81 software projects data set. 



3.1 Introduction 

Estimation models in software engineering are used to predict some impor-
tant attributes of future entities such as software development effort, soft-
ware reliability, and productivity of programmers. Among such models, 
those estimating software effort have motivated considerable research in 
recent years. Accurate and timely prediction of the development effort and 
schedule required to build and/or maintain a software system is one of the 
most critical activities in managing software projects, and has come to be 
known as ‘Software Cost Estimation’. In order to achieve accurate cost es-
timates and minimize misleading (under- and over-estimates) predictions, 
several cost estimation techniques have been developed and validated, 
such as (Boehm, 1981; Boehm et al., 1995; Putnam, 1978; Shepperd et al., 
1996; Angelis and Stamelos, 2000). The modeling technique used by many 
software effort prediction models can generally be based on a mathemati-
cal function such as βα sizeEffort ×= , where α represents a productivity 
coefficient, and β indicates an economies (or diseconomies) scale-
coefficient factor. Whereas, other cost estimation models are based on 
computational intelligence techniques such as analogy-based reasoning, ar-
tificial neural networks, regression trees, and rule-based induction. Anal-
ogy-based estimation is one of the more attractive techniques in the soft-
ware effort estimation field, and basically, it is a form of Case-Based 
Reasoning (CBR) (Aamodt and Plaza, 1994). The four primary steps com-
prising a CBR estimation system are:  

1- Retrieve the most similar case or cases, i.e., previously developed 
projects. 

2- Reuse the information and knowledge represented by the case(s) to 
solve the estimation problem. 

3- Revise the proposed solution. 
4- Retain the parts of this experience likely to be useful for future 

problem solving. 

Analogy-based reasoning or CBR, is technology that is especially useful 
when there is limited domain knowledge and when an optimal solution 
process to the given problem in not known. Part of the computational intel-
ligence field, it has proven useful in a wide variety of domains, including 
software quality classification (Ganesan et al., 2000), software fault 
prediction (Khoshgoftaar et al., 2002), and software design. In the context 
of software cost estimation, a CBR system is based on the assumption that 
‘similar software projects have similar costs’. Following this simple yet 
logical assumption, a CBR system can be employed as follows. Initially, 
each software project (both historical and candidate projects) must be de-



scribed by a set of attributes that must be relevant and independent of each 
other. Subsequently, the similarity between the candidate project and each 
project in the historical database is determined. Finally, the known devel-
opment-effort values of historical (previously developed similar) projects 
is used to derive, i.e., case adaptation, an estimate for the new project. 

Recently, many researchers have initiated investigations using the anal-
ogy-based estimation alternative (Angelis and Stamelos, 2000; Kadoda et 
al., 2000; Niessink and Van Vliet, 1997; Shepperd et al., 1996; Shepperd 
and Schofield, 1997). Consequently, many experiments have been con-
ducted to compare estimation accuracy of the CBR approach with that of 
other cost estimation modeling techniques. The obtained results have 
shown that analogy-based estimation does not out-perform all the other al-
ternatives in every situation. For example, Shepperd et al., Niessink, and 
Van Vliet have reported that analogy-based estimation generated better re-
sults as compared to stepwise regression (Kadoda et al., 2000; Niessink 
and Van Vliet, 1997; Shepperd and Schofield, 1997). On the other hand, 
Briand et al., Stensrud and Myrtveit have reported a contradicting conclu-
sion (Briand et al., 2000; Myrtveit and Stensrud, 1999). A recent research 
effort has investigated as to how the accuracy of a prediction system is af-
fected by data set characteristics, such as number of observations in the 
training data, number of attributes, presence of noise and outliers, and dis-
tribution variability of the response factor (Shepperd and Kadoda, 2001).  

An advantage of analogy-based cost estimation is that it is easy to com-
prehend and explain its process to practitioners. In addition, it can model a 
complex set of relationships between the dependent variable (such as, cost 
or effort) and the independent variables or cost drivers. However, its de-
ployment in software cost estimation still warrants some improvements. 
The best working example of analogy-based reasoning estimation is the 
complex human intelligence. However, our (human) reasoning by analogy 
is more than always approximate and vague rather than precise and certain. 
But regardless, we are capable of handling imprecision, uncertainty, partial 
truth, and approximation to achieve tractability, robustness, and low solu-
tion cost. According to Zadeh (Zadeh, 1994), the exploitation of these cri-
teria underlies the remarkable human ability to understand distorted 
speech, decipher sloppy handwriting, drive a vehicle in dense traffic and, 
more generally, make decisions in an environment of uncertainty and im-
precision.  

In this chapter, we address an important limitation of the classical anal-
ogy-based cost estimation, which arises when software projects are de-
scribed using categorical data (nominal or ordinal scale) such as very low, 



low, high, and very high. Such attribute qualifications are known as lin-
guistic values in fuzzy logic terminology. Calibrating cost estimation mod-
els that deal with linguistic values (similar to how a human-mind works) is 
a serious challenge for the software cost estimation community. Recently, 
Angelis et al. (Angelis et al., 2001) were the first to propose the use of the 
categorical regression procedure (CATREG) to build cost/effort estimation 
models when software projects are described by categorical data. The 
CATREG procedure quantifies categorical software attributes by assigning 
numerical values to their categories in order to produce an optimal linear 
regression equation for the transformed variables. However, the approach 
has limitations such as, 

• It replaces each linguistic value by one numerical value. This is 
based on the assumption that a linguistic value can always be defined 
without vagueness, imprecision, and uncertainty. However, this is not 
often the case, largely because linguistic values are a result of human 
judgments that are often vague, imprecise, and uncertain. For example, 
assume that the programmers’ experience is measured by three linguis-
tic values: low, average, and high. Most often the interpretations of 
these values are not defined precisely, and consequently, we cannot 
represent them by individual numerical values. 
• There is little or no natural interpretation of the numerical values as-
signed by the CATREG approach. 
• It assigns numerical quantities to linguistic values in order to pro-
duce an optimal linear regression equation. However, the relation be-
tween development effort and cost drivers may (usually) be non-linear. 

A more comprehensive and practical approach in working with linguis-
tic values is achieved by using the fuzzy set theory principle, as exploited 
by Zadeh (Zadeh, 1965). Driven by the importance of linguistic values in 
software project description and the attractiveness of CBR, we combined 
the benefits of fuzzy logic and analogy-based reasoning for estimation 
software effort. The proposed method is applicable to cost estimation prob-
lems of software projects which are described by either numerical and/or 
linguistic values. 

The remainder of this chapter continues in Section 3.2 with a discussion 
one why categorical data should be considered as a particular case of lin-
guistic values. In Section 3.3, we briefly outline the principles of fuzzy sets 
and linguistic quantifiers, whereas in Section 3.4, we summarize some re-
search studies of using CBR for the development cost estimation problem, 
and which proposed methods cannot handle linguistic values. Section 3.5 
presents the proposed cost estimation approach, Fuzzy Analogy, which can 
be viewed as a fuzzification of the classical analogy-based estimation 



method. An empirical validation using the historical COCOMO’81 data set 
is presented in Section 3.6, and the obtained results are evaluated against 
three other cost estimation techniques. Finally, in Section 3.7 we summa-
rize our findings and provide suggestions for related future work. 

3.2  Categorical data and linguistic values 

In this section, we discuss why categorical data, as defined by software 
measurement researchers, are only a particular case of linguistic values. 
The two terminologies come from two different fields: categorical data is 
used in classical measurement theory, whereas, linguistic values are used 
in the fuzzy set theory. Measurement theory has been an intricate compo-
nent of scientific research for over a century. According to Zuse (Zuse, 
1998), it began with Helmholtz pioneering research effort: “Counting and 
measuring from epistemological point of view’ and lead to the modern 
axiomatic representational theory of measurement as shown by Krantz et 
al. (Krantz et al., 1971).  

Similar to other sciences (physics, medicine, civil, etc.), measurement 
has been discussed in software engineering for over thirty years. The pri-
mary objective of software measurement is to improve the software devel-
opment process, and consequently, the quality of its various deliverables. 
Evaluating, controlling, and predicting some important attributes of soft-
ware projects such as development effort, software reliability, and pro-
grammer’s productivity can achieve such an objective. However, meas-
urement in software engineering is often challenging, primarily due to two 
reasons. First, software engineering is a (relatively) young science and 
lacks advance maturity as seen in other engineering domains. Second, 
many of the software attributes are more-than-often qualitative rather than 
quantitative such as portability, quality, maintainability, and reliability. 
Subsequently, their respective evaluation is largely influenced by human 
judgment. The qualitative issue is related to the scale type on which the at-
tributes are measured. In the context of measurement theory, Stevens de-
fined the scale type of a measure as Nominal, Ordinal, Interval, Ratio or 
Absolute (Stevens, 1946). 

Categorical attributes are those with nominal or ordinal scale type. The 
Nominal scale type is the lowest scale level and only allows the classifica-
tion of software entities in different classes or categories. Examples of this 
scale type can be found in the literature, such as the language used in the 
implementation phase (C, C++, Java, etc) and the application type (Busi-



ness, Control, Finance, etc). The Ordinal scale, in addition to the 
classification of types of software entities, provides us information about 
an ordering of the categories. Examples of ordinal attributes are software 
complexity (simple, nominal, complex) and software reliability (very low, 
low, high, very high). 

In the software-engineering domain, many software attributes are meas-
ured either on a Nominal or an Ordinal scale type. Thus, to evaluate these 
attributes linguistic values are often used such as very low, complex, im-
portant and essential. When using linguistic values, imprecision, uncer-
tainty and partial truth are unavoidable. However, until now, the software 
measurement community has often used numbers or classical intervals to 
represent these linguistic values. Furthermore, such transformation and 
representation does not mimic the way in which the human-mind interprets 
linguistic values, and consequently, cannot deal with imprecision and un-
certainty. To overcome this limitation, in our recent studies we have sug-
gested the use of fuzzy sets rather than classical intervals (or numbers) to 
represent categorical data (Idri et al., 2000; Idri and Abran, 2000, 2001, 
2001b; Idri et al., 2001c). Founded by Zadeh in 1965 (Zadeh, 1965), the 
main motivation of fuzzy set theory is the desire to build a formal quantita-
tive framework that captures the vagueness of human knowledge since it is 
usually expressed via natural language. Consequently, in this work we use 
the fuzzy set theory to deal with linguistic values in the analogy-based cost 
estimation procedure. 

3.3  Fuzzy sets and linguistic quantifiers 

Since its foundation by Zadeh in 1965, Fuzzy Logic (FL) has been the sub-
ject of important research investigations. During the early nineties, fuzzy 
logic was firmly grounded in terms of its theoretical foundations and ap-
plication in the various fields in which it was being used, such as robotics, 
medicine, and image processing. The aim of this section is not to present 
an in-depth discussion of fuzzy logic, but rather to present some of its key 
parts that are necessary for a proper understanding of this chapter, espe-
cially fuzzy sets and linguistic quantifiers. 

3.3.1 Fuzzy Sets 

A fuzzy set is a set with a graded membership function, µ, in the real in-
terval [0, 1]. This definition extends the one of a classical set where the 



membership function is in the couple {0, 1}.  Fuzzy sets can be effectively 
used to represent linguistic values such as low, young, and complex, in the 
following two ways (Jager, 1995): 

• Fuzzy sets that model the gradual nature of properties, i.e., the 
higher the membership that a given property x has in a fuzzy set A, the 
more it is true that x is A. In this case, the fuzzy set is used to model 
the vagueness of the linguistic value represented by the fuzzy set A. 
• Fuzzy sets that represent incomplete states of knowledge. In this 
case, the fuzzy set is a possibility distribution of the variable X, and 
consequently, is used to model the associated uncertainty. When con-
sidering that it is only known that x is A, and x is not precisely known, 
the fuzzy set A can be considered as a possibility distribution, i.e., the 
higher the membership x’ has in A, the higher the possibility that x = 
x’. 

In the rest of this chapter, we use fuzzy sets according to the first case, 
i.e., those that model the gradual nature of properties. For example, con-
sider the linguistic value young (for attribute Age) that can be represented 
in three ways: by a fuzzy set, i.e., Figure 3.1 (a), by a classical interval, 
i.e., Figure 3.1 (b), and by a numerical value, i.e., Figure 3.1 (c). The rep-
resentation by a fuzzy set is more advantageous than the other two ap-
proaches, because: 

• It is more general, 
• It mimics the way in which the human-mind interprets linguistic 
values, and 
• The transition from one linguistic value to a contiguous linguistic 
value is gradual rather than abrupt. 

 
 
 
 
 
 

 

Fig. 3.1  (a) Fuzzy set representation of the young linguistic value. (b) Classical 
set representation of the young linguistic value. (c) Numerical representation of 
the young linguistic value. 
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3.3.2 Linguistic quantifiers 

It is quite obvious that a large number of linguistic quantifiers are used in 
human discourse. Zadeh distinguishes between two classes of linguistic 
quantifiers: absolute and proportional (Zadeh, 1983). Absolute quantifiers, 
such as about 10 and about 20, can be represented as a fuzzy set Q of the 
non-negative real numbers. In this work, we are concerned with propor-
tional quantifiers. A proportional linguistic quantifier indicates a propor-
tional quantity such as most, many, and few. Zadeh has suggested that pro-
portional quantifiers can be represented as a fuzzy set Q of the unit interval 
I. In such a representation, for any r∈I, Q(r) is the degree to which the pro-
portion, r, satisfies the concept represented by the term Q. Furthermore, 
Yager distinguished three categories of proportional quantifiers, which are 
shown below (Yager, 1996). 

• A Regular Increasing Monotone (RIM) quantifier, such as many, 
most, and at-least α is represented as fuzzy subset Q satisfying the fol-
lowing conditions: 

1. Q(0) = 0, 
2. Q(1) = 1, and 
3. Q(x) ≥ Q(y) if (x > y) 

• A Regular Decreasing Monotone (RDM) Quantifier, such as few 
and at-most α, is represented as a fuzzy subset Q satisfying the follow-
ings conditions: 

1. Q(0) = 1, 
2. Q(1) = 0, and       
3. Q(x) ≤ Q(y) if (x > y) 

• A Regular UniModal (RUM) quantifier, such as about α, is repre-
sented as fuzzy subset Q satisfying the followings conditions: 

1. Q(0) = 0, 
2. Q(1) = 0, and 
3. There exist two values a and b ∈ I, where a < b, such that, 

a. For y < a, Q(x) ≤ Q(y) if x < y 
b. For y ∈ [a, b], Q(y) = 1 
c. For y > b, Q(x) ≥ Q(y) if x < y 

Two interesting relationships exist between these three categories of 
proportional quantifiers, and they are, 

• If Q is a RIM quantifier, then its antonym is a RDM quantifier and 
vice versa. Examples of these antonym pairs are few and many, and at-
least α and at-most α. 



• Any RUM quantifier can be expressed as the intersection of a RIM 
and a RDM quantifier. 

3.4 Related works 

The idea of using CBR techniques as a basis for estimating software pro-
ject effort is not new. Boehm suggested the informal use of analogies as a 
possible cost estimation technique several years ago (Boehm, 1981). Fur-
thermore, Vicinanza et al. have suggested that CBR might be usefully 
adapted to make accurate software effort predictions (Vicinanza and Prie-
tulla, 1990). Subsequent research efforts have seen analogy-based estima-
tion as the subject of studies aimed at evaluating, enhancing, reformulat-
ing, and adapting the CBR life cycle according to the features of the 
software effort prediction problem.  

Shepperd et al. have been involved in the development of CBR tech-
niques and tools to build software effort prediction systems for the past 
five years (Shepperd et al., 1996; Shepperd and Schofield, 1997)). In their 
more recent work, they reported as to why various research teams have re-
ported widely differing empirical results when using CBR technology. In 
addition to the characteristics of the projects data being used, Shepperd et 
al. examined the impact of the choice of the number of analogies and adap-
tation strategies. In order to validate their findings, a data set of software 
projects collected by a Canadian software house was explored. It was ob-
served that choosing the number of analogies or cases (denoted by k) is an 
important feature for CBR systems. Specifically, three cases seemed to 
yield optimal results. However, a fixed value for k was more effective for 
the larger data sets, whereas distance-based case (analogy) selection ap-
peared more effective for the smaller data sets. Furthermore, it was also 
observed that case adaptation strategies seemed to have little impact on the 
prediction accuracy of analogy-based estimation (Kadoda et al., 2000).  

During their study of the analogy-based estimation method for 
Albrecht’s software projects, Angelis and Stamelos explored the problem 
of determining the parameters for configuration of the analogy procedure 
before its application to a new software project (Angelis and Stamelos, 
2000). They studied three CBR parameters: (1) the distance measure to be 
used for evaluating the similarity between software projects, (2) the num-
ber of analogies to take into account in the effort estimation, and (3) the 
statistic or solution process to be used for calculating the unknown effort 
from the known efforts of the previously developed similar projects. It was 



suggested that a bootstrap method be used to configure these three parame-
ters. Bootstrapping consists of drawing new samples of software projects 
from the original data set and testing the performance of parameters on the 
generated sample data. This allows the practitioner in identifying which 
parameter values consistently yield accurate estimates. Subsequently, these 
values can be used to generate prediction for a new software project. Such 
an approach for searching optimal parameters is called calibration of the 
estimation procedure. 

However, even though it is well recognized that estimation by analogy is 
a promising technique for software development cost and/or effort estima-
tion, there are certain limitations that prevent it from being more widely 
practiced. The most important is that until now it cannot handle linguistic 
values such as very low, low, and high. This is important because, many 
software attributes such as experience of programmer, module-complexity, 
and software reliability are measured on ordinal or nominal scales which 
are composed of linguistic values. For example, the well-known 
COCOMO’81 model has 15 attributes out of 17 (22 out of 24 in the 
COCOMO II) which are measured with six linguistics values: very low, 
low, nominal, high, very high, and extra-high (Boehm, 1981; Boehm et al., 
1995; Chulani, 1998). Another example is the Function Points measure-
ment method, in which the level of complexity for each item (input, out-
put, inquiry, logical file, or interface) is assigned using three qualifications 
(low, average, and high). Then there are the General System Characteris-
tics, the calculation of which is based on 14 attributes measured on an or-
dinal scale of six linguistic values (from irrelevant to essential) (Abran and 
Robillard, 1996; Matson et al., 1994). To overcome this limitation, we pre-
sent (next section) a new method that can be seen as a fuzzification of the 
classical analogy in order to deal with linguistic values. 

3.5 Estimation by Fuzzy Analogy 

The key activities for estimating software project effort by analogy are the 
identification of a candidate software project as a new case, the retrieval of 
similar software projects from a projects repository, and the reuse of 
knowledge derived from previous software projects (primarily the actual 
development effort) to generate an estimate for the candidate software pro-
ject. Analogy-based estimation has motivated considerable research in re-
cent years. However, none or very few have yet dealt with categorical data. 
We present here a new approach based on reasoning by analogy and fuzzy 
logic which extends the classical analogy in the sense that it can be used 



when the software projects are described either by numerical or categorical 
data. Fuzzy Analogy is a fuzzification of the classical analogy procedure, 
and therefore, it is also composed of three steps: case(s) identification, re-
trieval of similar cases, and case adaptation. Each step is a fuzzification of 
its equivalent in the classical analogy-based estimation procedure. In the 
following sub-sections, we discuss each fuzzified step in further details. 

3.5.1 Identification of Cases 

The goal of this step is the characterization of all software projects by a set 
of attributes. Selecting attributes that accurately describe software projects 
is a complex task in the analogy-based procedure. The selection of soft-
ware project attributes depends on the objective of the CBR system. In the 
context of our study, the objective is to estimate the software project effort. 
Consequently, the attributes must be relevant for the effort estimation task. 
The problem is to detect the attributes exhibiting a significant relationship 
with the effort in a given environment.  

 The solution (for identification of cases) adopted by most software cost 
estimation practitioners (and researchers) is to test the correlation between 
the development effort and all the attributes for which data (in the studied 
environment) are available. This solution does not take into account attrib-
utes that can affect largely the development effort, if they have not yet re-
corded data. Another interesting criterion is that each relevant attribute 
must be independent from the other attributes. In the ANGEL tool (Shep-
perd et al., 1996; Shepperd et Schofield,. 1997), Shepperd et al. proposed 
to resolve the attributes selection problem by applying a brute force search 
of all possible attributes subsets. They acknowledged that this is a NP-hard 
search problem, and consequently, it is not a feasible solution when the 
number of the candidate attributes is large. Briand et al. proposed the use 
of a t-test procedure to select the set of attributes (Briand et al., 2000). 
Shepperd et al. claimed that the t-test procedure was not appropriate be-
cause it is not an efficient method to model the potential interactions be-
tween the software-project attributes (Kadoda et al., 2000). It was also 
suggested that statistical methods could not solve the attribute selection 
problem in the software cost estimation field.  

 There are two other criteria that every relevant and independent soft-
ware-project attribute must obey: (1) the attribute must be comprehensive, 
implying that it must be well defined, and (2) the attribute must be opera-
tional, implying that it must be easy to measure. These criteria have yet not 
been the subject of an in-depth study in the software cost estimation litera-



ture. This study proposes to solve the attributes selection problem by inte-
grating a learning procedure in the analogy-based estimation approach. As 
we shall discuss in Section 3.6, Fuzzy Analogy can satisfy such a learning 
procedure. Prior to the learning phase, we adopt (during the training phase) 
a variation of Shepperd’s solution by allowing the analysts to use the at-
tributes that are believed to best characterize their projects, and which are 
more appropriate in their specific software development organizational en-
vironment.  

The objective of our Fuzzy Analogy approach is to deal with linguistic 
values. In the case(s) identification step, each software project is described 
by a set of selected attributes that can be measured by either numerical or 
linguistic values, which will be represented by fuzzy sets. In the case of a 
numerical value, x0 (no uncertainty), its fuzzification will be done by the 
membership function that takes the value of 1 when x = x0 and 0 other-
wise. In the context of linguistic values let us suppose that we have M at-
tributes, and for each (jth) attribute Vj, a measure with linguistic values is 
defined ( j

kA ). Each linguistic value, j
kA , is represented by a fuzzy set with 

a membership function ( j
kAµ ).  

It is preferable that these (above) fuzzy sets satisfy the normal condition 
(NC), i.e., they form a fuzzy partition and each of them is convex and 
normal (Idri and Abran, 2001). The use of fuzzy sets to represent categori-
cal data, such as very low and low, mimics the way in which the human-
mind interpret these values, and consequently, it allows us to deal with 
vagueness, imprecision and uncertainty in the case(s) identification step. 
Another advantage of the proposed Fuzzy Analogy approach is that it takes 
into account the importance of each selected attribute in the case(s) identi-
fication step. Since all selected attributes do not necessarily have the same 
influence on the software project effort, we are required to indicate the 
weights (uk) associated with all the selected attributes in the case(s) identi-
fication step.  

In order to illustrate the case(s) identification step, we utilize the 
COCOMO’81 historical software projects data set. Each software project 
in the data set is described by 17 attributes, which are declared as relevant 
and independent (Boehm, 1981). Among these, the DATA cost driver is 
measured by four linguistic values, i.e., low, nominal, high, and very high. 
These linguistic values are represented by classical intervals in the original 
version of the COCOMO’81. Because of the advantages of representation 
(especially linguistic values) by fuzzy sets rather than classical intervals, 
we have proposed to use the representation given in Figure 3.2. The weight 
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associated to the DATA cost driver, i.e., udata, is equal to 1.23, and is 
evaluated by its productivity ratio1 . 

 
 
 
 
 
 
 
 
 

Fig. 3.2: Membership functions of fuzzy sets defined for the DATA cost driver 
(Idri et al., 2000) 

3.5.2 Retrieval of Similar Cases 

This step is based on the preferred choice of a software project similarity 
measure. This selection is obviously very critical since it will influence 
which analogies or similar cases are extracted from the data set. The simi-
larity of two software projects, which are described and characterized by a 
set of attributes, is often evaluated by measuring the distance between 
these two projects through their sets of attributes. Thus, two projects are 
considered dissimilar if the differences between their respective sets of at-
tributes are clear and obvious. It is important to note that the similarity of 
two software projects also depends on their environment, i.e., projects that 
are similar in a specific type of environment may not necessarily be similar 
in other environments. Hence, according to Fenton’s definitions (Fenton 
and Pfleeger, 1997), a similarity measure should be considered as an ex-
ternal process attribute and, consequently, one which can only be meas-
ured indirectly. 

The technique by which the similarity of software projects is gauged is 
fundamental to the estimation of software development effort by analogy, 
and a variety of approaches have been proposed in the literature (Kolod-
ner, 1993;Shepperd et al., 1996; Shepperd and Schofield, 1997) found 
three major inadequacies while investigating similarity measures: (1) that 
they are computationally intensive, and, consequently, many CBR systems 

                                                      
1 The productivity ratio is the software project’s productivity ratio expressed by the ratio of the De-
livered Source Instructions by Man-Months for the best possible attribute rating to that of its worst 
possible variable rating, assuming that all the ratings for all other attributes remain constant. 

 

 5   10  15           55     100     155                 550     1000      1550            D/P   

Nominal  High Very High 



have been developed, such as ESTOR (Vicinanza and Prietulla, 1990) and 
ANGEL (Shepperd et al., 1996), (2) that the algorithms are intolerant of 
noise and of irrelevant features, (3) probably the most critical, is that they 
do not deal well with categorical data other than binary-valued variables. 
However, in the software metrics domain, specifically in the context of 
software cost estimation models, many factors (linguistic variables in 
fuzzy logic), such as the experience of programmers and the complexity of 
modules, are measured on an ordinal (or nominal) scale composed of 
qualifications such as very low and low (linguistic values in fuzzy logic); 
these categorical data are represented by classical intervals (or step func-
tions). Hence, no project can occupy more than one interval. This is a seri-
ous problem in that it can lead to a great difference in effort estimations in 
the case of similar projects with a small incremental size difference, since 
each would be placed in a different interval of a step function (Idri et al., 
2000).  

To overcome the above-mentioned limitation, we have used fuzzy sets 
with a membership function rather than classical intervals to represent the 
categorical data. Based on the use of such a representation, we have pro-
posed a set of new similarity measures (Idri and Abran, 2000). These 
measures evaluate the overall similarity, d(P1,P2), of two projects P1  and 
P2 by combining the individual similarities of P1 and P2 associated with the 
various linguistic variables (attributes) (Vj) describing P1 and P2, i.e., 

),( 21 PPd
jv  (Fig. 3.3). 

Individual similarities of two projects P1 and P2, )P,(Pd 21v j
: The first 

step consists of calculating the similarity of P1 and P2 according to each 
individual attribute with a linguistic variable Vj, ),( 21 PPd

jv . Since each Vj 
is measured by fuzzy sets, ),( 21 PPd

jv  should express the fuzzy equality ac-
cording to Vj of P1 and P2. The associated fuzzy set then must have a 
membership function with two variables, i.e., Vj (P1) and Vj (P2). In the 
context of fuzzy set theory, this type of fuzzy set is referred to as a fuzzy 
relation. Such a fuzzy relation can represent an association or a correlation 
between elements of the product space. In our study, the association that 
will be represented by this fuzzy relation is the statement ‘P1 and P2 are 
approximately equal according to Vj’. We denote this fuzzy relation by 

jvR≈ , a combination of a set of fuzzy relations jv
kR ,≈ . Each jv

kR ,≈ represents 

the equality of Vj according to one of its linguistic values j
kA . Hence, jv

kR ,≈  
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represents the fuzzy if-then rule, where the premise and the consequence 
consist of the fuzzy proposition as shown below. 

j
kj

j
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v
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Fig. 3.3 Summarizes the process for computing the various measures. 

Therefore, for each variable Vj, we have a rule base (RBASE_Vj) which 
contains the same number of fuzzy if-then rules as the number of fuzzy 
sets defined for Vj. Each RBASE_Vj expresses the fuzzy equality of two 
software projects according to Vj, ),( 21 PPd

jv . When we consider all vari-
ables Vj, we obtain a rule base (RBASE) which contains all rules associ-
ated with all variables. RBASE expresses the fuzzy equality of two soft-
ware projects according to all variables Vj, d(P1, P2). ),( 21 PPd

jv  is defined 
by combining all fuzzy rules in DBASE_Vj to obtain one fuzzy relation 

( jvR≈ ) which represents DBASE_Vj. The combination of the fuzzy if-then 

rules, jv
kR ,≈ , into a fuzzy relation, jvR≈ , is called as aggregation. The way 

this is done is different for the various types of fuzzy implication functions 
adopted for the fuzzy rules. These fuzzy implication functions are based on 
distinguishing between two basic types of implication (Jager, 1995)): (1) 
the fuzzy implication which complies with the classical conjunction, and 
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RBASE_V2 

RBASE_V1 
Aggregation

Aggregation 

Aggregation 

P2 

P1 

RBASE 



(2) the fuzzy implication which complies with the classical implication. 
Using this basic distinction of the two types of fuzzy implication, we have 
obtained three equations for ),( 21 PPd

jv : 
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In the context of the above equations, ),( 21 PPd

jv = 1 implies a perfect 
similarity between P1 and P2 according to Vj; ),( 21 PPd

jv = 0, a total absence 
of similarity; and 0 < ),( 21 PPd

jv  < 1, a partial similarity. 

Overall similarity of two projects P1 and P2, d(P1 ,P2) : To evaluate the 
overall similarity of P1 and P2, the individual similarities ),( 21 PPd

jv are ag-
gregated using Regular Increasing Monotone (RIM) linguistic quantifiers 
such as all, most, many, at-most α or there exists. The choice of the appro-
priate RIM linguistic quantifier, Q, depends on the characteristics and the 
needs of each environment. It indicates the proportion of individual dis-
tances that we feel is necessary for a good evaluation of the overall project 
similarity distance. The use of a RIM quantifier to guide the evaluation of 
the overall similarity essentially implies that the more individual similari-
ties are satisfied, the greater is the overall similarity of the two software 
projects. The overall similarity of P1 and P2 , i.e., d(P1 ,P2), is given by one 
of the following formulas (Idri and Abran, 2001b):  
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         (3.5) 

The following formal procedure is used to evaluate the overall similar-
ity. First, the linguistic quantifier, Q, is used to generate an Ordered 



Weight Averaging (OWA) weighting vector W (w1, w2, ..., wM) of dimen-
sion M (the number of variables describing the software project), such that 
all the wj are in the unit interval and their sum is equal to 1. Second, we 
calculated the overall similarity, d(P1, P2), by means of the following equa-
tion: 

          ),(),(),( 2121
1
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=                 (3.6) 

where, ),( 21 PPd
jv  is the jth largest individual distance. 

The procedure used for generating the weights, wj(P1,P2), from the lin-
guistic quantifier Q is given by (Yager, 1996; Yager and Kacpruzyk, 
1997): 
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where, uk is the importance weight associated with the kth variable de-
scribing the software project, and T is the total sum of all importance 
weights uk. We note that the weights wj(P1,P2) used in Formula (3.6) will 
generally be different for each (P1, P2). This is due to the fact that the or-
dering of the individual distances ),( 21 PPd

jv  will be different, leading to 

different uk values.  

Axiomatic validation of the similarity measures: As new measures are 
proposed, it is logical to ponder as to whether (or not) they capture the at-
tribute they claim to describe. This allows us to choose the best measures 
from a very large number of software measures for a given attribute. How-
ever, validation of software measures is one of the most misunderstood 
procedures in the software measurement area. For example, “what consti-
tutes is a valid measure?” A number of authors in the software measure-
ment engineering domain have attempted to answer this question (Fenton 
et Pfleeger, 1997; Jacquet and Abran, 1998; Kitchenham et al., 1995; Zuse, 
1994, 1999). However, the validation problem has to-date been tackled 
from different points of view (mathematical, empirical, etc.), and by inter-
preting the expression “metrics validation” differently; as suggested by 
Kitchenham et al: ‘What has been missing so far is a proper discussion of 
relationships among the different approaches’ (Kitchenham et al., 1995). 
Beyond this interesting issue, we use Fenton’s definitions to validate the 
two measures, ),( 21 PPd

jv  and d(P1,P2) (Fenton et Pfleeger, 1997), i.e., 
Validating a software measure is the process of ensuring that the measure 
is a proper numerical characterization of the claimed attribute by showing 



that the representation condition is satisfied. This is validation in the nar-
row sense, implying that it is internally valid. If the measure is a compo-
nent of a valid prediction system, the measure is valid in the wide sense. In 
this section, we deal with the validation of ),( 21 PPd

jv  and d(P1, P2) in the 
narrow sense. 

The measures, ),( 21 PPd
jv  and d(P1,P2), satisfy the representation condi-

tion if they do not contradict any intuitive notions about the similarity of 
P1 and P2. Our initial understanding of the similarity of projects will be 
codified by a set of axioms. This axiom-based approach is common in 
many sciences. For example, mathematicians learned about the world by 
defining axioms for geometry. Then, by combining axioms and using their 
results to support or refute their observations, they expanded their under-
standing and the set of rules that govern the behavior of objects. We pre-
sent below, a set of axioms that represents our intuition about the similarity 
attribute between software projects and we check whether or not the two 
measures, ),( 21 PPd

jv  and d(P1,P2), satisfy these axioms. We also present a 
set of axioms that represent our intuition about the similarity attribute of 
two software projects and we resume,  in Table 3.1, the results of the axio-
matic validation of the two measures, ),( 21 PPd

jv  and d(P1, P2) (Idri and 
Abran, 2001). 

 
Axiom 1 (specific to the ),( iv PPd

j
 measure): 

The similarity of two projects, according to a variable Vj, is not null if 
and only if these two projects have a degree of membership different from 
0 to at least one same fuzzy set of Vj 
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Axiom 2 
We expect any measure S of the similarity of two projects to be non-

negative: 
S(P1, P2) ≥  0; S(P, P) > 0 

 
 Axiom 3 
The degree of similarity of any project to P must be lower or equal than 

the degree of similarity of P to itself: 
S(P, Pi) ≤  S(P, P) 

  



Axiom 4 
We expect any measure, S, of the similarity of two projects to be 

commutative: 
S(P1, P2)= S(P2, P1) 

 
 

)P(P,d iv j
/d(P, Pi)  

 max-min sum-product  Kleene-Dienes 
Axiom 1 Yes/ Yes/ No/ 
Axiom 2 Yes/Yes Yes/Yes Yes/Yes 
Axiom 3 Yes/Yes No/No Yes /Yes if  NC2
Axiom 4 Yes/Yes Yes/Yes No/No 

Table 3.1 Results of the validation of the distance )P(P,d iv j
 and d (P, Pi) 

By observing the results of this validation, which takes into account the 
four axioms (Table 3.1), we conclude that ),( iv PPd

j  using the max-min 
aggregation respects all the axioms (and consequently, so does d(P,Pi)). 
Hence, according to Fenton (Fenton et Pfleeger, 1997), this is a valid simi-
larity measure in the narrow sense. ),( iv PPd

j , using the sum-product ag-
gregation does not satisfy Axiom 2. Although Axiom 3 is interesting, we 
will retain the sum-product aggregation in order to be validated in the wide 
sense. There are three reasons for this decision (Idri and Abran, 2001): 

• The difference between ),( iv PPd
j  and )P,P(d

jv  is not obvious if 

the fuzzy sets associated with Vj satisfy the normal condition. We 
can show that this difference, in the case where ),( iv PPd

j  is 
higher than )P,P(d

jv , is in the interval [-1/8, 0]. 

• Sum-product aggregation respects the other axioms, specifically 
Axiom 1. 

• As was noted by Zuse (Zuse, 1998), validation in the narrow sense, 
contrary to validation in the wide sense, is not yet widely accepted 
and mostly neglected in practice. 

 
 

                                                      
2 A tuple of fuzzy sets (A1, A2, .., AM) satisfies the normal condition (NC) if  
(A1, A2, .., AM) is a fuzzy partition and each Ai is normal and convex 



),( iv PPd
j , using min-Kleene-Dienes aggregation does not satisfy Axi-

oms 1 and 4. Although it satisfies Axioms 2 and 3, we rejected it because 
of Axiom 1. In our study, Axiom 1 represents the definition of the similar-
ity of two software projects according to a fuzzy variable. Consequently, 

),( iv PPd
j  using min-Kleene-Dienes was not be used in the empirical vali-

dation of the Fuzzy Analogy approach. 

3.5.3 Case adaptation 

The objective of this step is to derive an estimate for the new project by us-
ing the known effort values of similar projects. There are two issues that 
need to be addressed. First, the choice of how many similar projects should 
be used in the adaptation? Second, how to adapt the chosen analogies in 
order to generate an estimate for the new project? In the literature, one can 
notice that there is no clear rule to guide the choice of the number of 
analogies, k. Shepperd et al. have tested two strategies to calculate the 
number k, by setting it to a constant value (they explored values between 1 
and 5), or by determining it dynamically as the number of projects that fall 
within distance (d) of the new project (Kadoda et al., 2000). In contrast, 
Briand et al. have used a single case or analogy (Briand et al., 2000). Fur-
thermore, Angelis and Stamelos have tested a number of analogies in the 
range of 1 to 10 when studying the calibration of the analogy procedure for 
the Albrecht’s dataset (Angelis and Stamelos, 2000). The results obtained 
from these empirical research efforts seemed to favour the case where k is 
lower than 3.  

Fixing the number of analogies for the case adaptation step is consid-
ered here neither as a requirement nor as a constraint. The principle of this 
approach is to take only the first k projects that are similar to the new pro-
ject. Let us suppose that the distances between the first three projects of 
one dataset (P1, P2, P3) and the new project (P) are respectively: 3.30, 4.00 
and 4.01. When we consider k equal to 2, we use only the two projects P1 
and P2 in the calculation of an estimate of P. Project P3 is not considered in 
this case although there is no clear or obvious difference between d(P2, P) 
= 4.00, and d(P3, P) = 4.01. We believe that the use of the number k relies 
on the use of the classical logic principle, i.e., the transition from one situa-
tion (contribution in the estimated cost) to the following (no contribution 
in the estimated cost) is abrupt rather than gradual.  

 



1

In Fuzzy Analogy, we propose a new strategy to select projects that will 
be used in the adaptation step. This strategy is based on the distances d(P, 
Pi) and the definition adopted in the studied environment for the proposi-
tion ‘Pi is closely similar project to P’. Intuitively, Pi is closely similar to P 
if d(P,Pi) is in the vicinity of 1 (0 in the case of the Euclidean distance 
similarity measure). A better way to represent the value ‘vicinity of 1’ is 
by using a fuzzy set defined in the unit interval [0, 1]. Indeed, this fuzzy 
set defines the ‘closely similar’ qualification adopted in the environment. 
Figure 3.4 demonstrates a possible representation for the value ‘vicinity of 
1’. In this example all projects that have d(P,Pi) greater than 0.5 contribute 
to the estimated cost of P; the contribution of each Pi is weighted by µvicinity 

of 1(d(P,Pi)). 
 
 
 
 
 

 
 

 

Fig. 3.4 A possible definition of the value ‘vicinity of 1’ 

The second issue in the case adaptation step is to generate an estimate 
for the new project by adapting the information gained from the chosen 
analogies. The most common solutions use the (weighted) mean or the 
median of the k chosen analogies. In the case of weighted mean, the 
weights can be the similarity distances or the ranks of the projects. In the 
case of the proposed Fuzzy Analogy approach, we use the weighted mean 
of all known effort projects in the dataset. The weights are the values of 
the membership function defining the fuzzy set ‘vicinity of 1’. The for-
mula is then given by: 
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The primary advantage of our adaptation approach is that it can be eas-
ily configured by defining the value ‘vicinity of 1’ according to the needs 
of each development environment. An interesting situation arises when µvi-

cinity of 1(x) = x in Formula (3.8), since it gives exactly the ordinary weighted 

µvicinity of 1(x) 

0.5

1 



average. This property will be used in the validation of our approach on 
the COCOMO’81 dataset. 

3.6 Empirical results 

The empirical results of applying the Fuzzy Analogy approach to the 
COCOMO’81 data set, are obtained by using the F_ANGEL tool, which is 
a software prototype that we have developed in order to automate the 
Fuzzy Analogy approach. In a broad sense, it can be viewed as a fuzzifica-
tion of the classical analogy-based estimation tool, ANGEL, as developed 
by Shepperd et al. (Shepperd et al., 1996; Shepperd and Schofield, 1997). 
The results of our empirical validations were compared with those of three 
other cost estimation models, i.e., classical analogy, the original intermedi-
ate COCOMO’81, and ‘fuzzy’ intermediate COCOMO’81 (Boehm, 1981; 
Idri et al., 2000). The accuracy of the estimates is evaluated by using the 
magnitude of relative error (MRE), which is defined as: 

 

actual

estimatedactual

Effort
EffortEffort
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−

=                             (3.9) 

  
The MRE is calculated for each project in the dataset. In addition, we 

use the prediction level measure, Pred(p), which has often been used in the 
literature. It is defined by: 

N
k)p(edPr =                                             (3.10) 

where, N is the total number of observations, k is the number of obser-
vations with a MRE less than or equal to p. A common value for p is 0.25, 
and in our evaluations, we use p equal to 0.20 since it was used for evalua-
tion of the original version of the intermediate COCOMO’81 model. The 
Pred(0.20) gives the percentage of projects that were predicted with a 
MRE equal or less than 0.20. Other four quantities are used in this evalua-
tion: min of MRE, max of MRE, standard deviation of MRE (SDMRE), 
and mean MRE (MMRE).  

 The original intermediate COCOMO’81 database was chosen as the ba-
sis for this validation (Boehm, 1981). It contains 63 software projects. 
Each project is described by 17 attributes: (1) software size, measured in 
KDSI (Kilo Delivered Source Instructions), (2) project mode, defined as 
either ‘organic’, ‘semi-detached’, or ‘embedded’, and the remaining (3)-
(15) cost drivers are generally related to the software environment. Each 
cost driver is measured on a scale composed of six qualifications: very low, 



low, nominal, high, very high, and extra-high. It seems that this scale is or-
dinal, but an analysis indicates that one of the 15 cost drivers (SCED at-
tribute) is only assessed to be nominal. This does not cause any problem 
for the proposed Fuzzy Analogy technique, because it deals with these six 
qualifications as linguistic values rather than categorical data. In the origi-
nal intermediate COCOMO’81, the assignment of linguistic values to the 
15 cost drivers used conventional quantization, such that the values be-
longed to classical intervals (see (Boehm, 1981), pp. 119). Due to the vari-
ous advantages of representation by fuzzy sets as compared to representa-
tion by classical intervals, the 15 cost drivers should be represented by 
fuzzy sets. Among these, we have retained 12 attributes that we had al-
ready fuzzified elsewhere (Idri et al., 2000). The other attributes are not 
studied because their relative descriptions proved insufficient. In this 
evaluation, we assumed that only these 12 cost drivers (see Figure 3.5) de-
scribe all the COCOMO ‘81 software projects 

The original COCOMO’81 database contains only the effort multipliers; 
therefore, our evaluation of the proposed Fuzzy Analogy technique will be 
based on three 'fuzzy' data sets deduced from the original COCOMO’81 
database. Each of these three 'fuzzy' data sets contains 63 projects with the 
values necessary to determine the 12 linguistic values associated to each 
project. These 12 linguistic values were used to evaluate the similarity be-
tween software projects. One of these three fuzzy data sets is considered as 
a historical dataset, while the other two are perceived as the current data-
sets containing the new projects. 

The results obtained by using only the max-min aggregation to evaluate 
the individual distances (Formula (3.2)) are presented in Table 3.2. We 
have not presented results of using the sum-product aggregation (Formula 
(3.3)) for two primary reasons (Idri and Abran, 2001): 

• Under what we have referred as normal condition, the max-min and 
sum-product aggregations yielded approximately similar results, 
and this was the case for the COCOMO’81 database. 

• The sum-product aggregation does not satisfy all (previously dis-
cussed) established axioms                                                   . 

 
 
 
 
 
 
 
 



 
  Dataset #1 Dataset #2 
  

 
Pred(0.20) 

(%0) 
MMRE 

(%) 
SDMRE 
(%) 

Pred(0.20) 
(%) 

MMRE 
(%) 

SDMRE 
(%) 

Max 4.76 1801.48 2902.94 4.76 2902.49 1807.17
1/100 4.76 1798.85 2897.77 4.76 2894.28 1803.41
1/30 4.76 1792.70 2885.74 4.76 2875.26 1794.69
1/15 4.76 1783.91 2868.69 4.76 2848.44 1782.32
1/10 4.76 1757.13 2851.77 4.76 2822.64 1770.06
1/7 4.76 1763.86 2830.24 4.76 2788.70 1754.48
1/3 6.34 1714.20 2737.66 6.34 2648.90 1687.68
1 6.34 1550.89 2455.21 3.17 2258.36 1485.66
3 6.34 1168.24 1889.23 9.52 1571.48 1063.19
7 9.52 633.99 1215.81 14.28 830.79 526.57 
10 15.87 371.84 802.30 20.63 525.45 305.98 
15 38.09 143.92 337.76 36.50 284.20 140.68 
30 74.60 20.40 42.06 77.77 160.38 51.67 
100 92.06 4.06 9.05 84.12 30.37 10.49 

 
 
 
 
 
 
 
α-RIM 
 

Min 92.06 4.03 9.17 87.30 29.12 8.53 

Table 3.2  Results of the evaluation of Fuzzy Analogy 

 
 
 

 
 ‘fuzzy’/classical 

intermediate COCOMO’81 
Classical analogy 

(Two datasets) 
 Dataset #1 Dataset #2 K Pred(0.20) 

 % 
Pred(20) (%) 62.14 68 46.86 68 2 31.75 
Min MRE (%) 0.11 0.02 0.40 0.02 3 25.40 
Max MRE (%) 88.60 83.58 3233.03 83.58 4 19.05 
Mean MREi(%) 22.50 18.52 78.45 18.52 5 12.70 
Standard deviation MRE  19.69 16.97 404.40 16.97 6 12.70 

Table 3.3 Comparing classical analogy, ‘fuzzy’ and classical intermediate 
COCOMO’81 models (Idri et al., 2000). 

 
 
 
 
 
 



 Generally speaking, for the overall distances, each project environment 
must define its appropriate quantifier by studying its specific features and 
requirements. Due to a lack of knowledge regarding the appropriate quan-
tifier for the environment from which the COCOMO’81 data was col-
lected, we utilized various quantifiers to combine the individual similari-
ties, including all, there exists, and α-RIM linguistic quantifiers. An α-
RIM linguistic quantifier is defined by a fuzzy set in the unit interval with 
the membership function Q, given by: 

0)( >= ααrrQ  

To compute the weights wj’s (Formula 3.7), importance of the weights 
uk’s associated with the 12 variables describing COCOMO’81 software 
projects, needs to be determined. For the same purpose, we used the pro-
ductivity ratio, which is the project’s productivity ratio (expressed in De-
livered Source Instructions by Man-Month) for the best possible variable 
rating to its worst possible variable rating, assuming that the ratings for all 
other variables remain constant (Fig. 3.5). 

Upon results-analysis of the empirical validation (Table 3.2), we ob-
served that the accuracy of the estimates depended on the linguistic quanti-
fier (α) used in the evaluation of the overall similarity between software 
projects. Hence, if we consider the accuracy measured by Pred(0.20) as a 
function of α, we notice that, in general, it is monotonously increasing re-
lation according to α. This is because, our similarity measures are mo-
notonously decreasing functions with respect to α. Subsequently, when α 
tends towards zero, it implies that the overall similarity will take into ac-
count fewer attributes amongst those describing the software projects. The 
minimum number of attributes that should be considered is one. This is the 
case when using the ‘max’ operator where the selected attribute is the one 
for which the associated individual distance is the maximum of all individ-
ual distances.  

As a consequence, the overall similarity will be higher because we are 
more likely to find in the COCOMO’81 data set at least one attribute for 
which the associated linguistic values are the same for the two projects. In 
contrast, when α tends to approach infinity it implies that the overall simi-
larity will take into account many attributes amongst the ones describing 
the software projects. As a maximum, we may consider all attributes: this 
was the case when combining similarities with the ‘min’ operator. As con-
sequence, the overall similarity will be minimal because we are more 
likely to find in the COCOMO’81 data set one attribute for which the as-
sociated linguistic values are different for the two projects.  



It is important to note the soft aspects of the proposed Fuzzy Analogy 
approach. First, the appropriate weights associated with linguistic variables 
describing a software project (uk) can be chosen. These weights represent 
the importance of the variables in the environment. Second, we can choose 
the appropriate linguistic quantifier to combine the individual distances, 
and this linguistic quantifier is used to generate the weights, wj’s. These 
weights represent the importance associated with the individual distances 
when evaluating the overall distance. They depend upon the weights uk and 
the chosen linguistic quantifier. An interesting scenario arises when uk = 
wk. This occurs when the factor α  = 1. As a consequence, Formula (3.7) 
yields the ordinary weighted average. 

Fig. 3.5. Comparing productivity ratios for the 12 variables describing 
COCOMO’81 projects 

Figure 3.6 shows the relation between α and the number of projects that 
have a MRE smaller than 0.20 (NPU20) for data set #2. The two bold lines 
respectively represent the minimum and the maximum accuracy of the 
Fuzzy Analogy method when it uses the min- and max-aggregation to 
combine individual similarities. The ‘max’ (‘min’) aggregation gives lower 
(higher) accuracy because it considers only one (all) attribute(s) in the 
evaluation of the similarity. In the case of the other α-RIM linguistic quan-
tifiers (0 < α < ∞), the accuracy increases with α because additional attrib-
utes will be considered in the evaluation of the overall similarity. For ex-
ample, a software project Pi which has an overall similarity with P 
different from zero when α is equal to 10, may have a null overall similar-
ity when α is equal to 30. Due to this reason, it is not used in the estima-
tion of the cost for α = 30.  
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Fig. 3.6 α versus the number of projects of Dataset #2 with MRE <= 0.20 
(NPU20)  

When α tends to approach infinity (implying that most attributes are 
considered in the evaluation of the similarity), only the projects (Pi’s) that 
are closely similar to P will contribute in the cost estimate of P. This is in 
conformity with common knowledge in the software cost estimation field, 
i.e., evaluation of the similarity between projects is meaningful if they are 
described by a sufficient number of attributes. As seen in Figure 3.6, the 
accuracy is a monotonously increasing function with respect to α. How-
ever, because the equation (Formula (3.7)) used in the adaptation step is 
not a monotonously increasing function, we may observe certain anoma-
lies that can lead to misinterpretations of the results. This is the case when 
α = 1 in dataset #2. It seems that when α = 1/3 the accuracy 
(Pred(0.20)=6.34. NPU20=4) is better than that when α=1 
(Pred(0.20)=3.17. NPU20=2). The two additional projects which have a 
MRE < 0.20, i.e., 18.74 and 17.68, for α = 1/3 have MRE = 21.68 and 
MRE = 20.24, respectively, when α = 1. Hence, when we have fixed 
Pred(p) at 0.20, these two projects are not accounted for. This should not 
give the impression that the case for α = 1/3 generates more accurate esti-
mates than the case for α = 1. Upon analyzing the results for all projects, it 
was observed the opposite, as shown by the mean and the standard devia-
tion values of the MRE when α = 1/3 and α = 1). 
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α 
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During our comparison of the results obtained from the proposed Fuzzy 
Analogy method with the other three techniques, we considered two com-
parative criteria: (1) type of the technique, and (2) whether the technique 
uses fuzzy logic in its estimation process. We summarize our findings as 
follows: 

• Fuzzy analogy performs better than the classical analogy with all 
three data sets when α is higher than a given value. In the classical 
analogy procedure, we used the classical equality distance (equal or 
not) in the evaluation of similarity between projects. All attributes are 
considered in this evaluation. The best accuracy was obtained when 
we considered only the two first projects in the case adaptation step 
(Pred(0.20) = 31.75). The Fuzzy Analogy technique when using the 
‘min’ aggregation also took into account all attributes in the evaluation 
of projects similarity. Its accuracy was much higher than that for clas-
sical analogy. Two advantages are to be noted when using fuzzy logic 
with the analogy-based estimation. First, it tolerates imprecision and 
uncertainty in its inputs (cost drivers) and consequently, it generates 
gradual outputs (cost). This is why Fuzzy Analogy gives closer results 
for the three data sets while classical analogy generates the same or 
significantly different outputs when the inputs are different (this is the 
same case between ‘fuzzy’ and classical intermediate COCOMO’81. 
see (Idri et al., 2000) and Table 3.3 for more details). Second, it im-
proves the accuracy of the estimates because our similarity measures 
are more appropriate and realistic than those used in the literature. 
• The Intermediate COCOMO’81 model yields better accuracy than 
the classical analogy method, but when integrating fuzzy logic in the 
estimation by analogy procedure, the Fuzzy Analogy performs better 
than Intermediate COCOMO’81 model. This illustrates that fuzzy 
logic is an appropriate and effective tool in dealing with linguistic val-
ues as compared to the classical logic (Aristote logic) used in the 
original version of the COCOMO’81. 

Considering the above two observations, and our empirical validation, 
we suggest the following ranking of the four cost estimation techniques in 
terms of accuracy and adequacy in dealing with linguistic values: 

1. Fuzzy Analogy 
2. Fuzzy intermediate COCOMO’81 
3. Classical intermediate COCOMO’81 
4. Classical analogy. 



7. Summary and Future Improvements 

In this chapter, we have proposed a new approach for estimating software 
development effort, which is based on analogy-based reasoning, fuzzy 
logic, and linguistic quantifiers. Such an approach can be used when the 
software projects are described by either linguistic and/or numerical val-
ues. Thus, it improves the classical analogy-based reasoning procedure, 
which does not account for linguistic values. In the Fuzzy Analogy ap-
proach, both linguistic and numerical data are represented by fuzzy sets. 
The advantage of such a strategy is the effective modeling of the impreci-
sion and the uncertainty of attributes used for describing a software pro-
ject. Furthermore, by using the RIM linguistic quantifier to guide the ag-
gregation of the individual similarities between two projects, the Fuzzy 
Analogy approach can easily be adapted and configured according to the 
requirements and specifications of each environment.  An empirical 
validation of the proposed technique was performed using the 
COCOMO’81 data set. The results of this validation were then compared 
to those of the classical analogy-based reasoning approach, ‘fuzzy’ 
Intermediate COCOMO’81, and the original Intermediate COCOMO’81. 
It is observed that fuzzy logic improves the estimation process and 
consequently, yields better development cost estimates.  

By using fuzzy logic in its estimation process, the approach satisfies the 
first criterion of the concept Soft Computing, i.e., tolerance of imprecision. 
As defined by Zadeh (Zadeh, 1994), Soft Computing is composed of three 
intricate aspects of the human-mind, i.e., tolerance of imprecise informa-
tion, learning from experiences, and ability to work with uncertainty. 

We have also introduced some learning functionality in our Fuzzy 
Analogy approach. In the case identification step of CBR, we can update 
(add/delete/modify) all information concerning the linguistic variables de-
scribing software projects. More specifically, the linguistic values which 
are dependent on human judgement. For example, the linguistic value high 
for software reliability may imply that the number of software failures is 
lower than 6 per month. However, in the future we may require less than 3 
software failures per month to evaluate it as high. In the case retrieval step, 
we can update the definition of the linguistic quantifier used in the envi-
ronment. Once again, the meaning of a linguistic quantifier depends on 
human judgement. However, other learning characteristics that are not in-
cluded in our approach remain to be explored. For example, the Fuzzy 
Analogy may provide its user with a subset of linguistic variables that have 
always led to accurate estimates in the past. We may then use this sub-set 



in the future case-identification step. Thus, the selection attributes problem 
can be addressed with a practical solution. In addition, Fuzzy Analogy may 
facilitate proposal of an appropriate linguistic quantifier to be used in case 
retrieval step, by using those that have often led to accurate cost estimates.   

In order to satisfy the third criteria of Soft Computing, Fuzzy Analogy 
should be able to handle the uncertainty when estimating the cost of the 
new project. Estimate uncertainty occurs because an estimate is a probabil-
istic assessment of a future condition. Kitchenham and Linkman have ex-
amined likely sources of estimate uncertainty, such as model error, meas-
urement error, and assumption error (Kitchenham and Linkman, 1998). In 
our study, we are concerned by the uncertainty due to model-error. Fuzzy 
Analogy is based on the affirmation: ‘similar projects have similar costs’. 
There are two possible sources of uncertainty in this affirmation. First, the 
consequence of this affirmation is imprecise. Second, the affirmation is not 
always deterministic. We can find in some applications of CBR cases that 
are similar but the outcomes are completely different. It seems that it can 
also be the case in the software cost estimation field. Of course, no cost es-
timation model can include all the factors that affect the cost required to 
develop the software. Practically speaking, when factors affecting cost and 
effort are not explicitly included in the evaluation of the similarity between 
projects, they will contribute to the uncertainty in the predicted cost. In or-
der to incorporate the uncertainty of the classical affirmation of CBR, we 
may replace it by the following ‘similar projects have possibly similar 
costs’. Further research work has been initiated to explore the use of this 
affirmation as the basis of an improvement of the proposed approach. 
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