
neers “perform systematic and statisti-
cal testing of the software and integrat-
ed computer system.” Yet, there are no
obvious places for usage profiles, risk
analysis, design for testability, testware
engineering, or team development (esti-
mation, planning, reporting, technical
reviews, and so on). This sends a clear
message about the priorities of both the
author and, even more discouraging,
the many acknowledged reviewers.

While I strongly agree with the call
to separate software engineering from
computer science, I strongly disagree
with the proposal to have a software
engineering curriculum dominated by
design at the exclusion of quality and
testing issues. I would rather preserve
today’s sorry state of affairs than insti-
tutionalize this imbalance.

David Gelperin
Software Quality Engineering
sqegelp@aol.com

The software engineering curricu-
lum sketch, “Software Engineering
Programs Are Not Computer Science
Programs” (Nov./Dec. 1999), by
David Lorge Parnas has too little con-
tent on software development. It sug-
gests almost all design education with
little software development training.
It also seems to confuse design and
development: “Software Design I:
Programming to Meet Precise
Specifications” is an oxymoron. I
believe there are some necessary items
that don’t have a place in this soft-
ware curriculum: life cycles, quality
control and management, team orga-
nization, and testing. Where do the
students learn incremental develop-
ment and software reliability engi-
neering? Where do they learn inspec-
tion and defect prevention?

Tom Adams
Senior Systems Analyst
TRC Environmental Corporation
t.adams@computer.org

David Lorge Parnas replies:
Although my article is quite

lengthy, it is still not possible to
describe a four-year engineering pro-
gram in the space available. Thus,

both Mr. Gelperin and Mr. Adams
were forced to judge McMaster
University’s curriculum by course
title rather than program content.

Mr. Gelperin should be glad to
know that we consider testing very
important, so important that it is
not seen as an “add-on” but as an
integral part of every software
design course. Testing is also dis-
cussed in the statistics course. From
the very first project, students are
taught the importance of indepen-
dent testing, test plan preparation,
and so on.

Mr. Adams too would probably like
the detailed course descriptions more
than the titles. Management and team-
work are vital in all engineering areas,
not just software. The McMaster pro-
gram includes a minimum of three sub-
stantial team projects, including a
senior thesis project that requires a full
year. Incremental development is
stressed in these projects as are quality
control and management. The first
course title might have confused Mr.
Adams because it is based on our as-
sumption that you must be able to read
and use design docu-
ments before you
learn how to pre-
pare them. Inspec-
tion is taught, and
there are public
inspections during
the projects.

If there is dis-
agreement between
the letter writers and
myself, it is not on
the importance of
the topics that they
mention but on
teaching methods.
We integrate testing
and team building
into courses and pro-
jects, and they seem
to want to treat them
in separate courses.
In my view that
would let the stu-
dents develop bad
habits that we would
then have to correct
in later courses. 

Straightening out the
Record

Soheil Khajenoori, in a Nov./Dec.
1999 Letter to the Editor, claims
“pioneering status” on the concept
of a software engineering body of
knowledge. There have indeed been
many proposals regarding the soft-
ware engineering body of knowledge
over the past years. Some of them are
discussed and referenced in the straw
man version of the Guide to the
Software Engineering Body of
Knowledge published in September
1998, which is available at www.
swebok.org. 

Pierre Bourque
Robert Dupuis
Coeditors, Guide to the Software
Engineering Body of Knowledge
Alain Abran
James W. Moore
Coexecutive Editors, Guide to the
Software Engineering Body of
Knowledge

LETTERS


