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Abstract. After Google published their first paper on their software infrastruc-
ture in October 2003, the open-source community quickly began working on 
similar free solutions. Yahoo! is now able to process terabytes of data daily 
using Hadoop, which is a scalable distributed file system and an open-source 
implementation of Google’s MapReduce. HBase, a distributed database that 
uses Hadoop, enables the reliable storage of structured data, just like Google’s 
Bigtable which powers applications like Google Maps and Google Analytics, to 
name only two. Many companies are tempted to use these technologies, but it is 
currently difficult to compare today’s systems with systems built on top of 
HBase. This paper presents this new technology and, a list of proposed 
comparison elements to existing database technology as well as proposed 
comparison assessment criteria. 
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1   Introduction  

After Google published their first paper on their proprietary software infrastructure in 
October 2003 [1], the open-source community quickly began working on similar 
open-source solutions. Today, Yahoo! and many other companies are able to process 
terabytes of data daily using the open-source solution called the Hadoop [2] 
framework. HBase [3], a sub project of Hadoop, is a distributed database built on the 
same specifications as Google's Bigtable [4] which powers applications like Google 
Maps and Google Analytics, to name only two. Reasons to try to learn and understand 
this technology include eliminating licensing costs, achieving scalability and better 
control over the performance characteristics of the applications. When it takes a few 
months for a typical organization to choose, order, install, and set up a few servers, it 
is already too late when your Web site is growing by 30 million pages per day. This 
situation was faced by YouTube during 2006 [5], and they turned to the Bigtable 
technology to solve their issues when they were bought by Google. 

Installing and using HBase is not something we learn to do in school; in other 
words, these tasks are not, at first glance, intuitive. At the bottom of the infrastructure 
illustrated in Fig. 1, there is a distributed file system designed to scale to thousands of  
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Fig. 1. HBase infrastructure (master and region servers) 

machines. This is the Google File System [6] at Google and the Hadoop Distributed 
File System in the open-source community. They are both tolerant to machine failure 
and replicate data which can be counted in petabytes. To query such huge datasets, 
Google invented a new programming model called MapReduce [7], the idea behind it 
being that processing data in a distributed environment always involves the same two 
basic steps: 1) mapping the data needed; and 2) aggregating those data. Now, trying to 
move such datasets on a network would easily saturate its capacity. So, unlike 
supercomputing, processing is performed where the data are located -- that is, on each 
node -- and must be managed by a master scheduler and a number of scheduler slaves. 
However, a file system alone is inefficient at handling structured data, which is why 
Google created Bigtable, a distributed database that leverages the distributed file 
system. Bigtable, and its open-source equivalent, HBase, offer a simple and dynamic 
data model that is not relational.  

Using this infrastructure implies better availability, as well as scalability and new 
tools to process huge amounts of data, making it is useful for large corporations, but 
also for startups, whose aim is to develop a large amount of traffic. Those who wish 
to migrate from a typical open-source relational database management system 
(RDBMS) to HBase currently have no tools or methodologies with which to compare 
the available systems. Our paper is aimed at helping these companies by presenting a 
list of comparison elements and demonstrating how they translate into assessment 
criteria. This research was carried out in parallel with a project in which our lab was 
working on migrating a system based on PostgreSQL for a Canadian telephone 
company. In section 2, we describe the Hadoop distributed file system, MapReduce, 
and HBase function on the conceptual level, and provide examples. In section 3, the 
comparison elements are defined. In section 4, we describe how the technique is used 
to transform comparison elements into assessment criteria. Finally, we conclude the 
paper with a summary and a description of future work. 
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2   An overview of HBase and Its Underlying Infrastructure 

2.1   Hadoop Distributed File System 

The Hadoop Distributed File System (HDFS) is a distributed file system for large 
data-intensive applications, and is designed to run on commodity hardware. It is 
similar in many ways to existing distributed file systems, most notably the Google 
File System (GFS), and shares the same goals, such as performance, reliability, and 
availability. The HDFS initially served as the infrastructure for the Apache Nutch [10] 
Web search engine project, and is now part of the Apache Hadoop Core project. Its 
core developers come from Yahoo!'s Grid Team, which currently has the largest 
HDFS cluster (a group of computers working on a common computation) in 
production; it runs on more than 10,000 processors and stores over 5 petabytes of 
information [11]. 

Assumptions and Goals 
• The clusters are built from commodity machines, the components of which 

often fail. The file system must detect faults from which it should 
automatically and quickly recover. 

• The applications that need to access the data stored in the HDFS need 
streaming access. They are not general-purpose applications that connect to 
POSIX-compliant file systems. They rely on the HDFS for batch processing 
and not for interactive use by users. 

• The applications that run on the HDFS have medium to large datasets. The 
typical file stored is gigabytes to terabytes in size. The HDFS supports small 
files, but is not optimized for them. 

• Moving computations is cheaper than moving data; thus, running 
computations is much more efficient if executed near the data on which the 
computation operates. This is especially true with gigabytes of data. It 
prevents saturation of the network and increases the aggregated throughput 
of the system. 

• The applications that run on the HDFS come from different platforms, so it is 
designed to be portable from one platform to another. This facilitates 
widespread adoption of the HDFS as the distributed file system of choice for 
a large set of applications. 

Architecture 
The HDFS is based on master/slave replication. As illustrated in Fig. 2, the master 
server is called a Namenode, and it both manages the file system namespace and 
regulates client access. The other nodes are called Datanodes, and they manage 
storage attached to the nodes on which they run. That storage is composed of files 
which are split into blocks, and it is the duty of the Namenodes to determine the 
mapping of the blocks to the Datanodes. Although the HDFS is not POSIX-
compliant, its file system still supports the usual operations of creating, deleting, 
opening closing, reading, and writing files. 

The typical HDFS cluster is built on commodity machines which run a GNU/Linux 
operating system. But since the HDFS is written in the Java language, any machine 
supporting Java can run a Namenode or a Datanode. It is recommended that the  
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Fig. 2. The HDFS architecture. The file blocks are distributed among the Datanodes and 
monitored by the Namenode. The clients read and write directly from the Datanodes [12]. 

machine that hosts the Namenode be dedicated to that Namenode, and does not host a 
Datanode for main memory considerations. The other machines host only one 
Datanode, as running multiple instances greatly reduces the reliability of the system. 

Moreover, having only one Namenode greatly simplifies the architecture of the 
system. In order to ensure that a bottleneck is not created, clients never read or write 
files through the Namenode. Instead, they ask the Namenode which Datanodes are 
hosting the blocks associated with the files they need. 

2.2   MapReduce 

The MapReduce programming model was invented by Google for processing large 
datasets across hundreds or thousands of machines. The software framework hides the 
details of computation parallelization, data distribution, and failure handling, and lets 
users specify a map function which transforms a set of key/value pairs into a set of 
intermediate key/value pairs and a reduce function that merges all intermediate values 
associated with the same intermediate key. The Apache Hadoop Core project contains 
a Java implementation of the MapReduce specification. 

Programming Model 
The Map function is written by the user and takes as input a key/value pair and outputs 
an intermediate key/value pair set. The Reduce function is also written by the user and 
accepts an intermediate key and a set of values for that key. The values are merged in 
such a way that only an output value of zero or one is produced per reducer. 

The Map function will output each word in a document with an associated count of 
occurrences which, in this function, will always be '1'. The Reduce function will then, 
for each word outputted, sum its occurrences and output that figure. 
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Fig. 3. The MapReduce execution flow in Google’s implementation [7] 

Implementation 
The Hadoop MapReduce implementation [22] greatly resembles that of Google, since 
both are designed to handle petabytes of data daily. The typical cluster consists of the 
same types of machine used for the HDFS, and uses it as its distributed file system. 
The jobs, a set of Map and Reduce functions, are submitted to a scheduling system to 
the available machines. 

In summary, the execution flow proceeds in the following sequence (numbering 
refers to the numbers in Fig. 3): 

1. The Map functions are started for each input file split on its hosting machines.  
2. A special node, the JobTracker (or Google's Master), assigns a Map or a 

Reduce task to each idle TaskTracker (or Google's Worker). 
3. The TaskTracker then reads the block it was assigned, and parses each 

key/value pair out of the input data and passes it on to the Map function. 
4. The Map outputs are then sorted and partitioned per Reduce function. A 

Combine function is an optional which can be used to aggregate the outputs 
of each Map of each machine, thereby limiting data transfer over the network. 

5. When a TaskTracker responsible for a Reduce is notified that mapped data 
are available, it reads its content via HTTP. As the data are retrieved, they 
are sorted by the intermediate key. 

6. Once the intermediate keys are sorted, the Reduce TaskTracker iterates over 
each unique key and passes it along with its set of intermediate values to the 
Reduce function. The output is appended to a final output file for this Reduce 
partition. 

Usage 
Google uses MapReduce in a variety of internal applications, and states that, in 
September 2007, 11,081 machines were used in MapReduce jobs [13]. 
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Yahoo! uses Hadoop in their Web search, and the output of their MapReduce tasks 
is over 300 terabytes, compressed [11]. 

Rackspace uses Hadoop to parse its logs generated from the machines of their 
datacenters to collect statistics (such as spam counts) from their mail system [14].  

Facebook uses Hadoop in a 320-machine cluster to store internal log and 
dimension data sources, as well as for reporting, analytics, and machine learning [15]. 

2.3   HBase 

HBase is an open-source, distributed, column-oriented, multi-dimensional, high-
availability, high-performance storage technology written in Java and inspired by 
Google's Bigtable.  Just as Bigtable leverages the distributed data storage provided by 
the Google File System (GFS), HBase is aimed at providing Bigtable-like capabilities 
on top of the HDFS. HBase has been a part of the Apache Hadoop project since 
February 2008, and is used in production environments. 

Motivations 
Scaling out a typical relational database often begins with replication. For example, 
YouTube [5] first used MySQL master-slave replication, but eventually arrived at a 
point where the writes used all the capacity of the slaves. Like many organizations, 
they tried partitioning their tables into shards, so that sets of machines hosting the 
various databases were optimized for their tasks. Flicker [19] did the same thing with 
their shards, and even duplicated some data since the comments table was linked to 
their user shard and to their images shard. Soon, after going through many difficult 
steps to scale the architecture, they found that the first relational solution became 
denormalized and harder to maintain. Tools like Pyshards [17], aimed at easing shard 
management, were developed, but they do not obviate the need for partitioning a 
shard if it becomes too big. 

Goals 
To quote the authors of HBase, "The HBase project is for those whose yearly Oracle 
license fees approach the GNP of a small country or whose MySQL install is starting 
to buckle because tables have a few BLOB columns and the row count is heading 
north of a couple of million rows." [18] HBase is designed to leverage the HDFS to 
reliably store terabytes of sparse structured data. It should be as usable in real-time 
applications, where low latency is the priority, as in batch jobs, where higher 
throughput is important. HBase should not provide a relational model, but instead 
consist of a simple data model which supports dynamic modifications of data layout. 

Data Model 
HBase, like Bigtable, is a sparse, distributed, and persistent multi-dimensional sorted 
map which is indexed by a row key, a column key, and a timestamp, and the value is 
an uninterpreted array of bytes, as illustrated in Fig. 4. The column keys reside in 
column families, which are the same for each row and have the syntax 
"family:qualifier". 

(row:string,column:string,time:int64) → string 

Fig. 4. Representation of HBase indexation of the values [4] 
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This map is persistent because it is stored in HDFS, which also makes it 
distributed. It is sorted because the row keys, not their values, are maintained in a 
lexicographical order in the cluster. It is multi-dimensional because the value of each 
row’s key/column key pair has a timestamp; it is sparse because the column keys in 
column families are not necessarily the same across rows; and it is distributed because 
its components reside on many machines. 

The database schema in HBase and Bigtable is very different from the relational 
schema. First, there are no joins between tables. For example, a blog would have three 
tables: blogs have many comments and many users. A solution for the blog/comment 
relation would be to have column families for each comment property, and the 
column key would be the comment ID. If the comments have properties that do not 
need to be accessed with their blog entries (such as the Web browser that was used), a 
second table can be created containing all the information. Since the system runs on 
commodity hardware, the disks are cheap and space is abundant. 

The schema also has only one index, the row key. Unlike the RDBMS, the 
developers cannot use the equivalent of the WHERE clause. By design, all access 
methods in HBase are either gets or scans over the row key, so that a query cannot 
slow the whole system down. Since HBase sits on the Hadoop framework, 
MapReduce can be used instead to generate index tables. 

HBase column families can be configured to support different types of access 
patterns. A maximum number of cell timestamps can be specified, as well as a time to 
live (TTL). By default, HBase returns the latest cell version available, keeps only one 
version, and has no TTL. A family can also be set to stay in-memory, yielding better 
performance at the expense of consuming the main memory. Also, since the data in a 
family are typically of the same nature, a compression level can be configured. For 
example, compressing a family that stores many versions of big strings which are not 
read often will leave more space on the disk for other, more important information. 

Architecture 
An HBase cluster is composed of individual Master and Region Servers which can be 
counted in the hundreds. The Master's job is to monitor the load and to coordinate the 
Region Servers. Each Region Server hosts a number of Regions, which it stores in the 
HDFS. A Region is composed of sorted rows from a table, so that all table rows are 
contained in a set of Regions. HBase relies on Zookeeper [16], which, like Bigtable, 
relies on Chuggy[8], to ensure that there is always one Master at any time, to store the 
bootstrap location of HBase data and to discover the Region servers. 

The way the architecture works is based on the fact that the rows are ordered by 
row key. A three-level hierarchy, similar to a B+ tree, is used to store the Region 
locations. The first level is a file stored in Zookeeper that contains the location of the 
ROOT Region that the Master reads during its startup. That Region then gives the 
location of all the other META table's Regions, which in turn give the location of all 
the user Regions. So, when an application requests a particular row, it first reads the 
META table to figure out in which Region the row is located and then directly 
contacts the server hosting the Region to retrieve the row. There are many caching 
levels, but these are not discussed in this paper. The writes are processed in a similar 
fashion. Instead of figuring out which Region hosts the row, it will figure out which 
Region should host it, once it is sorted. If a Region becomes too big according to a 
configured threshold, it will be split into two. 
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Accessibility 
HBase is accessible from its Java Application Programming Interface (API) which 
offers Create, Read, Update, and Delete (CRUD) operations as well as cluster 
management tools. The following program code demonstrates its use. The first 
operation shows how to open an access to an HBase table and fetch a value using a 
row and a column key. The second operation shows how to open a transaction on a 
row, insert a new value under a column key, and delete another value. 

(1)HTable table = new HTable("myTable"); 
   byte[] valueBytes = table.get("myRow",  
      new Text("myColumnFamily:columnQualifier1")); 
   String valueStr = new String(valueBytes); 
 
(2)long lockId = table.startUpdate("myRow"); 
   table.put(lockId, "myColumnFamily:columnQualifier1",  
      "columnQualifier1 value!"); 
   table.delete(lockId,           
"myColumnFamily:cellIWantDeleted"); 
   table.commit(lockId); 
 

HBase can also be accessed via a REST gateway, which supports the statements GET 
and PUT which, when executed, return data in XML format. Another way to 
communicate with HBase is via a Thrift [20] gateway. Thrift is a framework enabling 
cross-language Remote Procedure Calls (RPCs) and was developed by Facebook. 
This means that most of the APIs can be accessed by the following programming 
languages: C++, Ruby, Python, and PHP. 

3   Comparison Elements 

We investigate a case study where an existing system, using RDBMS technology, has 
been migrated to the HBASE technology. In our lab, both systems are operating in a 
controlled environment. Our goal here is to compare the two systems and draw some 
conclusions on the usefulness of this new technology. In comparing the systems, 
many factors need to be taken into account. Initially, it appeared that the comparison 
would be difficult, as some elements do not vary, while others are very different. 
Below is a discussion on the first set of comparative elements we would like to assess: 
 

• Software architecture: The software architecture could remain the same for 
each implementation. Typically, modern applications will have a 
presentation layer which communicates with a business logic layer, which in 
turn communicates with a database layer. In migrating to HBASE, only the 
database layer should need adaptation. 

• Hardware: The hardware in the two implementations was definitively 
different. Using an RDBMS, the typical machines for a website with a 
sizeable traffic volume will be composed of as many processors and as much 
memory as can be fitted onto a motherboard. These components will also be 
server-class, since the consequences of a machine failure on availability are 
dire. This equipment is also expensive. The disks are organized in the RAID  
(redundant array of independent disk) technology that maximizes writing and 
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reading speed, along with replication. That equipment is installed in a 
master-slave scheme recommended by the manufacturer of the RDBMS. If 
the cost of replicating the write operations becomes too great, the database 
will be partitioned into shards. 

In contrast, the equipment typically used for HBase is PC-class, so they 
are not very expensive. The recommended components are a dual or a quad 
processor with as many gigabytes of memory as possible and two hard drives 
of at least 250 gigabytes. All these machines will work together in a cluster 
which can consist of from 1 to 500 machines. 

• Operating system: The majority of RDBMSs can be deployed on many 
operating systems, but HBase is currently only supported on the Linux 
distributions. This has to be taken into account if the RDBMS is not hosted 
on Linux. 

• Data structure: The two data structures are very different. It is assumed that 
the reader is familiar with the relational schema, so it will not be described 
here. The Bigtable/HBase schema is described in section 2. The main 
differences are that all the relational primitives have been relaxed to allow a 
more dynamic table schema, and that there is no full scan available in HBase. 
This may seem restrictive from the point of view of a developer of small 
systems, but the data-intensive expert will recognize that this is also not doable 
in a relational system because the joins cannot all be performed in memory 
(unless the database was denormalized, which requires much more disk space).  

• Data manipulation: Data manipulation is very rich and mature for online 
operations in an RDBMS and very restricted in HBase. It is assumed that the 
reader is familiar with SQL, so it will not be described here. The data 
manipulation for HBase is described in section 2. The biggest advantage of 
using HBase is that it is enabled to work with MapReduce as a source or as a 
sink, or both. Instead of performing the equivalent of a JOIN at runtime, it is 
more convenient in HBase to build an index table. For example, Bigtable’s 
paper describes the way to generate the many reports in Google Analytics, 
which is to run a nightly MapReduce job which takes a table of clicks from 
each website as a source and an aggregate table as a sink. 

• Means to scale: Scaling an RDBMS first means upgrading each machine, 
and, since these machines are expensive, the whole process is even more so. 
This method has a physical limit, which is the current state of the technology, 
and, unless there are redundant databases with custom load balancing, a 
downtime has to be scheduled. Scaling can also be performed with 
replication, so that each slave can handle the read operations while the 
master receives the writes. It is a method which works until the replication of 
each write on each server generates a bottleneck. This problem is solved by 
sharding the database, but an additional layer of software is needed to handle 
the shards. In any case, all these operations are very expensive. 

Scaling HBase is simply done by adding more machines. For each new 
machine, this is a matter of installing the operating system and the software, and 
then starting the Hadoop and HBase processes. The Datanode/Region servers 
will contact their respective master node, and, in return, will begin redistributing 
the load. The software that runs in the cloud will not be impacted. 
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• Where hardware reliability is handled: Hardware reliability is a big issue 
with any RDBMS, since these systems are designed to work on only one 
machine initially. This is why expensive solutions have to be designed to 
ensure that a machine failure will not take the whole system down. Having 
server-class components provides lower mean time between failure (MBTF), 
but it does not shield the system from a defaulting motherboard, which is 
why failover mechanisms are designed. These mechanisms can, for example, 
hold off the writes in case the master machine in a replication scheme dies to 
give system administrators time to modify the DNS to point to a new master. 
If a slave dies, a big part of the throughput goes down because of the small 
number of machines. 

In HBase, reliability is handled at the file system and database levels. If any 
slave machine dies, only a small part of it goes down, and this is considered 
“normal”, given the number of machines. For example, bigger clusters like the 
ones they have at Yahoo! are able to sustain losing a whole rack.  

• How many systems are using the system: A very important feature of cloud 
computing is that a single cloud can hold many systems, even if they have 
different quality requirements. It is economically wise to aggregate systems in 
a single cluster, because then every system will benefit from a newly added 
machine. In contrast, with the RDBMS, there are different databases for 
different applications, since scaling is difficult and expensive. When taking 
measures, one has to make sure to clearly define what in the cloud can be 
“given” to the software that is being compared to an RDBMS implementation. 

 

This research was carried out in parallel with a project in which an existing system 
based on PostgreSQL had to be migrated to a system based on HBase. While 
choosing the hardware, the setup followed was the one that Google uses, as described 
in the Bigtable paper [4], and it was very different from that already in use. For 
example, the typical machine for HBase had dual processors, while those used in the 
source system were dual quad processors. To minimize the differences, the same 
operating system was kept, the system’s architecture was not changed, and the cluster  
 

Table 1. Comparison of elements proposed in the case study 

Comparison element PostgreSQL implementation HBase 
implementation 

Software 
Architecture 

Three-tier Three-tier 

Hardware Few, expensive Scores, commodity 
Operating System Cent OS Cent OS 
Data structure Relational tables Bigtable-like 

structures 
Data manipulation ORM HBase client API,  

MapReduce 
Means to scale Expensive Inexpensive 
Where hardware 
reliability is handled 

Custom solution HBase and Hadoop 

How many systems 
are using it 

One One 
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was only used by the target system. By using Hadoop and HBase, the scalability and 
back end reliability requirements were easily met, so there was no need to keep the 
custom solution to handle them. Since the source system was in Java, the HBase 
client API was used directly. Table 1 summarizes the differences identified in each 
element during the research. 

4   Transforming Comparison Elements into Comparison Criteria 

To transform the comparison elements into criteria for a comparison assessment, a 
two-step technique was used. The process is presented below: 

1. Identify impact: The impact that a comparison element has when it is not the 
same in the two implementations will lead to different measurement results. 

2. Identify the direct effects on quality: Each comparison element has different 
effects on internal and external quality, as defined in the ISO/IEC 9126 
models of software product quality [23]. 

 

Table 2 illustrates an application of this technique to derive assessment criteria for 
comparison. 

Table 2. Assessment criteria mapping 

Comparison 
element 

Impact Related ISO 9126 
quality sub-
characteristics 

Software 
Architecture 

Changing the architecture implies completely 
different quality attributes that need to be 
evaluated. 

All criteria 

Hardware Commodity hardware is less reliable and, on its 
own, performs poorly. 

Fault tolerance 
Time behavior 
Scalability 

Operating System 

If the source operating system is not Linux, its 
efficiency and maturity are different. 
Restricting to Linux makes the system less 
adaptable. 

Fault tolerance 
Time behavior 
Resource behavior 
Adaptability 

Data structure 

The target data structure is easy to change and 
provides constant performance. 
This data structure is not relational and not 
taught in classes. 

Time behavior 
Changeability 
Replaceability 
Adaptability 

Data manipulation The target data manipulation provides limited 
functionalities for online processing, but is 
excellent for offline processing. 
MapReduce is unknown to most developers. 

Time behavior 
Analyzability 
Changeability 
Replaceability 

Means to scale Scalability is built into Hbase, provides for 
easier reactions to new specifications, and does 
not require the system to be shut down. 

Scalability 
Stability 
Adaptability 

Where hardware 
reliability is 
handled 

Reliability is also built in, so there is no need 
for a custom layer to provide it. The system is 
simplified. 

Reliability 
Analyzability 
Changeability 

How many systems 
are using it 

The target system may perform badly if other 
systems are heavy users of the resources. 

Time behavior 
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In Table 2, each row constitutes an assessment criterion which helps in comparing 
the quality of two systems. As described, HBase use may negatively affect the 
maintainability of the system, since its current and future developers may not be 
experts in Hadoop and HBase. At the same time, it provides a system that does not 
need to handle database failures. Moreover, it enables faster processing of large 
datasets and can scale according to changing requirements. 

5   Future Work and Summary 

While new technologies have been developed in the last few years to address the 
scalability and reliability problems inherent in data-intensive systems, little has been 
done to validate the quality of the new systems relative to the older ones. Based on 
our work in migrating a system that used PostgreSQL to one that used HBase, a list of 
comparison elements was identified and translated into assessment criteria. We do not 
claim that the list is exhaustive, and more research should be done to verify and 
validate the criteria it contains. 

Future work is aimed at developing a process to measure the scalability and 
performance criteria. The only measures published for Bigtable-like databases to date 
are presented in Google’s original paper [4]. Google used N machines and took 
measures as N varied while N clients were generating a load. The following measures 
were reported: random reads, random reads in memory, random writes, sequential reads, 
sequential writes, and scans for 1, 20, 250, and 500 machines. Results were impacted by 
the fact that the machines were also used by other processes during the experiments.  
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