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Abstract - This research extends the architecture-based 
software reliability prediction model to the COSMIC-FFP 

context. This model is based on Markov chains and it is applicable 
prior to implementation with the ability to build reliability models 
much earlier at the requirement phase or based on the 

specifications for the design. In essence, each component of the 
system is modeled by a discrete time Markov chain. If this can be 
done, then a probabilistic analysis by Markov chains can be 
performed to evaluate the product reliability in the early phases 
of software development and to improve the reliability process for 
large software systems. This approach of applying a Markov 

model in the COSMIC-FFP context is illustrated with the railroad 
crossing case study. 
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I. INTRODUCTION 

Software reliability is the probability of failure-free software 
operation for a specified period of time in a specified 
environment [1]. Software reliability engineering assumes 
usage-based statistical testing under the guidance of 
operational profiles that characterize usage patterns. Current 
software reliability models are applicable when the code is 
generated and is being tested.  
Our research in this area concentrates on effective models and 
techniques which help evaluate product reliability in the early 
phases of software development, ultimately right from the 
requirements phase. The work reported here builds on our 
research results on the use of the COSMIC-FFP method for 
testing purposes by combining the functions measured by the 
COSMIC-FFP measurement procedure with a black box 
testing strategy [2], [3], [4].   

COSMIC-FFP – ISO 19761 – is a functional size 
measurement method developed by the Common Software 
Measurement International Consortium (COSMIC) [5]. This 
measurement method focuses on the “user view” of functional 
requirements and is applicable throughout the development life 
cycle, right from the requirements phase to the implementation 
and maintenance phases. This measurement method has been 
designed to measure the functional size of management 
information systems, real-time software and multi-layer 
software systems. Since some of the software systems targeted 
by the COSMIC-FFP method are large-scale and inherently 
complex, feedback on this complexity could contribute to 
monitoring reliability throughout the software life cycle. 

The research reported in this paper extends the architecture-
based software reliability prediction model [6], based on 

Markov chains and applicable prior to implementation, to the 
COSMIC-FFP context. In essence, each component of the 
system is modeled by a discrete time Markov chain. The 
approach presented here of applying Markov model in the 
COSMIC-FFP context is illustrated with the railroad crossing 
case study.  

The paper is organized as follows: Section II provides an 
overview of related work on the architecture-based reliability 
prediction model built from the theory of Markov chains. 
Section III presents the key elements of Markov model, and 
section IV the key elements of COSMIC-FFP.  Section V 
discusses the mapping of concepts across the two fields, and, 
finally, section VI identifies research directions, including the 
use of both types of measures for the reliability prediction of 
software. 

II. RELATED WORK  

To assess reliability prior to implementation, it is important 
to understand the complex interactions among entities in 
software: this can be achieved by modeling the system (its 
objects, their interactions and the probabilities of the 
interactions) as a Markov system, and assessing the level of 
reliability through calculating the probabilities of their 
interactions. Such an approach yields results for both the time-
dependent evolution of the system and the steady state of the 
system.  

In [7], [8], a methodology was proposed for the uncertainty 
analysis of architecture-based software reliability models 
suitable for large, complex, component–based applications and 
applicable throughout the software life cycle. Within this 
methodology, two methods for uncertainty analysis have been 
developed: the method of moments and Monte Carlo 
simulation. In [8], the method of moments is used to quantify 
the uncertainty in software reliability due to uncertainty in 
component reliabilities. The expressions derived in [8] are 
valid for independent random variables and did not allow the 
uncertainty in software reliability to be studied due to 
uncertainty in the operational profile. Generalizing earlier 
research work on the method of moments, these authors then 
derived expressions for the mean and the variance of system 
reliability which consider both sources of uncertainty in 
software reliability (the way software is used, i.e. the 
operational profile) and the component’s failure behavior (i.e. 
component reliabilities). This was illustrated through case 
studies in which the estimated values of the system reliability 
moments provide more information than the traditional point 



estimate. Thus, these authors have a higher level of confidence 
in the reliability predictions for systems with a reliability 
having smaller variance. This information is especially useful 
in making predictions early in the life cycle, in keeping track of 
software evolution and in certifying the reliability of 
component-based systems. 

The industrial applicability of Markov chains derived from 
state machine diagrams for reliability purposes is also worth 
mentioning, as described in [9], [10], [11]. For instance, the 
RELEX Markov [9], which provides fast, accurate reliability 
analyses for complex systems with common-cause failures, 
degradation, induced or dependent failures, multi-operational 
state components and other sequence-dependent events. Once a 
state transition diagram has been completed, the Markov 
engine incorporates optimized algorithms to perform 
calculations accurately and supports both transient and steady-
state analysis results. In addition to calculating overall system 
results, the RELEX Markov also calculates parameters for each 
state. 

The ability to take into account the measures of functionality 
early on, such as with COSMIC-FFP, makes it possible to 
consider the uncertainty in the operational profile (i.e. the 
uncertainty of environmental events) in addition to the 
uncertainty in component failure behavior, based on: 

• Knowledge of the software architecture requirements 
(corresponds to the layers in COSMIC-FFP where objects 
behavior of software can be modeled with state diagrams 
within a layer, and then the Markov model is applied for these 
modules in one layer).  

• Prediction of component reliability, a component is an 
object in software whose behavior is modeled in a state 
machine diagram. 

• Probabilities of control transfer between components. 
These probabilities will be calculated as shown in [6], where 
the external events are considered first and each has equal 
probability if they are triggered from the same state, which is 
1/n (where n is the total  number of  external events); the 
internal events are assigned the “left-over”.  

The reliability assessment method discussed in this work 
differs from previous reliability evaluation methods in the 
following ways: 

• It is based on the architecture model of software and 
the state diagrams of software components.  

• The prediction of reliability is derived from the steady 
state of the Markov system. 

Moreover, this approach allows the reliability model to be 
applied at the design specification phase. 

III. MARKOV MODEL 

The discrete time Markov chain ([6], [12] and [13]) is a 
powerful mathematical tool for scientists and engineers 
analyzing and predicting the behaviors of a complex system. A 
Markov model analysis can yield a variety of useful 
performance measures describing the operation of the system, 
such as system reliability, availability, mean time to failure 

(MTTF), mean time between failures (MTBF), the probability 
of being in a given state at a given time, etc. There is interest in 
using Markov models for software reliability prediction 
purposes, since: 

• Environmental laws are considered random and not 
controlled by system laws; 

• Being in a particular state, a system may choose to 
execute any of the transitions available in that state in order to 
move to another state. 

B. MARKOV PROPERTY & MARKOV SYSTEM 

A Markov process is a stochastic one which has two main 
characteristics: 

1. It can take on a finite number of possible states, which we 
will index by the non-negative integers: 0, 1 ... and so on. 

2. It has what is known as the “Markovian” property: the 
probability distribution of future states of the process depends 
only on the current state, and is conditionally independent of 
past states (the path of the process). 

In other words, a Markov system can be in one of several 
mutually exclusive states, and can pass from one state to 
another according to fixed probabilities. For example, if a 
Markov system is in state Si, there is a fixed probability pij of 
it going into state Sj at the next time step. Therefore, the 
transition matrix is defined as matrix P, the ij-th entry of which 
is pij, and the entries in each row add up to 1.  

C. MARKOV MODEL AND STATE MACHINE DIAGRAMS  

A state-machine diagram, referred to as a state diagram in 
UML 2, is a UML behavioral diagram. It is used to model the 
dynamic behavior of individual objects and depict the various 
states that an object may be in and the transitions between 
those states. A state represents a stage in the behavior pattern 
of an object, and it is possible to have initial states and final 
states. A transition is a progression from one state to another 
and will be triggered by an event that is either internal or 
external to the object. See Figure 1 for an example of a state 
machine diagram that models the behavior of the object 
“Train” for the following railroad system case study [14] 
where more than one train can cross a gate simultaneously, 
through multiple parallel tracks. According to the train’s 
destination, the train can independently choose the gate it will 
cross. Each gate is controlled by one controller which must be 
active all the time to close and open the gate for the railroad 
crossing. A train enters the crossing within an interval of time 
units after informing the controller that it is approaching. It 
also informs the controller that it is leaving the crossing within 
some time units of sending the approaching message. The 
controller, in response, commands the gate to close when it 
receives a message from the first train entering the crossing to 
make sure that no other train can cross the railroad at the same 
time. It also instructs the gate to reopen when it receives a 
message from the last train leaving the crossing. 

The state machine in Figure 1 models the behavior of the 
“Train” at a point where it has five states: one initial state (the 



black circle), “idle”, “toCross”, “cross”, “leave” and no final 
state since it is endless operation that is never stopped. It is to 
be noted that “Near” is a triggering event that makes the 
“Train” move from the “idle” state to the “toCross” state. 
Some of the transitions have conditions, such as (time units> 
entrance time > 0), which have to be satisfied in order for the 
object to move to other states. The general description for the 
following state machine diagram is that, as the train approaches 
a gate, it sends a “Near” message to the gate controller.  Once 
the train leaves the gate, it sends an “Exit” message to the gate 
controller. 

Which transition will be triggered from one state is the same 
as a random walk; based on this, the Markov model can be 
used to analyze the reliability of state machine software [6]. 
Therefore, the prediction of reliability is derived from the 
steady state of the Markov system. The mapping of the train 
object to a Markov system is shown in Figure 2, with a 
probability of 1 for each event, since there is only one event 
from each state. In the case where there are two events from 
one state, then each event will have a probability of ½. P12 
represents the transition probability that the event will be 
triggered, and the move is accordingly made from state S1 to 
state S2. 

Figure 1 Train State Machine Diagram 

Figure 2 Train State Diagram with its Transition 

Probabilities Pij 

Now, the transition matrix P (see Figure 3) can be built from 
this state machine diagram, and it is a matrix P whose ij-th 
entry is Pij. It is to be noted that the entries in each row add up 
to 1.   

Figure 3  Transition Matrix P for Train Object 

The steady vector of the train object can then be calculated 
using the P matrix: 

|[wxyz]| P = |[wxyz]|  � w = 0.25, x = 0.25, y = 0.25, z = 
0.25. 

Therefore, the steady vector is: [0.25, 0.25, 0.25, 0.25] 

IV. COSMIC-FFP MEASUREMENT METHOD 

A. COSMIC-FFP OVERVIEW 

The functional size measurement method developed by the 
Common Software Measurement International Consortium 
(COSMIC) has now been adopted as an international standard 
(ISO 19761 [15]) and is referred to as the COSMIC-FFP 
method [5]. Its design was developed to address some of the 
major weaknesses of the earlier methods – like FPA [16], the 
design of which dates back almost 30 years when software was 
much smaller and much less varied.  

In the measurement of software functional size using the 
COSMIC-FFP method, the software functional processes and 
their triggering events must be identified. In COSMIC-FFP, the 
unit of measurement is the data movement, which is a base 
functional component which moves one or more data attributes 
belonging to a single data group. Data movements can be of 
four types: Entry, Exit, Read or Write. The functional process 
is an elementary component of a set of user requirements 
triggered by one or more triggering events, either directly or 
indirectly, via an actor. The triggering event is an event 
occurring outside the boundary of the measured software and 
initiates one or more functional processes. The sub processes 
of each functional process are sequences of events, and 
comprise at least two data movement types: an Entry plus at 
least either an Exit or a Write. An Entry moves a data group, 
which is a set of data attributes, from a user across the 
boundary into the functional process, while an Exit moves a 
data group from a functional process across the boundary to the 
user requiring it. A Write moves a data group lying inside the 
functional process to persistent storage, and a Read moves a 
data group from persistent storage to the functional process. 
See Figure 4 for an illustration of the generic flow of data 
through software from a functional perspective.  

Figure 4 Generic Flow of Data through Software from a 

Functional Perspective [5] 

 

B. COSMIC-FFP AND SEQUENCE DIAGRAMS  
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A sequence diagram is a UML structural diagram that models 
the flow of logic within the system in a visual manner, 
enabling both the documentation and validation of the user’s 
logic, and is commonly used for both analysis and design 
purposes. The sequence diagram is the most popular UML 
artifact for dynamic modeling, which focuses on identifying 
the behavior within the system. It consists of a group of 
instances (represented by lifelines or dashed lines) and the 
messages they exchange during the interaction (see Figures 5 
and 6) that are the sequence diagrams derived from the railroad 
case study for functional size measurement purposes. Both 
have three objects, namely train, controller and gate, which 
interact by sending messages to each other. While measuring 
the functional size of software using COSMIC-FFP, the 
sequence diagrams are drawn to define the interactions 
between the software and its environment and within the 
software, as illustrated in Figure 4. In COSMIC-FFP, the 
environment is represented by the users interacting with the 
software, such users being humans, engineering devices or 
other software applications. Within the software, the 
interactions deal with the data read, or send the data to 
persistent storage. Going back to the railroad case study, the 
controller is the software that has a boundary where the trains 
interact with the controllers through sensors (many–to-many 
relationships) and the controllers communicate with the gates 
through actuators (one-to-one relationships). In the RUP 
context [17], the functional processes used in COSMIC-FFP 
can represent the set of scenarios for the software. For 
example, in the railroad system, the first sequence diagram 
(Figure 5) shows that, when a train arrives, a Near message is 
sent to the controller. The controller then instructs the gate to 
lower, and, in return, the gate goes down and the train enters 
the crossing. This process of allowing the train to cross the 
railroad is considered as a functional process, and is triggered 
by sending a Near message. Similarly, exiting the train (Figure 
6) is a scenario containing a sequence of events between the 
train and the controller, and this scenario also contains a 
sequence of events within the system (controller in this case). 
Therefore, for each functional process, its sub processes and its 
triggering events are sequences of events (or data movements). 

Figure 5 Train Enters Crossing Sequence Diagram 

Figure 6 Train Leaves Crossing Sequence Diagram 

V. ANALYSIS OF LINKAGES ACROSS MODELS 

The functional size measurement method COSMIC-FFP can 
be linked to UML 2.0 state diagrams for modeling the 
behavior. This allows for probabilistic reliability modeling 
based on discrete Markov chains, since a Markov model is 
based on state diagram descriptions. The linkages between 
COSMIC-FFP and the Markov model can be analyzed, since 
the two have something in common, which are the UML 
diagrams.   
The correspondence of COSMIC-FFP to UML state diagrams 
requires a mapping of COSMIC-FFP concepts (boundary, 
layer, functional process, triggering event, data group, 
movement and attributes, etc.) to state diagram notation. The 
reliability requirements for autonomic elements and systems 
have to be specified formally and mapped to system behavior 
so that the achievement of reliability can be monitored 
automatically. Analysis through Table 1 reveals that the same 
conceptual level is used for both COSMIC-FFP and UML 2 
state machine diagrams; however, the terms used in the data 
movements of COSMIC-FFP and in the events of state 
machine diagrams have different labels. A summary of the 
terms used in both COSMIC-FFP and state machine diagrams 
that have similar meanings is presented in Table 1. For 
example, in COSMIC-FFP, data movements are classified in 
four categories: Entry, Exit, Read and Write. The term 
corresponding to the data movement and its categories that is 
used in state machine diagrams is “event”, with two 
classifications: internal and external. In addition, data groups, 
which represent the set of data attributes in COSMIC-FFP, 
correspond to the term “objects” that is used in state machine 
diagrams. These diagrams explore the detailed transitions 
between states as the result of events (either external or  
 internal) for only one object. Some additional expressiveness 
of the state machine diagrams could be taken into account. For 
instance, an external event can produce a set of internal events 
and this relationship (between internal and external events) 
probably can affect the software functional size and should be 
described in the sequence diagrams in terms of Entry and/or 
Exit data movements which may produce a set of Read and/or 
Write data movements. Another issue that can be carefully 
analyzed is the possible additional readings that may arise as a 
result of pre and/or post-conditions, where its operands can 
refer to other objects, associated to the events of a sequence or 
state diagram. That may affect the reliability prediction 
calculations based on Markov chains and its probabilities 
where conditional probabilities can be applied.  Other terms 
used in both models, such as those interacting with the 
software, the software boundary and the set of user 
requirements, have the same labels. 

From the mapping of concepts documented in Table 1, 
COSMIC-FFP and UML state machine diagrams have similar 
concepts. This motivated investigating the possibility of 
deriving state machine diagrams from COSMIC-FFP notations. 
It is to be noted that, while sequence diagrams have been used 
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in the COSMIC-FFP measurement method to explore the 
behaviors of one or more objects throughout a given period of 
time, the state machine diagrams for each object in COSMIC-
FFP can be used to explore all their details. 

 Table 1 COSMIC-FFP & State Machine Diagrams  

According to the COSMIC-FFP definitions given in its 
manual and the sequence diagrams that are drawn based on it, 
state machine diagrams can be derived from these sequence 
diagrams.COSMIC-FFP measurements can be mapped to 
UML 2.0 state diagrams using the technique proposed in [18] 
and illustrated with state machine diagrams from multiple 
interrelated scenarios (or sequence diagrams). A number of 
authors have discussed the way to transform a set of scenarios 
(or sequence diagrams) into state machine diagrams. However, 
the work proposed in [19] includes the steps and rules for 
deriving state machine diagrams from multiple scenarios with 
regard to the relationships between them. These rules are 
summarized as follows: 
Step 1. Identifying and representing all single scenarios as 

sequence diagrams. 
    Step 2. Identifying and representing the relationships 
between all scenarios as dependency diagrams based on time 
dependencies between scenarios, their cause-effect 
dependencies and their generalization dependencies. The 
dependency diagram must have a single start point, which is 
the initial scenario, but it can have several end points. 
Step 3. Synthesizing the state machines diagrams, based on 

the information acquired in the previous two steps. 
Step 4. Refining the final state machines and approving the 

consistency between scenarios and state machines in order to 
make sure that the behavior of the final state machine diagrams 
reflects the information contained in the scenarios.  

Now that the linkage between COSMIC-FFP and UML 2.0 
state diagrams has been identified, the state machine diagrams 
can be derived accordingly. Going back to the railroad crossing 
case study, step 1 has already been performed in section IV 
(C), where the sequence diagrams are drawn for COSMIC-FFP 
purposes. Figure 7 shows the dependency diagram needed in 

step 2, i.e. the relationships between the scenarios (or sequence 
diagrams) and the order of execution.  

Figure 7 Dependency Diagram 

One scenario is represented as a rounded rectangle, with 
connectors for the start point and end point.  The initial 
scenario is “Scenario train enters crossing”. At that point the 
train crosses the railroad, and the next scenario starts its 
execution, which is “Scenario train leaves crossing”. This is 
simply a dependency diagram, where there are no alternative 
scenarios. Step 3 uses the information obtained in the previous 
steps to derive the corresponding state machine diagrams. It is 
to be noted that each sequence diagram shows the sequence of 
events (or data movements in the COSMIC-FFP context). Each 
event is a tuple: (Oi, Oj, Mijk), where Oi and Oj belong to the 
set of objects involved in the software and Mijk is the message 
that is exchanged between them. Therefore, the sequence 
diagram in Figure 5 has the following set of tuples = {(train, 
controller, Near), (train, train, In), (controller, gate, Lower), 
(gate, gate, Down)} and the sequence diagram in Figure 6 has 
the following set of tuples = {(train, train, Out), (train, 
controller, Exit), (controller, gate, Raise), (gate, gate, Up)}. 
There are three objects involved in each scenario, and therefore 
we can synthesize three state machine diagrams (one for each 
object). 

 For each object, one initial state machine diagram can be 
created for each scenario, and the final state machine diagram 
can then be synthesized from all the state machine diagrams, 
based on the information in the dependency diagrams. The 
state machine diagram for the train object in Figure 1 is 
obtained from two initial state machine diagrams shown in 
Figures in 8 and 9. 

Figure 8 Initial State Machine Diagram from Figure 5 

Figure 9 Initial State Machine Diagram from Figure 6  

Similarly, state machine diagrams for the objects controller 
and gate are created as shown in Figures 10 and 11. 

VI. DISCUSSION AND NEXT STEPS 

In this paper, the candidate linkages between the Markov 
models and the functional size measurement method COSMIC-  
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Figure 10 Controller State Machine Diagram 

 
Figure 11 Gate State Machine Diagram 

FFP are investigated for the reliability prediction of software 
based on Markov concepts in a COSMIC-FFP context. This is 
achieved by first synthesizing the corresponding state machine 
diagrams from the COSMIC-FFP sequence diagrams. Second, 
a Markov system is formalized by using the derived COSMIC-
FFP state machine diagrams. Third, the steady state 
distribution vector for the corresponding Markov system is 
calculated. 

Research in progress is looking into the reliability prediction 
calculations. The reliability prediction for a system composed 
of n objects can be defined as the level of certainty quantified 
by a level of uncertainty in a Markov system corresponding to 
an object, and a level of uncertainty of a Markov system 
corresponding to a subsystem. Suggestions for future works 
include investigating the use of predictions to compare 
alternative systems designs, and gathering data from empirical 
studies to assess the effectiveness of the reliability model and 
the degree of confidence of the predicted values. Moreover, a 
comparison (if available) with results obtained using 
alternative methodologies to support the validity of the 
application of our proposed methodology. Further work is 
progressing on the formalization of COSMIC-FFP in the 
context of AS-TRM (Autonomic Systems Timed Reactive 
Model), a language for the formal design of autonomic reactive 
systems. AS-TRM is based on the notion of extended state 
machines; this will allow the application of the rules of 
COSMIC-FFP functional size measurement to AS-TRM 
specifications, making it possible to analyze several case 
studies for validation purposes.    
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