

Improving Estimations in Agile Projects:
Issues and Avenues

Luigi Buglione, Alain Abran

Abstract
 From the mid ‘90s on, a number of Agile Methodologies have been proposed, most of

them based on the basic values and principles summarized in the 2001 “Agile Manifesto”.
These agile methodologies were aimed at small teams with severe project constraints (i.e.
small project teams in the same location, the customer as a member of the project team,
informal communication, test-driven approach, etc.). Compared to more traditional project
methodologies, Agile (or Lightweight) Methodologies are more detailed on Construction and
Testing practices, but much less specific about other topics, such as Estimation. Currently, in
most Agile Methodologies the experience of the team represents the basis for estimating from
the high-level requirements.

The application of a Functional Size Measurement Method (FSMM) for estimation
purposes raises a number of technical problems in Agile projects (i.e. unstable requirements,
iterative SLC, non-functional requirements). A candidate solution is to combine an early
sizing method for an agile project with a full FSMM method to be applied later in the SLC,
when User Stories (the way XP labels high-level functional requirements) become available
and are more stable. The goal of the paper is to identify estimation issues in the most known
and adopted agile methodologies, looking at possible improvements at the organizational
level.

1. Introduction
Starting from the mid ‘90s on, “agile” or “lightweight” methodologies have been proposed as
a new paradigm for overcoming some problems in managing ICT projects such as the
instability of user requirements. The focus of these agile methodologies (AM) has been
mostly on short-term projects. Several agile methodologies (AM) have been developed, such
as: XP (eXtreme Programming) [1], SCRUM [2], the Crystal family (Clear, Yellow, Orange
and Red), FDD (Feature Driven Development) and DSDM (Dynamic System Development
Method). The commonalities and basic values and principles of these AM have been
documented in the 2001 the “Agile Manifesto”. The focus of this paper is on understanding
how estimation and measurement-related issues are managed in AM and on identifying areas
for improvements at the organizational level.

Section 2 presents the rationale behind Agile Methodologies and a brief outline of the
main ones. Section 3 discusses how the estimation issue is tackled in such methodologies.
Section 4 provides suggestions for improving the estimation process in an agile context.
Finally, Section 5 proposes conclusions and prospects for future work.

2. Agile Methodologies

Turbulent short-term projects, with unstable requirements and customers asking every day
different things to their software providers represent the typical situation where an Agile
Methodology can help project managers. “Agile” does not refer only to a “quick” or a

“shortcut” to achieve a certain goal; it refers also to a different way to organize the project
work, taking into account multiple constraints that challenge project managers in their day-
to-day work. Figure 1 uses a musical analogy to compare a project adopting a “heavyweight”
software life cycle (SLC) approach (e.g. RUP, Spiral) and a “lightweight” one (e.g. XP,
SCRUM etc.).

 SYMPHONIC ORCHESTRA JAZZ GROUP
 Heavyweight Lightweight-Agile

PROJECT • Each music session is a replay of a

“production series”
• Each music session is a sort of “prototype”

PROCESS • Structured process in a rigid manner
(following the music partition ‘as is’ in the
music book)

• Dynamic and adaptive process (no music
book)

TEAM • Many people well synchronized with actions • Tight-knit team with few (and skillful)
musicians

OUTPUT • Stable and predictable outcomes • Improvised and variable, but staying with
established beats

Figure 1: Agility – A Musical Analogy [3]

While some organizations are attempting to scale up the usage of Agile methods to large
software projects1, their typical practices and values are profitably used by small teams under
well-recognized constraints: small project teams in the same location, customer part of the
project team, informal communication, test-driven approach, towards a Zero-defects
approach for releasing the product2, and so on.

2.1. The Agile Manifesto

In 2001, the community behind these AM developed and documented a consensus on
underlying common principles for such methods, named the “Agile Manifesto” [4]:

“We are uncovering better ways of developing software by doing it and helping others do

it. Through this work we have come to value:
Individuals and interactions over processes and tools
Working software over comprehensive documentation

Customer collaboration over contract negotiation
Responding to change over following a plan

That is, while there is value in the items on the right, we value the items on the left more”

A number of AM has been proposed based on these principles. Abrahamsson et al. [5] has

presented a survey of the coverage among the best known Agile methods against the SLC

1 The main reason is in the coordination effort of small teams, producing high-value returns at low costs.
Nonetheless, the scalability of AM to large projects is of interest to a number of large ICT companies [6][7].
Refer to [1] Chapter 15 about XP and [2] Chapter 9 about Scrum.
2 One of the main XP Testing practices is “no release till all unit test pass”
(http://www.extremeprogramming.org/rules.html)

phases and also in terms of “what” was covered (project management, process,
practices/activities/work products). Fig.2 presents a high-level view of this analysis.

Figure 2: Phase-Activity Coverage of Agile Methods [5]

2.2. Agile and SPI methods
A few authors have looked into Agile methodologies for their relevance to software

process improvement (SPI) models. For instance, Mark Paulk analyzed the coverage level of
XP practices on Sw-CMM and CMMI [8], specifically at maturity levels 2 and 3. A similar
type of analysis was proposed later by Ken Schwaber for SCRUM [2;10].

Table 1: XP and SCRUM compliance with Sw-CMM v1.1 KPAs

 RATING/COMPLIANCE
ML SW-CMM KPA XP [9] SCRUM [2;10]

2 RM - Requirements management ++ ++
2 SPP - Software project planning ++ ++
2 SPTO - Software project tracking and oversight ++ ++
2 SSM - Software subcontract management -- --
2 SQA - Software quality assurance + ++
2 SCM - Software configuration management + +
3 OPF - Organization process focus + +
3 OPD - Organization process definition + +
3 TP - Training Program -- --
3 ISM - Integrated software management -- --
3 SPE - Software product engineering ++ ++
3 IC - Intergroup co-ordination ++ ++
3 PR - Peer reviews ++ --
4 QPM – Quantitative Project Management -- --
4 SQM – Software Quality Management -- --
5 DP – Defect Prevention + --
5 TCM – Technology Change Management -- --
5 PCM – Process Change Management -- --

Legend: + Partially addressed; ++ Largely addressed; -- Not addressed

From Table 1, some KPA would be fully covered at levels 2 and 3, some partially and

some not at all. Readers will note some discrepancies betweens these various studies when
these results from Table 1 are compared with Fig.1: for instance, the “Project Management”
layer is empty in [5] while it is rated “++” in [8].

3. Estimation issues in an Agile software development project

It has been recognized over the past years that improving the estimation process requires
an organization to continuously gather its projects’ data, whatever the estimation technique
(experience, analogy, regression analysis,…) used in the organization. Models such as
MDBMM [11] as well as the international standard ISO 15939 [12] provides support for
measurement implementation, stressing the relevance and benefits of using its own historical
data for estimation purposes.

The next sub-sections present a survey of estimation approaches used in various agile
methodologies.

3.1. XP

In XP, the high-level requirements of the Customer, called User Stories (US), are
expressed in a non-technical language and focus only on the functional side. Figure 3 shows
an example of the main fields to be filled out in XP estimation (title, the code of the related
acceptance test, the implementation priority, the number of Story Points and the functionality
required, with a short text).

Figure 3: An example of User Story (Coffee Maker)3

Story Points (SP) represent one of the possible ways XP people estimate the time needed to

produce and release certain functionality to the Customer: these estimates are “relative”
numbers since each project team or author provides a different definition of what a SP
measures4.

Other estimation units and related concepts are: Ideal Time (“the time without interruption
where you can concentrate on your work and feel fully productive” [13]), Velocity (“to
measure the project velocity you simply count up how many user stories or how many
programming tasks were finished during the iteration. Total up the estimates that these stories
or tasks received” [14]) and Load Factor (“The load factor equals actual calendar days to
complete a task divided by the developer's estimated "ideal" days to do it” [15]).

3 URL: http://open.ncsu.edu/se/tutorials/coffee_maker/
4 Stressed also by [16], chapter .6. For instance, Wake [17] associates one SP to one week, Shore [18] suggests
one SP as an Ideal Day, Bossi [19] defines a SP as one total working hour (30’ for a couple of programmers, in
pair programming) and so on.

Those units are used in the “Planning Game”5 when planning each project iteration, based
on the evaluations of each US. If a US is “too big”, XP rules suggest to split it into several US.
At the end of the estimation process, US must be prioritized for scheduling into the iteration
plan.

Figure 4: XP Planning Game6

Summarizing, XP practices suggest to estimate by experience/analogy7, estimating the effort

needed mainly based on the request of series of functionalities.

3.2. SCRUM
In Scrum, the basic concept for planning is the “backlog” and there are two possible levels

of backlog: product (that coincides with the project) and Sprint (in Scrum, this is referred to
as an iteration, usually a 30-calendar days period).

Figure 5: Scrum – The process8

The product backlog must be filled with the features requested by the Customer, to be

evaluated in terms of the effort needed and then split into Sprints, according to the number of
people working on the project and the available schedule time, with a micro-planning

5 A Planning Game example from a training session with results, priorities and estimates is presented in [20].
6 Figure from http://xp123.com/xplor/xp0006c/index.shtml
7 The first two criteria in PMBOK2004 [21], Chapter 6.4.
8 Figure from http://www.controlchaos.com/

reporting single tasks (as in work-breakdown structure, or WBS), refined daily after each
daily meeting.

Figure 6: Scrum – Product Backlog9

Scrum does not define any unit of measure for the items included in the backlogs. Instead,

you estimate directly the effort (in man-days or man-hours) for tracking both product and
Sprints using the burndown chart that is, a graph showing how much time remains to
complete the feature/tasks planned in such iteration, describing the project “velocity” the
team is running.

Figure 7: Scrum – Burndown Chart10

3.3. Crystal Family

Crystal Clear [22] is an agile methodology for a co-located team of 8 or fewer people. For
estimation purposes11 in the initial project interviews (technique #1) within its iteration cycle
a 2-page long interview template must be filled in for each next team member, including
some project’s data and lessons learned from past projects. It is to be noted however that in
the project’s data records, there is no history of sizing data available.

9 Figure from http://www.methodsandtools.com/archive/archive.php?id=18p2
10 Figure from http://www.methodsandtools.com/archive/archive.php?id=18p2
11 Cockburn suggests iteration of 1-week to 2-months long.

In the Blitz planning (technique #3) the Crystal equivalent of the User Stories, called Blitz
Planning Cards, are estimated in Ideal days (to be refined into Estimated Elapsed Days) using
Delphi analysis (technique #4) by some experts in the domain on the basis of counting
content elements of such specific task (i.e. number of screens, business classes, …). The
project progress is tracked, as in Scrum, with “Burn” Charts (technique #9, both burn-up and
burn-down).

3.4. Feature Driven Development (FDD)

In Feature Driven Development (FDD v1.3 processes) [23], the estimation process
consists in Process #2 to build the (functional-business) feature list, with a level of
granularity for which each feature will not take more than two weeks to be completed;
otherwise a feature must be decomposed into smaller features. The exit criteria for Process #3
(Plan by Feature) include the completion dates for each planned feature (month/year),
properly assigned to team members.

Figure 8: FDD – The process [23]

3.5. DSDM
DSDM [24] considers three main stages (pre-project; project; post-project), and a series of

iterations within the project lifecycle, as shown in Figure 9.

Figure 9: DSDM Lifecycle [24]

After the feasibility study, a prototype is built in the “Functional model iteration”, taking

care also of non-functional requirements (NFR). For planning (and estimation purposes),
DSDM has four major phases: a pre-project planning, planning at the project start, planning
during the project and finally, planning at the increment end. In its “Management tool and

techniques in DSDM project” section, the “Estimating” sub-section12 also refers to “the
handling of contingency”.

Two approaches to estimation techniques are proposed:

• Top-down: based on business requirements, an early estimate is derived from high-
level requirements, from a very high-level view on the project (i.e. estimation by
analogy).

• Bottom-up: based on tangible systems, figuring out for low-level components, take
time to be prepared, need sufficiently detailed information, provide a good basis
for planning the project (i.e. Function Point Analysis, Estimating from System
Components, Collaborative Estimating).

In contrast to other AM, DSDM explicitly says that “it is essential to collect metrics from

projects so that they can be validated and refined for use in estimating future projects, i.e. to
provide continuous improvement of the estimating process”.

3.6. Other studies/proposals

In his book “Radical Project Management” [25], Thomsett analyzes candidate causes for
wrongly estimating a project, and their priority, in the funnel of increasing accuracy.

Figure 10: The Funnel of Increasing Accuracy [25]

The estimation process is based on a detailed analysis of the project WBS through wide-

band Delphi estimates and sensitivity analysis (best, likely, worst cases), to be adjusted
according to project’s quality requirements.

4. Discussion on Estimation practices in AM

With respect to proposed estimation-related practices in AM, some common flaws and
missing elements can be identified:

12 URL: http://www.dsdm.org/version4/2/members/Estimating.asp

a) No estimates for non-functional requirements of the projects the focus of AM on
evaluating features, user stories, or more general high-level user requirements mainly
from a functional viewpoint does not include the non-functional perspective of the
projects. Explicitly, only few methods such as DSDM propose in their practices to
consider them for estimation and planning purposes.

b) No sizing units the general approach to estimation in AM is based on the
experience of the team; the team then estimates effort (and sometimes only schedule
data) based mainly on functional analysis. Such estimation by experience is not
supported by historical data. For example: in AM, effort and schedule are the time-
related expressions corresponding to “how much” work will be performed; they do not
mention the functional requirements measurement with a recognized quantitative
measurement method. In this AM approach to estimation, the size is only considered
as “implicit” in the estimators’ mind. Story Points and Velocity concepts represent a
“delivery rate” based only on the experience and knowledge of such particular team,
applicable with success in small and stable teams. But it is much more challenging in
larger organizations where the composition of a project team is not necessarily as
stable during time.

c) No practices for gathering and using historical data the practice to collect data from
projects is not required by most AM.

d) No standards applied: an overall observation is that each methodology and each team
applying a certain AM uses its own definitions; adequate measurements require to be
based on standards and input with a validated, quality level.

5. Conclusions & Prospects
Agile Methods (AM) such as XP, FDD and DSDM represent interesting solutions for

projects with unstable requirements, iterative SLC, short-term milestones and small teams.
Only in the last five years, the attention was also paid to Project Management practices in

agile methodologies. Through this interest, planning and scheduling practices have been
tailored to agile methodologies, but with much less attention to the estimation process.

AM still being a young approach to software development, much work remains to be done
to improve the way AM manage estimates, including tailoring relevant practices from well-
established and proven “heavyweight” methodologies.

Next steps should include analyses of the impact on size, effort and productivity of non-
functional requirements in agile projects to improve estimates right from the Requirement
Elicitation phase using, for example, a new User Story structure called US2 (2nd generation of
User Stories).

6. References
[1] BECK K. & ANDRES C., Extreme Programming Explained. Embrace Change, 2/e, Addison-

Wesley, 2005, ISBN 0-321-27865-8
[2] SCHWABER K., Agile Project Management with SCRUM, Microsoft Press, 2003, ISBN 0-7356-

1993-X
[3] BUGLIONE L., Agile Methodologies, SEMQ website, URL:

http://www.geocities.com/lbu_measure/agile/agile.htm; last access: Feb 1, 2007
[4] ---, Agile Manifesto, 2001, URL: http://www.agilemanifesto.org
[5] ABRAHAMSSON P., SALO O., RONKAINEN J. & WARSTA J., Agile Software Development Methods.

Review and Analysis, VTT Publication # 478, 2002
[6] MC MAHON P.E., Lessons Learned Using Agile Methods on Large Defense Contracts, Crosstalk,

Software Technology Support Center (STSC), May 2006, pp. 25-30, URL:
http://www.stsc.hill.af.mil/crosstalk/2006/05/0605mcmahon.pdf

[7] VAIHANSKY P., SUTHERLAND J. & VICTOROV A., Hyperproductivity In Large Projects Though
Distributed Scrum, Agile Journal, December 8 2006, URL:
http://www.agilejournal.com/content/view/190/

[8] CMMI Product Team, CMMI for Development, Version 1.2, CMMI-DEV v1.2, CMU/SEI-2006-
TR-008, Technical Report, Software Engineering Institute, August 2006, URL:
http://www.sei.cmu.edu/pub/documents/06.reports/pdf/06tr008.pdf

[9] PAULK M.C., Extreme Programming from a CMM Perspective, IEEE Software, Nov-Dec 2001,
Vol. 18 No.6 , pp.19-26

[10] SCHWABER K., It depends on Common Sense, 2004, Presentation, URL:
http://xpday2.xpday.org/KeynoteSlides.ppt

[11] BRAUGARTEN R, KUNZ M., FAROOQ A. & DUMKE R., Towards Meaningful Metrics Data
Bases, Proceedings of the 15th International Workshop on Software Measurement (IWSM2005),
Montréal (Canada), September 2005

[12] ISO, IS 15939:2002, Information Technology – Software Engineering – Software
Measurement process, International Organization for Standardization, Geneva, 2002.

[13] BECK K. & FOWLER M., Planning Extreme Programming, 2000, Addison-Wesley, ISBN
0201710919

[14] --, Project Velocity, ExtremeProgramming.org, URL:
http://www.extremeprogramming.org/rules/velocity.html

[15] --, Load Factor, ExtremeProgramming.org, URL:
http://www.extremeprogramming.org/rules/loadfactor.html

[16] COHN M., Agile Estimating and Planning, Prentice Hall, 2005, ISBN 0131479415
[17] WAKE W., Customer in XP, XP123 website, June 2000, URL:

http://xp123.com/xplor/xp0006c/index.shtml#PlanningGame
[18] SHORE J., The Art of Agile Development, 2007, URL: http://www.jamesshore.com/Agile-

Book/estimating.html
[19] BOSSI P., ExtremeProgramming Applied: a case study in the private banking domain, January

2003, OOP2003 Conference, Munich (Germany), URL:
http://www.quinary.com/pagine/downloads/files/Resources/OOP2003Paper.pdf

[20] BERGIN J., Learning the Planning Game An Extreme Exercise, July 27 2001, URL:
http://csis.pace.edu/~bergin/xp/planninggame.html

[21] PMI, A Guide to the Project Management Body of Knowledge (PMBOK), 3/e, Project
Management Institute, ISBN 1-930699-45-X, 2004, URL: http://www.pmi.org

[22] COCKBURN A., Crystal Clear. A Human-Powered Methodology for Small Teams, Addison-
Wesley, 2005, ISBN 0-201-69947-8

[23] DE LUCA J., Feature Driven Development (FDD) processes v1.3, Nebulon Pty. Ltd., 2004,
URL: http://www.nebulon.com/articles/fdd/download/fddprocessesA4.pdf

[24] DSDM CONSORTIUM, DSDM Public Version 4.2, 2007, URL:
http://www.dsdm.org/version4/2/public/

[25] THOMSETT R., Radical Project Management, Yourdon Press, 2002, ISBN 0-13-009486-2

