
MARKOV MODEL AND FUNCTIONAL SIZE
WITH COSMIC-FFP

Manar Abu Talib Alain Abran Olga Ormandjieva
Concordia University École de Technologie Supérieure Concordia University
m_abutal@cse.concordia.ca aabran@ele.etsmtl.ca ormandj@cse.concordia.ca

Abstract - This research extends the architecture-based
software reliability prediction model to the COSMIC-FFP

context. This model is based on Markov chains and it is applicable
prior to implementation with the ability to build reliability models
much earlier at the requirement phase or based on the

specifications for the design. In essence, each component of the
system is modeled by a discrete time Markov chain. If this can be
done, then a probabilistic analysis by Markov chains can be
performed to evaluate the product reliability in the early phases
of software development and to improve the reliability process for
large software systems. This approach of applying a Markov

model in the COSMIC-FFP context is illustrated with the railroad
crossing case study.

Keywords: Markov Model, Reliability Prediction, COSMIC-

FFP, ISO 19761

I. INTRODUCTION

Software reliability is the probability of failure-free software
operation for a specified period of time in a specified
environment [1]. Software reliability engineering assumes
usage-based statistical testing under the guidance of
operational profiles that characterize usage patterns. Current
software reliability models are applicable when the code is
generated and is being tested.
Our research in this area concentrates on effective models and
techniques which help evaluate product reliability in the early
phases of software development, ultimately right from the
requirements phase. The work reported here builds on our
research results on the use of the COSMIC-FFP method for
testing purposes by combining the functions measured by the
COSMIC-FFP measurement procedure with a black box
testing strategy [2], [3], [4].

COSMIC-FFP – ISO 19761 – is a functional size
measurement method developed by the Common Software
Measurement International Consortium (COSMIC) [5]. This
measurement method focuses on the “user view” of functional
requirements and is applicable throughout the development life
cycle, right from the requirements phase to the implementation
and maintenance phases. This measurement method has been
designed to measure the functional size of management
information systems, real-time software and multi-layer
software systems. Since some of the software systems targeted
by the COSMIC-FFP method are large-scale and inherently
complex, feedback on this complexity could contribute to
monitoring reliability throughout the software life cycle.

The research reported in this paper extends the architecture-
based software reliability prediction model [6], based on

Markov chains and applicable prior to implementation, to the
COSMIC-FFP context. In essence, each component of the
system is modeled by a discrete time Markov chain. The
approach presented here of applying Markov model in the
COSMIC-FFP context is illustrated with the railroad crossing
case study.

The paper is organized as follows: Section II provides an
overview of related work on the architecture-based reliability
prediction model built from the theory of Markov chains.
Section III presents the key elements of Markov model, and
section IV the key elements of COSMIC-FFP. Section V
discusses the mapping of concepts across the two fields, and,
finally, section VI identifies research directions, including the
use of both types of measures for the reliability prediction of
software.

II. RELATED WORK

To assess reliability prior to implementation, it is important
to understand the complex interactions among entities in
software: this can be achieved by modeling the system (its
objects, their interactions and the probabilities of the
interactions) as a Markov system, and assessing the level of
reliability through calculating the probabilities of their
interactions. Such an approach yields results for both the time-
dependent evolution of the system and the steady state of the
system.

In [7], [8], a methodology was proposed for the uncertainty
analysis of architecture-based software reliability models
suitable for large, complex, component–based applications and
applicable throughout the software life cycle. Within this
methodology, two methods for uncertainty analysis have been
developed: the method of moments and Monte Carlo
simulation. In [8], the method of moments is used to quantify
the uncertainty in software reliability due to uncertainty in
component reliabilities. The expressions derived in [8] are
valid for independent random variables and did not allow the
uncertainty in software reliability to be studied due to
uncertainty in the operational profile. Generalizing earlier
research work on the method of moments, these authors then
derived expressions for the mean and the variance of system
reliability which consider both sources of uncertainty in
software reliability (the way software is used, i.e. the
operational profile) and the component’s failure behavior (i.e.
component reliabilities). This was illustrated through case
studies in which the estimated values of the system reliability
moments provide more information than the traditional point

estimate. Thus, these authors have a higher level of confidence
in the reliability predictions for systems with a reliability
having smaller variance. This information is especially useful
in making predictions early in the life cycle, in keeping track of
software evolution and in certifying the reliability of
component-based systems.

The industrial applicability of Markov chains derived from
state machine diagrams for reliability purposes is also worth
mentioning, as described in [9], [10], [11]. For instance, the
RELEX Markov [9], which provides fast, accurate reliability
analyses for complex systems with common-cause failures,
degradation, induced or dependent failures, multi-operational
state components and other sequence-dependent events. Once a
state transition diagram has been completed, the Markov
engine incorporates optimized algorithms to perform
calculations accurately and supports both transient and steady-
state analysis results. In addition to calculating overall system
results, the RELEX Markov also calculates parameters for each
state.

The ability to take into account the measures of functionality
early on, such as with COSMIC-FFP, makes it possible to
consider the uncertainty in the operational profile (i.e. the
uncertainty of environmental events) in addition to the
uncertainty in component failure behavior, based on:

• Knowledge of the software architecture requirements
(corresponds to the layers in COSMIC-FFP where objects
behavior of software can be modeled with state diagrams
within a layer, and then the Markov model is applied for these
modules in one layer).

• Prediction of component reliability, a component is an
object in software whose behavior is modeled in a state
machine diagram.

• Probabilities of control transfer between components.
These probabilities will be calculated as shown in [6], where
the external events are considered first and each has equal
probability if they are triggered from the same state, which is
1/n (where n is the total number of external events); the
internal events are assigned the “left-over”.

The reliability assessment method discussed in this work
differs from previous reliability evaluation methods in the
following ways:

• It is based on the architecture model of software and
the state diagrams of software components.

• The prediction of reliability is derived from the steady
state of the Markov system.

Moreover, this approach allows the reliability model to be
applied at the design specification phase.

III. MARKOV MODEL

The discrete time Markov chain ([6], [12] and [13]) is a
powerful mathematical tool for scientists and engineers
analyzing and predicting the behaviors of a complex system. A
Markov model analysis can yield a variety of useful
performance measures describing the operation of the system,
such as system reliability, availability, mean time to failure

(MTTF), mean time between failures (MTBF), the probability
of being in a given state at a given time, etc. There is interest in
using Markov models for software reliability prediction
purposes, since:

• Environmental laws are considered random and not
controlled by system laws;

• Being in a particular state, a system may choose to
execute any of the transitions available in that state in order to
move to another state.

B. MARKOV PROPERTY & MARKOV SYSTEM

A Markov process is a stochastic one which has two main
characteristics:

1. It can take on a finite number of possible states, which we
will index by the non-negative integers: 0, 1 ... and so on.

2. It has what is known as the “Markovian” property: the
probability distribution of future states of the process depends
only on the current state, and is conditionally independent of
past states (the path of the process).

In other words, a Markov system can be in one of several
mutually exclusive states, and can pass from one state to
another according to fixed probabilities. For example, if a
Markov system is in state Si, there is a fixed probability pij of
it going into state Sj at the next time step. Therefore, the
transition matrix is defined as matrix P, the ij-th entry of which
is pij, and the entries in each row add up to 1.

C. MARKOV MODEL AND STATE MACHINE DIAGRAMS

A state-machine diagram, referred to as a state diagram in
UML 2, is a UML behavioral diagram. It is used to model the
dynamic behavior of individual objects and depict the various
states that an object may be in and the transitions between
those states. A state represents a stage in the behavior pattern
of an object, and it is possible to have initial states and final
states. A transition is a progression from one state to another
and will be triggered by an event that is either internal or
external to the object. See Figure 1 for an example of a state
machine diagram that models the behavior of the object
“Train” for the following railroad system case study [14]
where more than one train can cross a gate simultaneously,
through multiple parallel tracks. According to the train’s
destination, the train can independently choose the gate it will
cross. Each gate is controlled by one controller which must be
active all the time to close and open the gate for the railroad
crossing. A train enters the crossing within an interval of time
units after informing the controller that it is approaching. It
also informs the controller that it is leaving the crossing within
some time units of sending the approaching message. The
controller, in response, commands the gate to close when it
receives a message from the first train entering the crossing to
make sure that no other train can cross the railroad at the same
time. It also instructs the gate to reopen when it receives a
message from the last train leaving the crossing.

The state machine in Figure 1 models the behavior of the
“Train” at a point where it has five states: one initial state (the

black circle), “idle”, “toCross”, “cross”, “leave” and no final
state since it is endless operation that is never stopped. It is to
be noted that “Near” is a triggering event that makes the
“Train” move from the “idle” state to the “toCross” state.
Some of the transitions have conditions, such as (time units>
entrance time > 0), which have to be satisfied in order for the
object to move to other states. The general description for the
following state machine diagram is that, as the train approaches
a gate, it sends a “Near” message to the gate controller. Once
the train leaves the gate, it sends an “Exit” message to the gate
controller.

Which transition will be triggered from one state is the same
as a random walk; based on this, the Markov model can be
used to analyze the reliability of state machine software [6].
Therefore, the prediction of reliability is derived from the
steady state of the Markov system. The mapping of the train
object to a Markov system is shown in Figure 2, with a
probability of 1 for each event, since there is only one event
from each state. In the case where there are two events from
one state, then each event will have a probability of ½. P12
represents the transition probability that the event will be
triggered, and the move is accordingly made from state S1 to
state S2.

Figure 1 Train State Machine Diagram

Figure 2 Train State Diagram with its Transition

Probabilities Pij

Now, the transition matrix P (see Figure 3) can be built from
this state machine diagram, and it is a matrix P whose ij-th
entry is Pij. It is to be noted that the entries in each row add up
to 1.

Figure 3 Transition Matrix P for Train Object

The steady vector of the train object can then be calculated
using the P matrix:

|[wxyz]| P = |[wxyz]| � w = 0.25, x = 0.25, y = 0.25, z =
0.25.

Therefore, the steady vector is: [0.25, 0.25, 0.25, 0.25]

IV. COSMIC-FFP MEASUREMENT METHOD

A. COSMIC-FFP OVERVIEW

The functional size measurement method developed by the
Common Software Measurement International Consortium
(COSMIC) has now been adopted as an international standard
(ISO 19761 [15]) and is referred to as the COSMIC-FFP
method [5]. Its design was developed to address some of the
major weaknesses of the earlier methods – like FPA [16], the
design of which dates back almost 30 years when software was
much smaller and much less varied.

In the measurement of software functional size using the
COSMIC-FFP method, the software functional processes and
their triggering events must be identified. In COSMIC-FFP, the
unit of measurement is the data movement, which is a base
functional component which moves one or more data attributes
belonging to a single data group. Data movements can be of
four types: Entry, Exit, Read or Write. The functional process
is an elementary component of a set of user requirements
triggered by one or more triggering events, either directly or
indirectly, via an actor. The triggering event is an event
occurring outside the boundary of the measured software and
initiates one or more functional processes. The sub processes
of each functional process are sequences of events, and
comprise at least two data movement types: an Entry plus at
least either an Exit or a Write. An Entry moves a data group,
which is a set of data attributes, from a user across the
boundary into the functional process, while an Exit moves a
data group from a functional process across the boundary to the
user requiring it. A Write moves a data group lying inside the
functional process to persistent storage, and a Read moves a
data group from persistent storage to the functional process.
See Figure 4 for an illustration of the generic flow of data
through software from a functional perspective.

Figure 4 Generic Flow of Data through Software from a

Functional Perspective [5]

B. COSMIC-FFP AND SEQUENCE DIAGRAMS

S1

S4

S2

S3

P12=1

P34=1

P23=1
P41=1

o

r

Engineered
Devices

Storage Hardware

SOFTWARE

ENTRIES

EXITS

« Front

end »
USERS

READS

WRITES

« Back

end »

EXITS

ENTRIES

I/O

Hardware

B

O

U

N

D

A

R

Y

idle

cross

leave

Exit [time units >exit

toCross

Out

In[time units >entrance time>0]

Near

A sequence diagram is a UML structural diagram that models
the flow of logic within the system in a visual manner,
enabling both the documentation and validation of the user’s
logic, and is commonly used for both analysis and design
purposes. The sequence diagram is the most popular UML
artifact for dynamic modeling, which focuses on identifying
the behavior within the system. It consists of a group of
instances (represented by lifelines or dashed lines) and the
messages they exchange during the interaction (see Figures 5
and 6) that are the sequence diagrams derived from the railroad
case study for functional size measurement purposes. Both
have three objects, namely train, controller and gate, which
interact by sending messages to each other. While measuring
the functional size of software using COSMIC-FFP, the
sequence diagrams are drawn to define the interactions
between the software and its environment and within the
software, as illustrated in Figure 4. In COSMIC-FFP, the
environment is represented by the users interacting with the
software, such users being humans, engineering devices or
other software applications. Within the software, the
interactions deal with the data read, or send the data to
persistent storage. Going back to the railroad case study, the
controller is the software that has a boundary where the trains
interact with the controllers through sensors (many–to-many
relationships) and the controllers communicate with the gates
through actuators (one-to-one relationships). In the RUP
context [17], the functional processes used in COSMIC-FFP
can represent the set of scenarios for the software. For
example, in the railroad system, the first sequence diagram
(Figure 5) shows that, when a train arrives, a Near message is
sent to the controller. The controller then instructs the gate to
lower, and, in return, the gate goes down and the train enters
the crossing. This process of allowing the train to cross the
railroad is considered as a functional process, and is triggered
by sending a Near message. Similarly, exiting the train (Figure
6) is a scenario containing a sequence of events between the
train and the controller, and this scenario also contains a
sequence of events within the system (controller in this case).
Therefore, for each functional process, its sub processes and its
triggering events are sequences of events (or data movements).

Figure 5 Train Enters Crossing Sequence Diagram

Figure 6 Train Leaves Crossing Sequence Diagram

V. ANALYSIS OF LINKAGES ACROSS MODELS

The functional size measurement method COSMIC-FFP can
be linked to UML 2.0 state diagrams for modeling the
behavior. This allows for probabilistic reliability modeling
based on discrete Markov chains, since a Markov model is
based on state diagram descriptions. The linkages between
COSMIC-FFP and the Markov model can be analyzed, since
the two have something in common, which are the UML
diagrams.
The correspondence of COSMIC-FFP to UML state diagrams
requires a mapping of COSMIC-FFP concepts (boundary,
layer, functional process, triggering event, data group,
movement and attributes, etc.) to state diagram notation. The
reliability requirements for autonomic elements and systems
have to be specified formally and mapped to system behavior
so that the achievement of reliability can be monitored
automatically. Analysis through Table 1 reveals that the same
conceptual level is used for both COSMIC-FFP and UML 2
state machine diagrams; however, the terms used in the data
movements of COSMIC-FFP and in the events of state
machine diagrams have different labels. A summary of the
terms used in both COSMIC-FFP and state machine diagrams
that have similar meanings is presented in Table 1. For
example, in COSMIC-FFP, data movements are classified in
four categories: Entry, Exit, Read and Write. The term
corresponding to the data movement and its categories that is
used in state machine diagrams is “event”, with two
classifications: internal and external. In addition, data groups,
which represent the set of data attributes in COSMIC-FFP,
correspond to the term “objects” that is used in state machine
diagrams. These diagrams explore the detailed transitions
between states as the result of events (either external or
 internal) for only one object. Some additional expressiveness
of the state machine diagrams could be taken into account. For
instance, an external event can produce a set of internal events
and this relationship (between internal and external events)
probably can affect the software functional size and should be
described in the sequence diagrams in terms of Entry and/or
Exit data movements which may produce a set of Read and/or
Write data movements. Another issue that can be carefully
analyzed is the possible additional readings that may arise as a
result of pre and/or post-conditions, where its operands can
refer to other objects, associated to the events of a sequence or
state diagram. That may affect the reliability prediction
calculations based on Markov chains and its probabilities
where conditional probabilities can be applied. Other terms
used in both models, such as those interacting with the
software, the software boundary and the set of user
requirements, have the same labels.

From the mapping of concepts documented in Table 1,
COSMIC-FFP and UML state machine diagrams have similar
concepts. This motivated investigating the possibility of
deriving state machine diagrams from COSMIC-FFP notations.
It is to be noted that, while sequence diagrams have been used

Near Lower

Down

In

:Train :Controller :Gate

Exit
Raise

Up

Out

:Train :Controller :Gate

in the COSMIC-FFP measurement method to explore the
behaviors of one or more objects throughout a given period of
time, the state machine diagrams for each object in COSMIC-
FFP can be used to explore all their details.

 Table 1 COSMIC-FFP & State Machine Diagrams

According to the COSMIC-FFP definitions given in its
manual and the sequence diagrams that are drawn based on it,
state machine diagrams can be derived from these sequence
diagrams.COSMIC-FFP measurements can be mapped to
UML 2.0 state diagrams using the technique proposed in [18]
and illustrated with state machine diagrams from multiple
interrelated scenarios (or sequence diagrams). A number of
authors have discussed the way to transform a set of scenarios
(or sequence diagrams) into state machine diagrams. However,
the work proposed in [19] includes the steps and rules for
deriving state machine diagrams from multiple scenarios with
regard to the relationships between them. These rules are
summarized as follows:
Step 1. Identifying and representing all single scenarios as

sequence diagrams.
 Step 2. Identifying and representing the relationships
between all scenarios as dependency diagrams based on time
dependencies between scenarios, their cause-effect
dependencies and their generalization dependencies. The
dependency diagram must have a single start point, which is
the initial scenario, but it can have several end points.
Step 3. Synthesizing the state machines diagrams, based on

the information acquired in the previous two steps.
Step 4. Refining the final state machines and approving the

consistency between scenarios and state machines in order to
make sure that the behavior of the final state machine diagrams
reflects the information contained in the scenarios.

Now that the linkage between COSMIC-FFP and UML 2.0
state diagrams has been identified, the state machine diagrams
can be derived accordingly. Going back to the railroad crossing
case study, step 1 has already been performed in section IV
(C), where the sequence diagrams are drawn for COSMIC-FFP
purposes. Figure 7 shows the dependency diagram needed in

step 2, i.e. the relationships between the scenarios (or sequence
diagrams) and the order of execution.

Figure 7 Dependency Diagram

One scenario is represented as a rounded rectangle, with
connectors for the start point and end point. The initial
scenario is “Scenario train enters crossing”. At that point the
train crosses the railroad, and the next scenario starts its
execution, which is “Scenario train leaves crossing”. This is
simply a dependency diagram, where there are no alternative
scenarios. Step 3 uses the information obtained in the previous
steps to derive the corresponding state machine diagrams. It is
to be noted that each sequence diagram shows the sequence of
events (or data movements in the COSMIC-FFP context). Each
event is a tuple: (Oi, Oj, Mijk), where Oi and Oj belong to the
set of objects involved in the software and Mijk is the message
that is exchanged between them. Therefore, the sequence
diagram in Figure 5 has the following set of tuples = {(train,
controller, Near), (train, train, In), (controller, gate, Lower),
(gate, gate, Down)} and the sequence diagram in Figure 6 has
the following set of tuples = {(train, train, Out), (train,
controller, Exit), (controller, gate, Raise), (gate, gate, Up)}.
There are three objects involved in each scenario, and therefore
we can synthesize three state machine diagrams (one for each
object).

 For each object, one initial state machine diagram can be
created for each scenario, and the final state machine diagram
can then be synthesized from all the state machine diagrams,
based on the information in the dependency diagrams. The
state machine diagram for the train object in Figure 1 is
obtained from two initial state machine diagrams shown in
Figures in 8 and 9.

Figure 8 Initial State Machine Diagram from Figure 5

Figure 9 Initial State Machine Diagram from Figure 6

Similarly, state machine diagrams for the objects controller
and gate are created as shown in Figures 10 and 11.

VI. DISCUSSION AND NEXT STEPS

In this paper, the candidate linkages between the Markov
models and the functional size measurement method COSMIC-

Concepts COSMIC-FFP
(Data Movement)

terms

 State Machine
Diagrams

(Events) terms
Humans or things interacting

with the software
Software users Software users

Between the environment and
the software

Software
boundary

Software
boundary

Set of User Requirements Functional Process Sequence of
Events (Scenario)

Data which are part of the
interaction

Data groups Objects

External Input (From
Environment)

Triggering event

External event

External Input (From
Environment)

Entry data
movement

External event

Output (to the environment) Exit data
movement

External event

Internal Input (Within Software) Read data
movement

Internal event

Internal Input (Within Software) Write data
movement

Internal event

id le c ro s s to C ro s s
In [t im e u n its > e n tra n c e t im e > 0]

N ea r

Exit [time units >exit time>0]

leave

 cross idle

Scenario Train

enters crossing

Scenario Train

leaves crossing

Figure 10 Controller State Machine Diagram

Figure 11 Gate State Machine Diagram

FFP are investigated for the reliability prediction of software
based on Markov concepts in a COSMIC-FFP context. This is
achieved by first synthesizing the corresponding state machine
diagrams from the COSMIC-FFP sequence diagrams. Second,
a Markov system is formalized by using the derived COSMIC-
FFP state machine diagrams. Third, the steady state
distribution vector for the corresponding Markov system is
calculated.

Research in progress is looking into the reliability prediction
calculations. The reliability prediction for a system composed
of n objects can be defined as the level of certainty quantified
by a level of uncertainty in a Markov system corresponding to
an object, and a level of uncertainty of a Markov system
corresponding to a subsystem. Suggestions for future works
include investigating the use of predictions to compare
alternative systems designs, and gathering data from empirical
studies to assess the effectiveness of the reliability model and
the degree of confidence of the predicted values. Moreover, a
comparison (if available) with results obtained using
alternative methodologies to support the validity of the
application of our proposed methodology. Further work is
progressing on the formalization of COSMIC-FFP in the
context of AS-TRM (Autonomic Systems Timed Reactive
Model), a language for the formal design of autonomic reactive
systems. AS-TRM is based on the notion of extended state
machines; this will allow the application of the rules of
COSMIC-FFP functional size measurement to AS-TRM
specifications, making it possible to analyze several case
studies for validation purposes.

REFERENCES

1. Institute of Electrical and Electronics Engineers, ANSI/IEEE

Standard Glossary of Software Terminology, IEEE Std. 729-1992,

1991.

2. Abu Talib, M., Ormandjieva, O., Abran, A. and Buglione, L.,

Scenario-based Black-Box Testing in COSMIC-FFP, 2nd Software

Measurement European Forum, Rome (Italy), 16-18 March 2005,

pp. 173- 182.

3. Abu Talib, M., Ormandjeva, O., Abran, A., Khelifi, A. and

Bublione, L., Scenario-based Black-Box Testing in COSMIC-FFP:

A Case Study, accepted in Software Quality (ASQ) Journal, to be

published in 2006

4. Abran, A., Ormandjieva, O. and Abu Talib, M., Functional Size

and Information Theory-Based Functional Complexity Measures:

Exploratory study of related concepts using COSMIC-FFP

measurement method as a case study, 14th International Workshop

of Software Measurement (IWSM-MetriKon 2004), Shaker-Verlag,

Konigs Wusterhausen, Germany, 2004, pp. 457-471.

5. Abran, A., Desharnais, J.-M., Oligny, S., St-Pierre, D. and Symons,

C., COSMIC FFP – Measurement Manual (COSMIC

implementation guide to ISO/IEC 19761:2003), École de

technologie supérieure - Université du Québec, Montréal. 2003..

6. Ormandjieva, O., Deriving New Measurement for Real Time

Reactive Systems Ph.D. dissertation, Department of Computer

Science & Software Engineering, Concordia University, Montreal,

Canada, 2002.

7. Goˇseva-Popstojanova, K. and Kamavaram, S., Software Reliability

Estimation under Uncertainty: Generalization of the Method of

Moments, Eighth IEEE International Symposium on High

Assurance Systems Engineering (HASE’04), 2004.

8. Goˇseva–Popstojanova, K. and Kamavaram, S., Assessing

Uncertainty in Reliability of Component-Based Software Systems,

14th Int’l Symp. Software Reliability Engineering, Nov. 2003, pp.

307-320.

9. Relex software, URL: http://www.relexsoftware.com.

10. Item software, URL: http://www.itemsoft.com.

11. ISO graph, URL: http://www.isograph-software.com/index.htm.

12. Strook, D. W., An Introduction to Markov Processes, Springer-

Verlag, Berlin, Heidelberg, 2005.

13. Trvedi, A.K., Computer Software Reliability: Many-State Markov

Modeling Techniques, Ph.D. dissertation, Polytechnic Institute of

Brooklyn, June, 1975.

14. Rajeev Alur, Lecture Notes in Computer Science, Springer-Verlag

GmbH, ISSN: 0302-9743, Volume 1633 / 1999, Computer Aided

Verification: 11th International Conference, CAV'99. Trento, Italy,

July 1999. Proceedings, pp. 8 - 22.

15. ISO/IEC 19761. Software Engineering - COSMIC-FFP - A

functional size measurement method. International Organization for

Standardization - ISO, Geneva, 2003.

16. Albrecht, A.J. and Gaffney, J.E., Software Function, Source Lines

of Code, and Development Effort Prediction: A Software Science

Validation. IEEE Trans. Software Eng. vol. SE-9, no.6, pp. 639-

648, Nov. 1983.

17. Kruchten, P., The Rational Unified Process: An Introduction,

Addison-Wesley, 2003.

18. Vasilache, S. and Tanaka, Jiro, Synthesis of state machines from

multiple interrelated scenarios using dependency diagrams.

Proceedings of the 8th World Multiconference on Systemics,

Cybernetics and Informatics (SCI 2004), Orlando, Florida, USA,

July 18-21, 2004, pp. 49-54.

activate

deactivate monitor

idle

Lower[same train ==true] Raise [same train == true]

Near[other train ==true]
Near

Near[other train == true]

Exit [same train == true]

