
Fuzzy Case-Based Reasoning Models for
Software Cost Estimation

Ali Idri

ENSIAS, University Mohamed V, Rabat, Morocco, Email: idri@ensias.ma

Alain Abran

Ecole de Téchnologie Supérieure, Montreal, Email: aabran@ele.etsmtl.ca

T. M. Khoshgoftaar

CSE, Florida Atlantic University, Email: taghi@cse.fau.edu

Abstract

Providing a timely estimation of the likely software development effort has
been the focus of intensive research investigations in the field of software
engineering, especially software project management. As a result, various
cost estimation techniques have been proposed and validated. Due to the
nature of the software-engineering domain, software project attributes are
often measured in terms of linguistic values, such as very low, low, high
and very high. The imprecise nature of such attributes constitutes uncer-
tainty and vagueness in their subsequent interpretation. We feel that soft-
ware cost estimation models should be able to deal with imprecision and
uncertainty associated with such values. However, there are no cost esti-
mation models that can directly tolerate such imprecision and uncertainty
when describing software projects, without taking the classical intervals
and numeric-values approaches. This chapter presents a new technique
based on fuzzy logic, linguistic quantifiers, and analogy-based reasoning to
estimate the cost or effort of software projects when they are described by
either numerical data or linguistic values. We refer to this approach as
Fuzzy Analogy. In addition to presenting the proposed technique, this
chapter also illustrates an empirical validation based on the historical
COCOMO’81 software projects data set.

3.1 Introduction

Estimation models in software engineering are used to predict some impor-
tant attributes of future entities such as software development effort, soft-
ware reliability, and productivity of programmers. Among such models,
those estimating software effort have motivated considerable research in
recent years. Accurate and timely prediction of the development effort and
schedule required to build and/or maintain a software system is one of the
most critical activities in managing software projects, and has come to be
known as ‘Software Cost Estimation’. In order to achieve accurate cost es-
timates and minimize misleading (under- and over-estimates) predictions,
several cost estimation techniques have been developed and validated,
such as (Boehm, 1981; Boehm et al., 1995; Putnam, 1978; Shepperd et al.,
1996; Angelis and Stamelos, 2000). The modeling technique used by many
software effort prediction models can generally be based on a mathemati-
cal function such as βα sizeEffort ×= , where α represents a productivity
coefficient, and β indicates an economies (or diseconomies) scale-
coefficient factor. Whereas, other cost estimation models are based on
computational intelligence techniques such as analogy-based reasoning, ar-
tificial neural networks, regression trees, and rule-based induction. Anal-
ogy-based estimation is one of the more attractive techniques in the soft-
ware effort estimation field, and basically, it is a form of Case-Based
Reasoning (CBR) (Aamodt and Plaza, 1994). The four primary steps com-
prising a CBR estimation system are:

1- Retrieve the most similar case or cases, i.e., previously developed
projects.

2- Reuse the information and knowledge represented by the case(s) to
solve the estimation problem.

3- Revise the proposed solution.
4- Retain the parts of this experience likely to be useful for future

problem solving.

Analogy-based reasoning or CBR, is technology that is especially useful
when there is limited domain knowledge and when an optimal solution
process to the given problem in not known. Part of the computational intel-
ligence field, it has proven useful in a wide variety of domains, including
software quality classification (Ganesan et al., 2000), software fault
prediction (Khoshgoftaar et al., 2002), and software design. In the context
of software cost estimation, a CBR system is based on the assumption that
‘similar software projects have similar costs’. Following this simple yet
logical assumption, a CBR system can be employed as follows. Initially,
each software project (both historical and candidate projects) must be de-

scribed by a set of attributes that must be relevant and independent of each
other. Subsequently, the similarity between the candidate project and each
project in the historical database is determined. Finally, the known devel-
opment-effort values of historical (previously developed similar) projects
is used to derive, i.e., case adaptation, an estimate for the new project.

Recently, many researchers have initiated investigations using the anal-
ogy-based estimation alternative (Angelis and Stamelos, 2000; Kadoda et
al., 2000; Niessink and Van Vliet, 1997; Shepperd et al., 1996; Shepperd
and Schofield, 1997). Consequently, many experiments have been con-
ducted to compare estimation accuracy of the CBR approach with that of
other cost estimation modeling techniques. The obtained results have
shown that analogy-based estimation does not out-perform all the other al-
ternatives in every situation. For example, Shepperd et al., Niessink, and
Van Vliet have reported that analogy-based estimation generated better re-
sults as compared to stepwise regression (Kadoda et al., 2000; Niessink
and Van Vliet, 1997; Shepperd and Schofield, 1997). On the other hand,
Briand et al., Stensrud and Myrtveit have reported a contradicting conclu-
sion (Briand et al., 2000; Myrtveit and Stensrud, 1999). A recent research
effort has investigated as to how the accuracy of a prediction system is af-
fected by data set characteristics, such as number of observations in the
training data, number of attributes, presence of noise and outliers, and dis-
tribution variability of the response factor (Shepperd and Kadoda, 2001).

An advantage of analogy-based cost estimation is that it is easy to com-
prehend and explain its process to practitioners. In addition, it can model a
complex set of relationships between the dependent variable (such as, cost
or effort) and the independent variables or cost drivers. However, its de-
ployment in software cost estimation still warrants some improvements.
The best working example of analogy-based reasoning estimation is the
complex human intelligence. However, our (human) reasoning by analogy
is more than always approximate and vague rather than precise and certain.
But regardless, we are capable of handling imprecision, uncertainty, partial
truth, and approximation to achieve tractability, robustness, and low solu-
tion cost. According to Zadeh (Zadeh, 1994), the exploitation of these cri-
teria underlies the remarkable human ability to understand distorted
speech, decipher sloppy handwriting, drive a vehicle in dense traffic and,
more generally, make decisions in an environment of uncertainty and im-
precision.

In this chapter, we address an important limitation of the classical anal-
ogy-based cost estimation, which arises when software projects are de-
scribed using categorical data (nominal or ordinal scale) such as very low,

low, high, and very high. Such attribute qualifications are known as lin-
guistic values in fuzzy logic terminology. Calibrating cost estimation mod-
els that deal with linguistic values (similar to how a human-mind works) is
a serious challenge for the software cost estimation community. Recently,
Angelis et al. (Angelis et al., 2001) were the first to propose the use of the
categorical regression procedure (CATREG) to build cost/effort estimation
models when software projects are described by categorical data. The
CATREG procedure quantifies categorical software attributes by assigning
numerical values to their categories in order to produce an optimal linear
regression equation for the transformed variables. However, the approach
has limitations such as,

• It replaces each linguistic value by one numerical value. This is
based on the assumption that a linguistic value can always be defined
without vagueness, imprecision, and uncertainty. However, this is not
often the case, largely because linguistic values are a result of human
judgments that are often vague, imprecise, and uncertain. For example,
assume that the programmers’ experience is measured by three linguis-
tic values: low, average, and high. Most often the interpretations of
these values are not defined precisely, and consequently, we cannot
represent them by individual numerical values.
• There is little or no natural interpretation of the numerical values as-
signed by the CATREG approach.
• It assigns numerical quantities to linguistic values in order to pro-
duce an optimal linear regression equation. However, the relation be-
tween development effort and cost drivers may (usually) be non-linear.

A more comprehensive and practical approach in working with linguis-
tic values is achieved by using the fuzzy set theory principle, as exploited
by Zadeh (Zadeh, 1965). Driven by the importance of linguistic values in
software project description and the attractiveness of CBR, we combined
the benefits of fuzzy logic and analogy-based reasoning for estimation
software effort. The proposed method is applicable to cost estimation prob-
lems of software projects which are described by either numerical and/or
linguistic values.

The remainder of this chapter continues in Section 3.2 with a discussion
one why categorical data should be considered as a particular case of lin-
guistic values. In Section 3.3, we briefly outline the principles of fuzzy sets
and linguistic quantifiers, whereas in Section 3.4, we summarize some re-
search studies of using CBR for the development cost estimation problem,
and which proposed methods cannot handle linguistic values. Section 3.5
presents the proposed cost estimation approach, Fuzzy Analogy, which can
be viewed as a fuzzification of the classical analogy-based estimation

method. An empirical validation using the historical COCOMO’81 data set
is presented in Section 3.6, and the obtained results are evaluated against
three other cost estimation techniques. Finally, in Section 3.7 we summa-
rize our findings and provide suggestions for related future work.

3.2 Categorical data and linguistic values

In this section, we discuss why categorical data, as defined by software
measurement researchers, are only a particular case of linguistic values.
The two terminologies come from two different fields: categorical data is
used in classical measurement theory, whereas, linguistic values are used
in the fuzzy set theory. Measurement theory has been an intricate compo-
nent of scientific research for over a century. According to Zuse (Zuse,
1998), it began with Helmholtz pioneering research effort: “Counting and
measuring from epistemological point of view’ and lead to the modern
axiomatic representational theory of measurement as shown by Krantz et
al. (Krantz et al., 1971).

Similar to other sciences (physics, medicine, civil, etc.), measurement
has been discussed in software engineering for over thirty years. The pri-
mary objective of software measurement is to improve the software devel-
opment process, and consequently, the quality of its various deliverables.
Evaluating, controlling, and predicting some important attributes of soft-
ware projects such as development effort, software reliability, and pro-
grammer’s productivity can achieve such an objective. However, meas-
urement in software engineering is often challenging, primarily due to two
reasons. First, software engineering is a (relatively) young science and
lacks advance maturity as seen in other engineering domains. Second,
many of the software attributes are more-than-often qualitative rather than
quantitative such as portability, quality, maintainability, and reliability.
Subsequently, their respective evaluation is largely influenced by human
judgment. The qualitative issue is related to the scale type on which the at-
tributes are measured. In the context of measurement theory, Stevens de-
fined the scale type of a measure as Nominal, Ordinal, Interval, Ratio or
Absolute (Stevens, 1946).

Categorical attributes are those with nominal or ordinal scale type. The
Nominal scale type is the lowest scale level and only allows the classifica-
tion of software entities in different classes or categories. Examples of this
scale type can be found in the literature, such as the language used in the
implementation phase (C, C++, Java, etc) and the application type (Busi-

ness, Control, Finance, etc). The Ordinal scale, in addition to the
classification of types of software entities, provides us information about
an ordering of the categories. Examples of ordinal attributes are software
complexity (simple, nominal, complex) and software reliability (very low,
low, high, very high).

In the software-engineering domain, many software attributes are meas-
ured either on a Nominal or an Ordinal scale type. Thus, to evaluate these
attributes linguistic values are often used such as very low, complex, im-
portant and essential. When using linguistic values, imprecision, uncer-
tainty and partial truth are unavoidable. However, until now, the software
measurement community has often used numbers or classical intervals to
represent these linguistic values. Furthermore, such transformation and
representation does not mimic the way in which the human-mind interprets
linguistic values, and consequently, cannot deal with imprecision and un-
certainty. To overcome this limitation, in our recent studies we have sug-
gested the use of fuzzy sets rather than classical intervals (or numbers) to
represent categorical data (Idri et al., 2000; Idri and Abran, 2000, 2001,
2001b; Idri et al., 2001c). Founded by Zadeh in 1965 (Zadeh, 1965), the
main motivation of fuzzy set theory is the desire to build a formal quantita-
tive framework that captures the vagueness of human knowledge since it is
usually expressed via natural language. Consequently, in this work we use
the fuzzy set theory to deal with linguistic values in the analogy-based cost
estimation procedure.

3.3 Fuzzy sets and linguistic quantifiers

Since its foundation by Zadeh in 1965, Fuzzy Logic (FL) has been the sub-
ject of important research investigations. During the early nineties, fuzzy
logic was firmly grounded in terms of its theoretical foundations and ap-
plication in the various fields in which it was being used, such as robotics,
medicine, and image processing. The aim of this section is not to present
an in-depth discussion of fuzzy logic, but rather to present some of its key
parts that are necessary for a proper understanding of this chapter, espe-
cially fuzzy sets and linguistic quantifiers.

3.3.1 Fuzzy Sets

A fuzzy set is a set with a graded membership function, µ, in the real in-
terval [0, 1]. This definition extends the one of a classical set where the

membership function is in the couple {0, 1}. Fuzzy sets can be effectively
used to represent linguistic values such as low, young, and complex, in the
following two ways (Jager, 1995):

• Fuzzy sets that model the gradual nature of properties, i.e., the
higher the membership that a given property x has in a fuzzy set A, the
more it is true that x is A. In this case, the fuzzy set is used to model
the vagueness of the linguistic value represented by the fuzzy set A.
• Fuzzy sets that represent incomplete states of knowledge. In this
case, the fuzzy set is a possibility distribution of the variable X, and
consequently, is used to model the associated uncertainty. When con-
sidering that it is only known that x is A, and x is not precisely known,
the fuzzy set A can be considered as a possibility distribution, i.e., the
higher the membership x’ has in A, the higher the possibility that x =
x’.

In the rest of this chapter, we use fuzzy sets according to the first case,
i.e., those that model the gradual nature of properties. For example, con-
sider the linguistic value young (for attribute Age) that can be represented
in three ways: by a fuzzy set, i.e., Figure 3.1 (a), by a classical interval,
i.e., Figure 3.1 (b), and by a numerical value, i.e., Figure 3.1 (c). The rep-
resentation by a fuzzy set is more advantageous than the other two ap-
proaches, because:

• It is more general,
• It mimics the way in which the human-mind interprets linguistic
values, and
• The transition from one linguistic value to a contiguous linguistic
value is gradual rather than abrupt.

Fig. 3.1 (a) Fuzzy set representation of the young linguistic value. (b) Classical
set representation of the young linguistic value. (c) Numerical representation of
the young linguistic value.

.
20 25 30 35 Years

1
µyoung(x)

1

21 32 Years

µyoung(x)

 27 Years

1
µyoung(x)

3.3.2 Linguistic quantifiers

It is quite obvious that a large number of linguistic quantifiers are used in
human discourse. Zadeh distinguishes between two classes of linguistic
quantifiers: absolute and proportional (Zadeh, 1983). Absolute quantifiers,
such as about 10 and about 20, can be represented as a fuzzy set Q of the
non-negative real numbers. In this work, we are concerned with propor-
tional quantifiers. A proportional linguistic quantifier indicates a propor-
tional quantity such as most, many, and few. Zadeh has suggested that pro-
portional quantifiers can be represented as a fuzzy set Q of the unit interval
I. In such a representation, for any r∈I, Q(r) is the degree to which the pro-
portion, r, satisfies the concept represented by the term Q. Furthermore,
Yager distinguished three categories of proportional quantifiers, which are
shown below (Yager, 1996).

• A Regular Increasing Monotone (RIM) quantifier, such as many,
most, and at-least α is represented as fuzzy subset Q satisfying the fol-
lowing conditions:

1. Q(0) = 0,
2. Q(1) = 1, and
3. Q(x) ≥ Q(y) if (x > y)

• A Regular Decreasing Monotone (RDM) Quantifier, such as few
and at-most α, is represented as a fuzzy subset Q satisfying the follow-
ings conditions:

1. Q(0) = 1,
2. Q(1) = 0, and
3. Q(x) ≤ Q(y) if (x > y)

• A Regular UniModal (RUM) quantifier, such as about α, is repre-
sented as fuzzy subset Q satisfying the followings conditions:

1. Q(0) = 0,
2. Q(1) = 0, and
3. There exist two values a and b ∈ I, where a < b, such that,

a. For y < a, Q(x) ≤ Q(y) if x < y
b. For y ∈ [a, b], Q(y) = 1
c. For y > b, Q(x) ≥ Q(y) if x < y

Two interesting relationships exist between these three categories of
proportional quantifiers, and they are,

• If Q is a RIM quantifier, then its antonym is a RDM quantifier and
vice versa. Examples of these antonym pairs are few and many, and at-
least α and at-most α.

• Any RUM quantifier can be expressed as the intersection of a RIM
and a RDM quantifier.

3.4 Related works

The idea of using CBR techniques as a basis for estimating software pro-
ject effort is not new. Boehm suggested the informal use of analogies as a
possible cost estimation technique several years ago (Boehm, 1981). Fur-
thermore, Vicinanza et al. have suggested that CBR might be usefully
adapted to make accurate software effort predictions (Vicinanza and Prie-
tulla, 1990). Subsequent research efforts have seen analogy-based estima-
tion as the subject of studies aimed at evaluating, enhancing, reformulat-
ing, and adapting the CBR life cycle according to the features of the
software effort prediction problem.

Shepperd et al. have been involved in the development of CBR tech-
niques and tools to build software effort prediction systems for the past
five years (Shepperd et al., 1996; Shepperd and Schofield, 1997)). In their
more recent work, they reported as to why various research teams have re-
ported widely differing empirical results when using CBR technology. In
addition to the characteristics of the projects data being used, Shepperd et
al. examined the impact of the choice of the number of analogies and adap-
tation strategies. In order to validate their findings, a data set of software
projects collected by a Canadian software house was explored. It was ob-
served that choosing the number of analogies or cases (denoted by k) is an
important feature for CBR systems. Specifically, three cases seemed to
yield optimal results. However, a fixed value for k was more effective for
the larger data sets, whereas distance-based case (analogy) selection ap-
peared more effective for the smaller data sets. Furthermore, it was also
observed that case adaptation strategies seemed to have little impact on the
prediction accuracy of analogy-based estimation (Kadoda et al., 2000).

During their study of the analogy-based estimation method for
Albrecht’s software projects, Angelis and Stamelos explored the problem
of determining the parameters for configuration of the analogy procedure
before its application to a new software project (Angelis and Stamelos,
2000). They studied three CBR parameters: (1) the distance measure to be
used for evaluating the similarity between software projects, (2) the num-
ber of analogies to take into account in the effort estimation, and (3) the
statistic or solution process to be used for calculating the unknown effort
from the known efforts of the previously developed similar projects. It was

suggested that a bootstrap method be used to configure these three parame-
ters. Bootstrapping consists of drawing new samples of software projects
from the original data set and testing the performance of parameters on the
generated sample data. This allows the practitioner in identifying which
parameter values consistently yield accurate estimates. Subsequently, these
values can be used to generate prediction for a new software project. Such
an approach for searching optimal parameters is called calibration of the
estimation procedure.

However, even though it is well recognized that estimation by analogy is
a promising technique for software development cost and/or effort estima-
tion, there are certain limitations that prevent it from being more widely
practiced. The most important is that until now it cannot handle linguistic
values such as very low, low, and high. This is important because, many
software attributes such as experience of programmer, module-complexity,
and software reliability are measured on ordinal or nominal scales which
are composed of linguistic values. For example, the well-known
COCOMO’81 model has 15 attributes out of 17 (22 out of 24 in the
COCOMO II) which are measured with six linguistics values: very low,
low, nominal, high, very high, and extra-high (Boehm, 1981; Boehm et al.,
1995; Chulani, 1998). Another example is the Function Points measure-
ment method, in which the level of complexity for each item (input, out-
put, inquiry, logical file, or interface) is assigned using three qualifications
(low, average, and high). Then there are the General System Characteris-
tics, the calculation of which is based on 14 attributes measured on an or-
dinal scale of six linguistic values (from irrelevant to essential) (Abran and
Robillard, 1996; Matson et al., 1994). To overcome this limitation, we pre-
sent (next section) a new method that can be seen as a fuzzification of the
classical analogy in order to deal with linguistic values.

3.5 Estimation by Fuzzy Analogy

The key activities for estimating software project effort by analogy are the
identification of a candidate software project as a new case, the retrieval of
similar software projects from a projects repository, and the reuse of
knowledge derived from previous software projects (primarily the actual
development effort) to generate an estimate for the candidate software pro-
ject. Analogy-based estimation has motivated considerable research in re-
cent years. However, none or very few have yet dealt with categorical data.
We present here a new approach based on reasoning by analogy and fuzzy
logic which extends the classical analogy in the sense that it can be used

when the software projects are described either by numerical or categorical
data. Fuzzy Analogy is a fuzzification of the classical analogy procedure,
and therefore, it is also composed of three steps: case(s) identification, re-
trieval of similar cases, and case adaptation. Each step is a fuzzification of
its equivalent in the classical analogy-based estimation procedure. In the
following sub-sections, we discuss each fuzzified step in further details.

3.5.1 Identification of Cases

The goal of this step is the characterization of all software projects by a set
of attributes. Selecting attributes that accurately describe software projects
is a complex task in the analogy-based procedure. The selection of soft-
ware project attributes depends on the objective of the CBR system. In the
context of our study, the objective is to estimate the software project effort.
Consequently, the attributes must be relevant for the effort estimation task.
The problem is to detect the attributes exhibiting a significant relationship
with the effort in a given environment.

 The solution (for identification of cases) adopted by most software cost
estimation practitioners (and researchers) is to test the correlation between
the development effort and all the attributes for which data (in the studied
environment) are available. This solution does not take into account attrib-
utes that can affect largely the development effort, if they have not yet re-
corded data. Another interesting criterion is that each relevant attribute
must be independent from the other attributes. In the ANGEL tool (Shep-
perd et al., 1996; Shepperd et Schofield,. 1997), Shepperd et al. proposed
to resolve the attributes selection problem by applying a brute force search
of all possible attributes subsets. They acknowledged that this is a NP-hard
search problem, and consequently, it is not a feasible solution when the
number of the candidate attributes is large. Briand et al. proposed the use
of a t-test procedure to select the set of attributes (Briand et al., 2000).
Shepperd et al. claimed that the t-test procedure was not appropriate be-
cause it is not an efficient method to model the potential interactions be-
tween the software-project attributes (Kadoda et al., 2000). It was also
suggested that statistical methods could not solve the attribute selection
problem in the software cost estimation field.

 There are two other criteria that every relevant and independent soft-
ware-project attribute must obey: (1) the attribute must be comprehensive,
implying that it must be well defined, and (2) the attribute must be opera-
tional, implying that it must be easy to measure. These criteria have yet not
been the subject of an in-depth study in the software cost estimation litera-

ture. This study proposes to solve the attributes selection problem by inte-
grating a learning procedure in the analogy-based estimation approach. As
we shall discuss in Section 3.6, Fuzzy Analogy can satisfy such a learning
procedure. Prior to the learning phase, we adopt (during the training phase)
a variation of Shepperd’s solution by allowing the analysts to use the at-
tributes that are believed to best characterize their projects, and which are
more appropriate in their specific software development organizational en-
vironment.

The objective of our Fuzzy Analogy approach is to deal with linguistic
values. In the case(s) identification step, each software project is described
by a set of selected attributes that can be measured by either numerical or
linguistic values, which will be represented by fuzzy sets. In the case of a
numerical value, x0 (no uncertainty), its fuzzification will be done by the
membership function that takes the value of 1 when x = x0 and 0 other-
wise. In the context of linguistic values let us suppose that we have M at-
tributes, and for each (jth) attribute Vj, a measure with linguistic values is
defined (j

kA). Each linguistic value, j
kA , is represented by a fuzzy set with

a membership function (j
kAµ).

It is preferable that these (above) fuzzy sets satisfy the normal condition
(NC), i.e., they form a fuzzy partition and each of them is convex and
normal (Idri and Abran, 2001). The use of fuzzy sets to represent categori-
cal data, such as very low and low, mimics the way in which the human-
mind interpret these values, and consequently, it allows us to deal with
vagueness, imprecision and uncertainty in the case(s) identification step.
Another advantage of the proposed Fuzzy Analogy approach is that it takes
into account the importance of each selected attribute in the case(s) identi-
fication step. Since all selected attributes do not necessarily have the same
influence on the software project effort, we are required to indicate the
weights (uk) associated with all the selected attributes in the case(s) identi-
fication step.

In order to illustrate the case(s) identification step, we utilize the
COCOMO’81 historical software projects data set. Each software project
in the data set is described by 17 attributes, which are declared as relevant
and independent (Boehm, 1981). Among these, the DATA cost driver is
measured by four linguistic values, i.e., low, nominal, high, and very high.
These linguistic values are represented by classical intervals in the original
version of the COCOMO’81. Because of the advantages of representation
(especially linguistic values) by fuzzy sets rather than classical intervals,
we have proposed to use the representation given in Figure 3.2. The weight

Low

1

associated to the DATA cost driver, i.e., udata, is equal to 1.23, and is
evaluated by its productivity ratio1 .

Fig. 3.2: Membership functions of fuzzy sets defined for the DATA cost driver
(Idri et al., 2000)

3.5.2 Retrieval of Similar Cases

This step is based on the preferred choice of a software project similarity
measure. This selection is obviously very critical since it will influence
which analogies or similar cases are extracted from the data set. The simi-
larity of two software projects, which are described and characterized by a
set of attributes, is often evaluated by measuring the distance between
these two projects through their sets of attributes. Thus, two projects are
considered dissimilar if the differences between their respective sets of at-
tributes are clear and obvious. It is important to note that the similarity of
two software projects also depends on their environment, i.e., projects that
are similar in a specific type of environment may not necessarily be similar
in other environments. Hence, according to Fenton’s definitions (Fenton
and Pfleeger, 1997), a similarity measure should be considered as an ex-
ternal process attribute and, consequently, one which can only be meas-
ured indirectly.

The technique by which the similarity of software projects is gauged is
fundamental to the estimation of software development effort by analogy,
and a variety of approaches have been proposed in the literature (Kolod-
ner, 1993;Shepperd et al., 1996; Shepperd and Schofield, 1997) found
three major inadequacies while investigating similarity measures: (1) that
they are computationally intensive, and, consequently, many CBR systems

1 The productivity ratio is the software project’s productivity ratio expressed by the ratio of the De-
livered Source Instructions by Man-Months for the best possible attribute rating to that of its worst
possible variable rating, assuming that all the ratings for all other attributes remain constant.

 5 10 15 55 100 155 550 1000 1550 D/P

Nominal High Very High

have been developed, such as ESTOR (Vicinanza and Prietulla, 1990) and
ANGEL (Shepperd et al., 1996), (2) that the algorithms are intolerant of
noise and of irrelevant features, (3) probably the most critical, is that they
do not deal well with categorical data other than binary-valued variables.
However, in the software metrics domain, specifically in the context of
software cost estimation models, many factors (linguistic variables in
fuzzy logic), such as the experience of programmers and the complexity of
modules, are measured on an ordinal (or nominal) scale composed of
qualifications such as very low and low (linguistic values in fuzzy logic);
these categorical data are represented by classical intervals (or step func-
tions). Hence, no project can occupy more than one interval. This is a seri-
ous problem in that it can lead to a great difference in effort estimations in
the case of similar projects with a small incremental size difference, since
each would be placed in a different interval of a step function (Idri et al.,
2000).

To overcome the above-mentioned limitation, we have used fuzzy sets
with a membership function rather than classical intervals to represent the
categorical data. Based on the use of such a representation, we have pro-
posed a set of new similarity measures (Idri and Abran, 2000). These
measures evaluate the overall similarity, d(P1,P2), of two projects P1 and
P2 by combining the individual similarities of P1 and P2 associated with the
various linguistic variables (attributes) (Vj) describing P1 and P2, i.e.,

),(21 PPd
jv (Fig. 3.3).

Individual similarities of two projects P1 and P2,)P,(Pd 21v j
: The first

step consists of calculating the similarity of P1 and P2 according to each
individual attribute with a linguistic variable Vj,),(21 PPd

jv . Since each Vj
is measured by fuzzy sets,),(21 PPd

jv should express the fuzzy equality ac-
cording to Vj of P1 and P2. The associated fuzzy set then must have a
membership function with two variables, i.e., Vj (P1) and Vj (P2). In the
context of fuzzy set theory, this type of fuzzy set is referred to as a fuzzy
relation. Such a fuzzy relation can represent an association or a correlation
between elements of the product space. In our study, the association that
will be represented by this fuzzy relation is the statement ‘P1 and P2 are
approximately equal according to Vj’. We denote this fuzzy relation by

jvR≈ , a combination of a set of fuzzy relations jv
kR ,≈ . Each jv

kR ,≈ represents

the equality of Vj according to one of its linguistic values j
kA . Hence, jv

kR ,≈

),(211
PPdv

),(212
PPdv

),(21 PPd
Mv



























existsthere
..
many
most
all

d(P1, P2)

represents the fuzzy if-then rule, where the premise and the consequence
consist of the fuzzy proposition as shown below.

j
kj

j
kj

v
, k AisPVthenAisPVifR j)()(: 21≈ (3.1)

Fig. 3.3 Summarizes the process for computing the various measures.

Therefore, for each variable Vj, we have a rule base (RBASE_Vj) which
contains the same number of fuzzy if-then rules as the number of fuzzy
sets defined for Vj. Each RBASE_Vj expresses the fuzzy equality of two
software projects according to Vj,),(21 PPd

jv . When we consider all vari-
ables Vj, we obtain a rule base (RBASE) which contains all rules associ-
ated with all variables. RBASE expresses the fuzzy equality of two soft-
ware projects according to all variables Vj, d(P1, P2).),(21 PPd

jv is defined
by combining all fuzzy rules in DBASE_Vj to obtain one fuzzy relation

(jvR≈) which represents DBASE_Vj. The combination of the fuzzy if-then

rules, jv
kR ,≈ , into a fuzzy relation, jvR≈ , is called as aggregation. The way

this is done is different for the various types of fuzzy implication functions
adopted for the fuzzy rules. These fuzzy implication functions are based on
distinguishing between two basic types of implication (Jager, 1995)): (1)
the fuzzy implication which complies with the classical conjunction, and

RBASE_VM

RBASE_V2

RBASE_V1
Aggregation

Aggregation

Aggregation

P2

P1

RBASE

(2) the fuzzy implication which complies with the classical implication.
Using this basic distinction of the two types of fuzzy implication, we have
obtained three equations for),(21 PPd

jv :

















−−

−
−

×

−

=
∑

(3.4) min

))(),(1max(min
)(3.3

)()(
)2.3(minmax

))(),(min(max

),(

21

21

21

21

naggregatioDienesKleene

PP
naggregatioproductsum

PP
naggregatio

PP

PPd

j
k

j
k

j
k

j
k

j
k

j
k

j

AAk

k
AA

AAk

v

µµ

µµ

µµ

In the context of the above equations,),(21 PPd

jv = 1 implies a perfect
similarity between P1 and P2 according to Vj;),(21 PPd

jv = 0, a total absence
of similarity; and 0 <),(21 PPd

jv < 1, a partial similarity.

Overall similarity of two projects P1 and P2, d(P1 ,P2) : To evaluate the
overall similarity of P1 and P2, the individual similarities),(21 PPd

jv are ag-
gregated using Regular Increasing Monotone (RIM) linguistic quantifiers
such as all, most, many, at-most α or there exists. The choice of the appro-
priate RIM linguistic quantifier, Q, depends on the characteristics and the
needs of each environment. It indicates the proportion of individual dis-
tances that we feel is necessary for a good evaluation of the overall project
similarity distance. The use of a RIM quantifier to guide the evaluation of
the overall similarity essentially implies that the more individual similari-
ties are satisfied, the greater is the overall similarity of the two software
projects. The overall similarity of P1 and P2 , i.e., d(P1 ,P2), is given by one
of the following formulas (Idri and Abran, 2001b):
















=

)),((

)),((

)),((

)),((

),(

21

21

21

21

21

PPdofexiststhere

PPdofmany

PPdofmost

PPdofall

PPd

j

j

j

j

v

v

v

v

 (3.5)

The following formal procedure is used to evaluate the overall similar-
ity. First, the linguistic quantifier, Q, is used to generate an Ordered

Weight Averaging (OWA) weighting vector W (w1, w2, ..., wM) of dimen-
sion M (the number of variables describing the software project), such that
all the wj are in the unit interval and their sum is equal to 1. Second, we
calculated the overall similarity, d(P1, P2), by means of the following equa-
tion:

),(),(),(2121
1

21 PPdPPwPPd
jv

M

j
j∑

=

= (3.6)

where,),(21 PPd
jv is the jth largest individual distance.

The procedure used for generating the weights, wj(P1,P2), from the lin-
guistic quantifier Q is given by (Yager, 1996; Yager and Kacpruzyk,
1997):

)()(),(

1

11
21 T

u
Q

T

u
QPPw

j

k
k

j

k
k

j

∑∑
−

== −= (3.7)

where, uk is the importance weight associated with the kth variable de-
scribing the software project, and T is the total sum of all importance
weights uk. We note that the weights wj(P1,P2) used in Formula (3.6) will
generally be different for each (P1, P2). This is due to the fact that the or-
dering of the individual distances),(21 PPd

jv will be different, leading to

different uk values.

Axiomatic validation of the similarity measures: As new measures are
proposed, it is logical to ponder as to whether (or not) they capture the at-
tribute they claim to describe. This allows us to choose the best measures
from a very large number of software measures for a given attribute. How-
ever, validation of software measures is one of the most misunderstood
procedures in the software measurement area. For example, “what consti-
tutes is a valid measure?” A number of authors in the software measure-
ment engineering domain have attempted to answer this question (Fenton
et Pfleeger, 1997; Jacquet and Abran, 1998; Kitchenham et al., 1995; Zuse,
1994, 1999). However, the validation problem has to-date been tackled
from different points of view (mathematical, empirical, etc.), and by inter-
preting the expression “metrics validation” differently; as suggested by
Kitchenham et al: ‘What has been missing so far is a proper discussion of
relationships among the different approaches’ (Kitchenham et al., 1995).
Beyond this interesting issue, we use Fenton’s definitions to validate the
two measures,),(21 PPd

jv and d(P1,P2) (Fenton et Pfleeger, 1997), i.e.,
Validating a software measure is the process of ensuring that the measure
is a proper numerical characterization of the claimed attribute by showing

that the representation condition is satisfied. This is validation in the nar-
row sense, implying that it is internally valid. If the measure is a compo-
nent of a valid prediction system, the measure is valid in the wide sense. In
this section, we deal with the validation of),(21 PPd

jv and d(P1, P2) in the
narrow sense.

The measures,),(21 PPd
jv and d(P1,P2), satisfy the representation condi-

tion if they do not contradict any intuitive notions about the similarity of
P1 and P2. Our initial understanding of the similarity of projects will be
codified by a set of axioms. This axiom-based approach is common in
many sciences. For example, mathematicians learned about the world by
defining axioms for geometry. Then, by combining axioms and using their
results to support or refute their observations, they expanded their under-
standing and the set of rules that govern the behavior of objects. We pre-
sent below, a set of axioms that represents our intuition about the similarity
attribute between software projects and we check whether or not the two
measures,),(21 PPd

jv and d(P1,P2), satisfy these axioms. We also present a
set of axioms that represent our intuition about the similarity attribute of
two software projects and we resume, in Table 3.1, the results of the axio-
matic validation of the two measures,),(21 PPd

jv and d(P1, P2) (Idri and
Abran, 2001).

Axiom 1 (specific to the),(iv PPd

j
 measure):

The similarity of two projects, according to a variable Vj, is not null if
and only if these two projects have a degree of membership different from
0 to at least one same fuzzy set of Vj

0)(Pand 0(P)that suchAiff0)(P,Pd iAA
j

kiv j
k

j
kj

≠≠∃≠ µµ

Axiom 2
We expect any measure S of the similarity of two projects to be non-

negative:
S(P1, P2) ≥ 0; S(P, P) > 0

 Axiom 3
The degree of similarity of any project to P must be lower or equal than

the degree of similarity of P to itself:
S(P, Pi) ≤ S(P, P)

Axiom 4
We expect any measure, S, of the similarity of two projects to be

commutative:
S(P1, P2)= S(P2, P1)

)P(P,d iv j
/d(P, Pi)

 max-min sum-product Kleene-Dienes
Axiom 1 Yes/ Yes/ No/
Axiom 2 Yes/Yes Yes/Yes Yes/Yes
Axiom 3 Yes/Yes No/No Yes /Yes if NC2
Axiom 4 Yes/Yes Yes/Yes No/No

Table 3.1 Results of the validation of the distance)P(P,d iv j
 and d (P, Pi)

By observing the results of this validation, which takes into account the
four axioms (Table 3.1), we conclude that),(iv PPd

j using the max-min
aggregation respects all the axioms (and consequently, so does d(P,Pi)).
Hence, according to Fenton (Fenton et Pfleeger, 1997), this is a valid simi-
larity measure in the narrow sense.),(iv PPd

j , using the sum-product ag-
gregation does not satisfy Axiom 2. Although Axiom 3 is interesting, we
will retain the sum-product aggregation in order to be validated in the wide
sense. There are three reasons for this decision (Idri and Abran, 2001):

• The difference between),(iv PPd
j and)P,P(d

jv is not obvious if

the fuzzy sets associated with Vj satisfy the normal condition. We
can show that this difference, in the case where),(iv PPd

j is
higher than)P,P(d

jv , is in the interval [-1/8, 0].

• Sum-product aggregation respects the other axioms, specifically
Axiom 1.

• As was noted by Zuse (Zuse, 1998), validation in the narrow sense,
contrary to validation in the wide sense, is not yet widely accepted
and mostly neglected in practice.

2 A tuple of fuzzy sets (A1, A2, .., AM) satisfies the normal condition (NC) if
(A1, A2, .., AM) is a fuzzy partition and each Ai is normal and convex

),(iv PPd
j , using min-Kleene-Dienes aggregation does not satisfy Axi-

oms 1 and 4. Although it satisfies Axioms 2 and 3, we rejected it because
of Axiom 1. In our study, Axiom 1 represents the definition of the similar-
ity of two software projects according to a fuzzy variable. Consequently,

),(iv PPd
j using min-Kleene-Dienes was not be used in the empirical vali-

dation of the Fuzzy Analogy approach.

3.5.3 Case adaptation

The objective of this step is to derive an estimate for the new project by us-
ing the known effort values of similar projects. There are two issues that
need to be addressed. First, the choice of how many similar projects should
be used in the adaptation? Second, how to adapt the chosen analogies in
order to generate an estimate for the new project? In the literature, one can
notice that there is no clear rule to guide the choice of the number of
analogies, k. Shepperd et al. have tested two strategies to calculate the
number k, by setting it to a constant value (they explored values between 1
and 5), or by determining it dynamically as the number of projects that fall
within distance (d) of the new project (Kadoda et al., 2000). In contrast,
Briand et al. have used a single case or analogy (Briand et al., 2000). Fur-
thermore, Angelis and Stamelos have tested a number of analogies in the
range of 1 to 10 when studying the calibration of the analogy procedure for
the Albrecht’s dataset (Angelis and Stamelos, 2000). The results obtained
from these empirical research efforts seemed to favour the case where k is
lower than 3.

Fixing the number of analogies for the case adaptation step is consid-
ered here neither as a requirement nor as a constraint. The principle of this
approach is to take only the first k projects that are similar to the new pro-
ject. Let us suppose that the distances between the first three projects of
one dataset (P1, P2, P3) and the new project (P) are respectively: 3.30, 4.00
and 4.01. When we consider k equal to 2, we use only the two projects P1
and P2 in the calculation of an estimate of P. Project P3 is not considered in
this case although there is no clear or obvious difference between d(P2, P)
= 4.00, and d(P3, P) = 4.01. We believe that the use of the number k relies
on the use of the classical logic principle, i.e., the transition from one situa-
tion (contribution in the estimated cost) to the following (no contribution
in the estimated cost) is abrupt rather than gradual.

1

In Fuzzy Analogy, we propose a new strategy to select projects that will
be used in the adaptation step. This strategy is based on the distances d(P,
Pi) and the definition adopted in the studied environment for the proposi-
tion ‘Pi is closely similar project to P’. Intuitively, Pi is closely similar to P
if d(P,Pi) is in the vicinity of 1 (0 in the case of the Euclidean distance
similarity measure). A better way to represent the value ‘vicinity of 1’ is
by using a fuzzy set defined in the unit interval [0, 1]. Indeed, this fuzzy
set defines the ‘closely similar’ qualification adopted in the environment.
Figure 3.4 demonstrates a possible representation for the value ‘vicinity of
1’. In this example all projects that have d(P,Pi) greater than 0.5 contribute
to the estimated cost of P; the contribution of each Pi is weighted by µvicinity

of 1(d(P,Pi)).

Fig. 3.4 A possible definition of the value ‘vicinity of 1’

The second issue in the case adaptation step is to generate an estimate
for the new project by adapting the information gained from the chosen
analogies. The most common solutions use the (weighted) mean or the
median of the k chosen analogies. In the case of weighted mean, the
weights can be the similarity distances or the ranks of the projects. In the
case of the proposed Fuzzy Analogy approach, we use the weighted mean
of all known effort projects in the dataset. The weights are the values of
the membership function defining the fuzzy set ‘vicinity of 1’. The for-
mula is then given by:

∑

∑

=

=

×
= N

i
iofvicinity

N

i
iiofvicinity

PPd

PEffortPPd
PEffort

1
1

1
1

)),((

)()),((
)(

µ

µ
 (3.8)

The primary advantage of our adaptation approach is that it can be eas-
ily configured by defining the value ‘vicinity of 1’ according to the needs
of each development environment. An interesting situation arises when µvi-

cinity of 1(x) = x in Formula (3.8), since it gives exactly the ordinary weighted

µvicinity of 1(x)

0.5

1

average. This property will be used in the validation of our approach on
the COCOMO’81 dataset.

3.6 Empirical results

The empirical results of applying the Fuzzy Analogy approach to the
COCOMO’81 data set, are obtained by using the F_ANGEL tool, which is
a software prototype that we have developed in order to automate the
Fuzzy Analogy approach. In a broad sense, it can be viewed as a fuzzifica-
tion of the classical analogy-based estimation tool, ANGEL, as developed
by Shepperd et al. (Shepperd et al., 1996; Shepperd and Schofield, 1997).
The results of our empirical validations were compared with those of three
other cost estimation models, i.e., classical analogy, the original intermedi-
ate COCOMO’81, and ‘fuzzy’ intermediate COCOMO’81 (Boehm, 1981;
Idri et al., 2000). The accuracy of the estimates is evaluated by using the
magnitude of relative error (MRE), which is defined as:

actual

estimatedactual

Effort
EffortEffort

MRE
−

= (3.9)

The MRE is calculated for each project in the dataset. In addition, we

use the prediction level measure, Pred(p), which has often been used in the
literature. It is defined by:

N
k)p(edPr = (3.10)

where, N is the total number of observations, k is the number of obser-
vations with a MRE less than or equal to p. A common value for p is 0.25,
and in our evaluations, we use p equal to 0.20 since it was used for evalua-
tion of the original version of the intermediate COCOMO’81 model. The
Pred(0.20) gives the percentage of projects that were predicted with a
MRE equal or less than 0.20. Other four quantities are used in this evalua-
tion: min of MRE, max of MRE, standard deviation of MRE (SDMRE),
and mean MRE (MMRE).

 The original intermediate COCOMO’81 database was chosen as the ba-
sis for this validation (Boehm, 1981). It contains 63 software projects.
Each project is described by 17 attributes: (1) software size, measured in
KDSI (Kilo Delivered Source Instructions), (2) project mode, defined as
either ‘organic’, ‘semi-detached’, or ‘embedded’, and the remaining (3)-
(15) cost drivers are generally related to the software environment. Each
cost driver is measured on a scale composed of six qualifications: very low,

low, nominal, high, very high, and extra-high. It seems that this scale is or-
dinal, but an analysis indicates that one of the 15 cost drivers (SCED at-
tribute) is only assessed to be nominal. This does not cause any problem
for the proposed Fuzzy Analogy technique, because it deals with these six
qualifications as linguistic values rather than categorical data. In the origi-
nal intermediate COCOMO’81, the assignment of linguistic values to the
15 cost drivers used conventional quantization, such that the values be-
longed to classical intervals (see (Boehm, 1981), pp. 119). Due to the vari-
ous advantages of representation by fuzzy sets as compared to representa-
tion by classical intervals, the 15 cost drivers should be represented by
fuzzy sets. Among these, we have retained 12 attributes that we had al-
ready fuzzified elsewhere (Idri et al., 2000). The other attributes are not
studied because their relative descriptions proved insufficient. In this
evaluation, we assumed that only these 12 cost drivers (see Figure 3.5) de-
scribe all the COCOMO ‘81 software projects

The original COCOMO’81 database contains only the effort multipliers;
therefore, our evaluation of the proposed Fuzzy Analogy technique will be
based on three 'fuzzy' data sets deduced from the original COCOMO’81
database. Each of these three 'fuzzy' data sets contains 63 projects with the
values necessary to determine the 12 linguistic values associated to each
project. These 12 linguistic values were used to evaluate the similarity be-
tween software projects. One of these three fuzzy data sets is considered as
a historical dataset, while the other two are perceived as the current data-
sets containing the new projects.

The results obtained by using only the max-min aggregation to evaluate
the individual distances (Formula (3.2)) are presented in Table 3.2. We
have not presented results of using the sum-product aggregation (Formula
(3.3)) for two primary reasons (Idri and Abran, 2001):

• Under what we have referred as normal condition, the max-min and
sum-product aggregations yielded approximately similar results,
and this was the case for the COCOMO’81 database.

• The sum-product aggregation does not satisfy all (previously dis-
cussed) established axioms .

 Dataset #1 Dataset #2

Pred(0.20)

(%0)
MMRE

(%)
SDMRE
(%)

Pred(0.20)
(%)

MMRE
(%)

SDMRE
(%)

Max 4.76 1801.48 2902.94 4.76 2902.49 1807.17
1/100 4.76 1798.85 2897.77 4.76 2894.28 1803.41
1/30 4.76 1792.70 2885.74 4.76 2875.26 1794.69
1/15 4.76 1783.91 2868.69 4.76 2848.44 1782.32
1/10 4.76 1757.13 2851.77 4.76 2822.64 1770.06
1/7 4.76 1763.86 2830.24 4.76 2788.70 1754.48
1/3 6.34 1714.20 2737.66 6.34 2648.90 1687.68
1 6.34 1550.89 2455.21 3.17 2258.36 1485.66
3 6.34 1168.24 1889.23 9.52 1571.48 1063.19
7 9.52 633.99 1215.81 14.28 830.79 526.57
10 15.87 371.84 802.30 20.63 525.45 305.98
15 38.09 143.92 337.76 36.50 284.20 140.68
30 74.60 20.40 42.06 77.77 160.38 51.67
100 92.06 4.06 9.05 84.12 30.37 10.49

α-RIM

Min 92.06 4.03 9.17 87.30 29.12 8.53

Table 3.2 Results of the evaluation of Fuzzy Analogy

 ‘fuzzy’/classical

intermediate COCOMO’81
Classical analogy

(Two datasets)
 Dataset #1 Dataset #2 K Pred(0.20)

 %
Pred(20) (%) 62.14 68 46.86 68 2 31.75
Min MRE (%) 0.11 0.02 0.40 0.02 3 25.40
Max MRE (%) 88.60 83.58 3233.03 83.58 4 19.05
Mean MREi(%) 22.50 18.52 78.45 18.52 5 12.70
Standard deviation MRE 19.69 16.97 404.40 16.97 6 12.70

Table 3.3 Comparing classical analogy, ‘fuzzy’ and classical intermediate
COCOMO’81 models (Idri et al., 2000).

 Generally speaking, for the overall distances, each project environment
must define its appropriate quantifier by studying its specific features and
requirements. Due to a lack of knowledge regarding the appropriate quan-
tifier for the environment from which the COCOMO’81 data was col-
lected, we utilized various quantifiers to combine the individual similari-
ties, including all, there exists, and α-RIM linguistic quantifiers. An α-
RIM linguistic quantifier is defined by a fuzzy set in the unit interval with
the membership function Q, given by:

0)(>= ααrrQ

To compute the weights wj’s (Formula 3.7), importance of the weights
uk’s associated with the 12 variables describing COCOMO’81 software
projects, needs to be determined. For the same purpose, we used the pro-
ductivity ratio, which is the project’s productivity ratio (expressed in De-
livered Source Instructions by Man-Month) for the best possible variable
rating to its worst possible variable rating, assuming that the ratings for all
other variables remain constant (Fig. 3.5).

Upon results-analysis of the empirical validation (Table 3.2), we ob-
served that the accuracy of the estimates depended on the linguistic quanti-
fier (α) used in the evaluation of the overall similarity between software
projects. Hence, if we consider the accuracy measured by Pred(0.20) as a
function of α, we notice that, in general, it is monotonously increasing re-
lation according to α. This is because, our similarity measures are mo-
notonously decreasing functions with respect to α. Subsequently, when α
tends towards zero, it implies that the overall similarity will take into ac-
count fewer attributes amongst those describing the software projects. The
minimum number of attributes that should be considered is one. This is the
case when using the ‘max’ operator where the selected attribute is the one
for which the associated individual distance is the maximum of all individ-
ual distances.

As a consequence, the overall similarity will be higher because we are
more likely to find in the COCOMO’81 data set at least one attribute for
which the associated linguistic values are the same for the two projects. In
contrast, when α tends to approach infinity it implies that the overall simi-
larity will take into account many attributes amongst the ones describing
the software projects. As a maximum, we may consider all attributes: this
was the case when combining similarities with the ‘min’ operator. As con-
sequence, the overall similarity will be minimal because we are more
likely to find in the COCOMO’81 data set one attribute for which the as-
sociated linguistic values are different for the two projects.

It is important to note the soft aspects of the proposed Fuzzy Analogy
approach. First, the appropriate weights associated with linguistic variables
describing a software project (uk) can be chosen. These weights represent
the importance of the variables in the environment. Second, we can choose
the appropriate linguistic quantifier to combine the individual distances,
and this linguistic quantifier is used to generate the weights, wj’s. These
weights represent the importance associated with the individual distances
when evaluating the overall distance. They depend upon the weights uk and
the chosen linguistic quantifier. An interesting scenario arises when uk =
wk. This occurs when the factor α = 1. As a consequence, Formula (3.7)
yields the ordinary weighted average.

Fig. 3.5. Comparing productivity ratios for the 12 variables describing
COCOMO’81 projects

Figure 3.6 shows the relation between α and the number of projects that
have a MRE smaller than 0.20 (NPU20) for data set #2. The two bold lines
respectively represent the minimum and the maximum accuracy of the
Fuzzy Analogy method when it uses the min- and max-aggregation to
combine individual similarities. The ‘max’ (‘min’) aggregation gives lower
(higher) accuracy because it considers only one (all) attribute(s) in the
evaluation of the similarity. In the case of the other α-RIM linguistic quan-
tifiers (0 < α < ∞), the accuracy increases with α because additional attrib-
utes will be considered in the evaluation of the overall similarity. For ex-
ample, a software project Pi which has an overall similarity with P
different from zero when α is equal to 10, may have a null overall similar-
ity when α is equal to 30. Due to this reason, it is not used in the estima-
tion of the cost for α = 30.

0
0,5
1

1,5
2

2,5

A
C
A
P

P
C
A
P

TI
M
E

A
E
X
P

S
TO
R

V
IR
T-
M
IN

V
IR
T-
M
A
J

V
E
X
P

TU
R
N

D
AT
A

LE
X
P

S
C
E
D

0
5

10
15
20
25
30
35
40
45
50
55
60

0 20 40 60 80 100 120 140

Fig. 3.6 α versus the number of projects of Dataset #2 with MRE <= 0.20
(NPU20)

When α tends to approach infinity (implying that most attributes are
considered in the evaluation of the similarity), only the projects (Pi’s) that
are closely similar to P will contribute in the cost estimate of P. This is in
conformity with common knowledge in the software cost estimation field,
i.e., evaluation of the similarity between projects is meaningful if they are
described by a sufficient number of attributes. As seen in Figure 3.6, the
accuracy is a monotonously increasing function with respect to α. How-
ever, because the equation (Formula (3.7)) used in the adaptation step is
not a monotonously increasing function, we may observe certain anoma-
lies that can lead to misinterpretations of the results. This is the case when
α = 1 in dataset #2. It seems that when α = 1/3 the accuracy
(Pred(0.20)=6.34. NPU20=4) is better than that when α=1
(Pred(0.20)=3.17. NPU20=2). The two additional projects which have a
MRE < 0.20, i.e., 18.74 and 17.68, for α = 1/3 have MRE = 21.68 and
MRE = 20.24, respectively, when α = 1. Hence, when we have fixed
Pred(p) at 0.20, these two projects are not accounted for. This should not
give the impression that the case for α = 1/3 generates more accurate esti-
mates than the case for α = 1. Upon analyzing the results for all projects, it
was observed the opposite, as shown by the mean and the standard devia-
tion values of the MRE when α = 1/3 and α = 1).

Max aggregation

Min aggregation

α

NPU20

During our comparison of the results obtained from the proposed Fuzzy
Analogy method with the other three techniques, we considered two com-
parative criteria: (1) type of the technique, and (2) whether the technique
uses fuzzy logic in its estimation process. We summarize our findings as
follows:

• Fuzzy analogy performs better than the classical analogy with all
three data sets when α is higher than a given value. In the classical
analogy procedure, we used the classical equality distance (equal or
not) in the evaluation of similarity between projects. All attributes are
considered in this evaluation. The best accuracy was obtained when
we considered only the two first projects in the case adaptation step
(Pred(0.20) = 31.75). The Fuzzy Analogy technique when using the
‘min’ aggregation also took into account all attributes in the evaluation
of projects similarity. Its accuracy was much higher than that for clas-
sical analogy. Two advantages are to be noted when using fuzzy logic
with the analogy-based estimation. First, it tolerates imprecision and
uncertainty in its inputs (cost drivers) and consequently, it generates
gradual outputs (cost). This is why Fuzzy Analogy gives closer results
for the three data sets while classical analogy generates the same or
significantly different outputs when the inputs are different (this is the
same case between ‘fuzzy’ and classical intermediate COCOMO’81.
see (Idri et al., 2000) and Table 3.3 for more details). Second, it im-
proves the accuracy of the estimates because our similarity measures
are more appropriate and realistic than those used in the literature.
• The Intermediate COCOMO’81 model yields better accuracy than
the classical analogy method, but when integrating fuzzy logic in the
estimation by analogy procedure, the Fuzzy Analogy performs better
than Intermediate COCOMO’81 model. This illustrates that fuzzy
logic is an appropriate and effective tool in dealing with linguistic val-
ues as compared to the classical logic (Aristote logic) used in the
original version of the COCOMO’81.

Considering the above two observations, and our empirical validation,
we suggest the following ranking of the four cost estimation techniques in
terms of accuracy and adequacy in dealing with linguistic values:

1. Fuzzy Analogy
2. Fuzzy intermediate COCOMO’81
3. Classical intermediate COCOMO’81
4. Classical analogy.

7. Summary and Future Improvements

In this chapter, we have proposed a new approach for estimating software
development effort, which is based on analogy-based reasoning, fuzzy
logic, and linguistic quantifiers. Such an approach can be used when the
software projects are described by either linguistic and/or numerical val-
ues. Thus, it improves the classical analogy-based reasoning procedure,
which does not account for linguistic values. In the Fuzzy Analogy ap-
proach, both linguistic and numerical data are represented by fuzzy sets.
The advantage of such a strategy is the effective modeling of the impreci-
sion and the uncertainty of attributes used for describing a software pro-
ject. Furthermore, by using the RIM linguistic quantifier to guide the ag-
gregation of the individual similarities between two projects, the Fuzzy
Analogy approach can easily be adapted and configured according to the
requirements and specifications of each environment. An empirical
validation of the proposed technique was performed using the
COCOMO’81 data set. The results of this validation were then compared
to those of the classical analogy-based reasoning approach, ‘fuzzy’
Intermediate COCOMO’81, and the original Intermediate COCOMO’81.
It is observed that fuzzy logic improves the estimation process and
consequently, yields better development cost estimates.

By using fuzzy logic in its estimation process, the approach satisfies the
first criterion of the concept Soft Computing, i.e., tolerance of imprecision.
As defined by Zadeh (Zadeh, 1994), Soft Computing is composed of three
intricate aspects of the human-mind, i.e., tolerance of imprecise informa-
tion, learning from experiences, and ability to work with uncertainty.

We have also introduced some learning functionality in our Fuzzy
Analogy approach. In the case identification step of CBR, we can update
(add/delete/modify) all information concerning the linguistic variables de-
scribing software projects. More specifically, the linguistic values which
are dependent on human judgement. For example, the linguistic value high
for software reliability may imply that the number of software failures is
lower than 6 per month. However, in the future we may require less than 3
software failures per month to evaluate it as high. In the case retrieval step,
we can update the definition of the linguistic quantifier used in the envi-
ronment. Once again, the meaning of a linguistic quantifier depends on
human judgement. However, other learning characteristics that are not in-
cluded in our approach remain to be explored. For example, the Fuzzy
Analogy may provide its user with a subset of linguistic variables that have
always led to accurate estimates in the past. We may then use this sub-set

in the future case-identification step. Thus, the selection attributes problem
can be addressed with a practical solution. In addition, Fuzzy Analogy may
facilitate proposal of an appropriate linguistic quantifier to be used in case
retrieval step, by using those that have often led to accurate cost estimates.

In order to satisfy the third criteria of Soft Computing, Fuzzy Analogy
should be able to handle the uncertainty when estimating the cost of the
new project. Estimate uncertainty occurs because an estimate is a probabil-
istic assessment of a future condition. Kitchenham and Linkman have ex-
amined likely sources of estimate uncertainty, such as model error, meas-
urement error, and assumption error (Kitchenham and Linkman, 1998). In
our study, we are concerned by the uncertainty due to model-error. Fuzzy
Analogy is based on the affirmation: ‘similar projects have similar costs’.
There are two possible sources of uncertainty in this affirmation. First, the
consequence of this affirmation is imprecise. Second, the affirmation is not
always deterministic. We can find in some applications of CBR cases that
are similar but the outcomes are completely different. It seems that it can
also be the case in the software cost estimation field. Of course, no cost es-
timation model can include all the factors that affect the cost required to
develop the software. Practically speaking, when factors affecting cost and
effort are not explicitly included in the evaluation of the similarity between
projects, they will contribute to the uncertainty in the predicted cost. In or-
der to incorporate the uncertainty of the classical affirmation of CBR, we
may replace it by the following ‘similar projects have possibly similar
costs’. Further research work has been initiated to explore the use of this
affirmation as the basis of an improvement of the proposed approach.

8. References

A. Aamodt and E. Plaza. (1994), “Case-Based Reasoning: Foundational Issues,
Methodological Variations. and System Approaches”, AI Communications, IOS
Press, vol. 7:1, pp. 39-59.

A. Abran and P.N. Robillard. (1996), “Functions Points Analysis: An Empiri-
cal Study of its Measurement Processes”, IEEE Transactions on Software Engi-
neering, 22(12): pp. 895-909.

L. Angelis and I. Stamelos. (2000), “A Simulation Tool for Efficient Analogy
Based Cost Estimation”, Empirical Software Engineering, vol. 5, no. 1, pp. 35-68.

L. Angelis, I. Stamelos, and M. Morisio. (2001), “Building a Software Cost
Estimation Model Based on Categorical Data”, In Proceedings of the 7th Interna-
tional Software Metrics Symposium, pp. 4-15, London, UK, IEEE Computer So-
ciety.

B.W. Boehm. (1981), “Software Engineering Economics”, Prentice-Hall.

B.W. Boehm et. al. (1995), “Cost Models for Future Software Life Cycle Proc-
esses: COCOMO II”. Annals of Software Engineering: Software Process and
Product Measurement, Amsterdam.

L. Briand, T. Langley, and I. Wieczorek. (2000), “Using the European Space
Agency Data Set: A Replicated Assessment and Comparison of Common Soft-
ware Cost Modeling”. In Proceedings of the 22nd International Conference on
Software Engineering, pp. 377-386, Limerik, Ireland.

D.S. Chulani. (1998), “Incorporating Bayesian Analysis to Improve the Accu-
racy of COCOMO II and Its Quality Model Extension”, Ph.D. Qualifying Exam
Report, University of Southern California.

N. Fenton and S.L. Pfleeger. (1997), “Software metrics: A Rigorous and Prac-
tical Approach”. International Computer. Thomson Press.

 K. Ganesan, T. M. Khoshgoftaar, and E. Allen. (2002), “Case-Based Software
Quality Prediction”, International Journal of Software Engineering and Knowl-
edge Engineering, 10(2), pp.139-152.

 R. Gulezian. (1991), “Reformulating and Calibrating COCOMO”, Journal Sys-
tems Software, vol. 16, pp.235-242.

A. Idri, L. Kjiri, and A. Abran. (2000), “COCOMO Cost Model Using Fuzzy
Logic”, In Proceedings of the 7th International Conference on Fuzzy Theory and
Technology, pp. 219-223. Atlantic City, NJ, USA.

A. Idri and A. Abran. (2000b), “Towards A Fuzzy Logic Based Measures for
Software Project Similarity”, In Proceedings of the 6th Maghrebian Conference on
Computer Sciences, pp. 9-18, Fes Morroco.

A. Idri and A. Abran. (2001), “A Fuzzy Logic Based Measures For Software
Project Similarity: Validation and Possible Improvements”, In Proceedings of the
7th International Symposium on Software Metrics, pp. 85-96, England, UK, IEEE
Computer Society.

A. Idri and A. Abran. (2001b), “Evaluating Software Projects Similarity by Us-
ing Linguistic Quantifier Guided Aggregations”, In Proceedings of the 9th IFSA
World Congress and 20th NAFIPS International Conference, pp. 416-421, Van-
couver, Canada.

A. Idri, A. Abran, and T. M. Khoshgoftaar. (2001c), “Fuzzy Analogy: A new
Approach for Software Cost Estimation”, In Proceedings of the 11th International
Workshop on Software Measurements, pp. 93-101, Montreal, Canada.

J.P. Jacquet and A. Abran. (1998), “Metrics Validation Proposals: A Structured
Analysis”, In Proceedings of the 8th International Workshop on Software Meas-
urement, Magdeburg, Germany.

R. Jager. (1995), “Fuzzy Logic in Control”, Ph.D. Thesis, Technic University
Delft, Holland.

T. M. Khoshgoftaar, B. Cukic, and N. Seliya (2002), “Predicting Fault-Prone
Modules in Embedded Systems Using Analogy-Based Classification Models”. In-
ternational Journal of Software Engineering and Knowledge Engineering : Spe-
cial Volume on Embedded Software Engineering, 12(1), pp. 1-22.

B. Kitchenham and S. Linkman. (1997), “Estimates, Uncertainty and Risks”,
IEEE Software, 14(3): pp. 69-74.

B. Kitchenham, S.L. Pfleeger and N. Fenton. (1995), “Towards a Framework
for Software Measurement Validation”, IEEE Transaction on Software Engineer-
ing, vol. 21.

G. Kadoda, M. Cartwright, L. Chen, and M. Shepperd. (2000), “Experiences
Using Case-Based Reasoning to Predict Software Project Effort”, In Proceedings
of EASE, p.23-28, Keele, UK.

J.L. Kolodner. (1993), Case-Based Reasoning, Morgan Kaufmann.
D. H. Krantz, R. D. Luce, P. Suppes, and A. Tversky. (1971), “Foundations of

Measurement: Additive and Polynomial Representations ”, Academic Press, vol.
1.

J. Matson, E. B. E. Barrett, J. M. Mellichamp. (1994), “Software Development
Cost Estimation Using Function Points”, Transactions on Software Engineering,
vol. 20, no. 4, pp. 275-287, IEEE Computer Society.

I. Myrtveit and E. Stensrud. (1999), “A Controlled Experiment to Assess the
Benefits of Estimating with Analogy and Regression Models”, IEEE Transac-
tions on Software Engineering, vol. 25, no. 4, pp. 510-525,

F. Niessink and H. Van Vliet. (1997), “Predicting Maintenance Effort with
Function Points”, In Proceedings of the International Conference on Software
Maintenance, Bari, Italy, IEEE Computer Society.

Putnam L. H. (1978), “A General Empirical Solution to the Macro Software
Sizing and Estimation Problem”, IEEE Transactions on Software Engineering,
vol. 4, no. 4, July.

M. Shepperd, C. Schofield, and B. Kitchenham. (1996), “Effort Estimation us-
ing Analogy”, In Proceedings of the 18th International Conference on Software
Engineering, pp. 170-178, Berlin.

M. Shepperd and C. Schofield. (1997), “Estimating Software Project Effort Us-
ing Analogies”, IEEE Transactions on Software Engineering, vol. 23, no. 12, pp.
736-743, November 1997.

M. Shepperd and G. Kadoda. (2001), “Using Simulation to Evaluate Predic-
tions Systems”, In Proceedings of the 7th International Symposium on Software
Metrics, pp. 349-358, England, UK, IEEE Computer Society.

S. S. Stevens. (1946), “On the Theory of Scales and Measurement”, Science
Journal, vol. 103, pp. 677-680.

S. Vicinanza and M.J. Prietulla. (1990), “Case-Based Reasoning in Software
Effort Estimation”, In Proceedings of the 11th International Conference on Infor-
mation Systems.

R. R. Yager and J. Kacprzyk. (1997), “The Ordered Weighted Averaging Op-
erators: Theory and Applications”, Kluwer Academic Publishing, Norwell, MA.

R. R. Yager. (1996), “Quantifier Guided Aggregation using OWA Operators”,
International Journal of Intelligent Systems, vol. 11, pp.49-73.

L. A. Zadeh. (1965), “Fuzzy Set”, Information and Control, vol. 8, pp. 338-
353.

L. A. Zadeh. (1994), “Fuzzy Logic. Neural Networks and Soft Computing”,
Communications of ACM, vol. 37, no. 3, pp.77-84.

L. A. Zadeh. (1983), “A Computational Approach to Fuzzy Quantifiers in
Natural Languages”, Computing and Mathematics, vol. 9. pp. 149-184.

H. Zuse. (1998), “A Framework of Software Measurement”, de Gruyter.
H. Zuse. (1994), “Foundations of Validation: Prediction and Software Meas-

ures”, In Proceedings of the AOSW, Portland.
H. Zuse. (1999), “Validation of Measures and Prediction Models”, In Proceed-

ings of the 9th International Workshop on Software Measurement, Lac-Supérieur,
Canada.

