

 1

An Analysis of the Design and Definitions of Halstead’s Metrics

Rafa E. AL QUTAISH Alain ABRAN
École de Technologie Supérieure,

University of Québec,
1100 Notre-Dame Ouest,

Montréal, Québec H3W 1T8, Canada

École de Technologie Supérieure,
University of Québec,

1100 Notre-Dame Ouest,
Montréal, Québec H3W 1T8, Canada

rafa.al-qutaish.1@ens.etsmtl.ca alain.abran@etsmtl.ca

Abstract

Some software measures are still not widely used
in industry, despite the fact that they were defined
many years ago, and some additional insights might
be gained by revisiting them today with the benefit of
recent lessons learned about how to analyze their
design. In this paper, we analyze the design and
definitions of Halstead’s metrics, the set of which is
commonly referred to as ‘software science’. This
analysis is based on a measurement analysis
framework defined to structure, compare, analyze and
provide an understanding of the various measurement
approaches presented in the software engineering
measurement literature.

Keywords: Halstead’s Metrics, Software Science,
Software Measurement, Measurement Framework,
Metrology.

1. Introduction

A number of software measures widely used in
the software industry are still not well understood [1].
Some of these measures were proposed over thirty
years ago, and, like many measures proposed later,
they were defined mostly in an intuitive and heuristic
manner by their designers. Moreover, authors
describe their proposed measures in their own terms
and structure, since there is not yet a consensus on
how to describe and document the design of a
software measure. Of course, the lack of a common
design approach has made it difficult for practitioners
to assess these measures.

Abran et al. [1] recently revisited the McCabe
cyclomatic complexity number, illustrating that there
is still ambiguity in its design and interpretation. In
their study, they used the software measurement
analysis framework proposed in [2].

Halstead’s metrics – or what are commonly
referred to collectively as ‘software science’ [3] – are
among the most widely quoted software measures.

For example, researchers have used Halstead’s
metrics to evaluate student programs [4] and query
languages [5], to measure software written for a real-
time switching system [6], to measure functional
programs [7], to incorporate software measurements
into a compiler [8] and to measure open source
software [9].

In this paper, we investigate the various elements
of the design and definitions of Halstead’s metrics
based on the software measurement analysis
framework [2].

The rest of this paper is structured as follows:
section 2 presents a brief overview of the analysis
framework used to analyze Halstead’s metrics.
Section 3 presents an overview of Halstead’s metrics.
In section 4, the design and definitions of Halstead’s
metrics are investigated using the analysis framework
introduced in section 2. Section 5 contains a
discussion on this analysis and a summary of our
observations.

2. Analysis Framework: an Overview

Definitions of the terms that will be used in this
paper are provided first; these definitions have been
adopted from ISO 15939 [10] and the international
vocabulary of basic and general terms in metrology
(VIM) [11]:

Entity: Object that is to be characterized by
measuring its attributes [10].

Attribute : Property or characteristic of an entity that
can be distinguished quantitatively or
qualitatively by human or automated means
[10].

Measurement method: Logical sequence of
operations, described generically, used in
quantifying an attribute with respect to a
specified scale [10].

Measurement procedure: Set of operations, described
specifically, used in the performance of a

 2

particular measurement according to a given
method [10].

Base measure: Measure defined in terms of an
attribute and the method for quantifying it
[10].

Derived measure: Measure defined as a function of
two or more values of base measures [10].

Unit of measurement: Scalar quantity, defined and
adopted by convention, with which other
quantities of the same kind are compared in
order to express their magnitude [11].

Scale: Ordered set of values, continuous or discrete,
or a set of categories to which the attribute is
mapped [10].

Scale type : Depends on the nature of the relationship
between values on the scale. Nominal,
ordinal , interval and ratio are the four types
of scale defined and identified in ISO 15939
[10].

The analysis framework of measurement proposed
in [2] is based on work by Jacquet and Abran in [12].
This analysis framework consists of four phases of
the software measurement life cycle: defining the
context, designing the measurement, applying the
measurement method and exploring the measurement
results [2], as in Fig. 1. This measurement framework
can be used to investigate and verify existing
software measures.

Fig. 1: The four phases of the Analysis Framework of
Measurement proposed in [2].

To analyze the design and definitions of
Halstead’s metrics, we need to apply the first two
phases of this analysis framework.

The two phases that will be used in this paper are
summarized here. The first phase is defining the
context in order to state the goals of the measurement

that need to be investigated in more detail. In this
phase, we have to select the objectives of the
measurement in terms of the characteristics to be
measured for a specific entity type [2].

The second phase, designing the measurement, is
studied from three different points of view: activities,
product and verification criteria. From the verification
criteria viewpoint, this phase consists of three sub-
phases [2]:

1- The empirical and numerical worlds and their
mapping:

In order to define the empirical world, we need to
determine the entities and their attributes to be
measured. We should ensure that these attributes
have been defined clearly and accurately, so that
they are unambiguously characterized [2]. Then –
for the numerical world defined – the selected
mathematical structure should conserve the
properties of that empirical world. This means that
the mapping between the mathematical structure
and the empirical world must produce the same
form [2].

2- The measurement method:

Confirming and validating the numerical
assignment rules (formulas) involve different
activities, depending on the way those rules are
expressed [2]. These formulas will be used to
produce measurement values for the attributes to
be measured. In addition, we have to validate the
scale types of the measures and the units of
measurement produced from the formulas based
on the units of their operands.

3- The measurement procedure:

Verification of the measurement procedure to
ensure that it constitutes a correct implementation
of the measurement method. This verification
should be achieved in accordance with the goals
set out in the defining the context phase [2].

3. Halstead’s Metrics: an Overview

According to Halstead, a computer program is an
implementation of an algorithm considered to be a
collection of tokens that can be classified as either
operators or operands. In other words, a program can
be thought of as a sequence of operators and their
associated operands. All Halstead’s metrics are
functions of the counts of these tokens [13]. By
counting the tokens and determining which are
operators and which are operands based on a counting
strategy, the following base measures can be
collected [3]:

Defining the
Context

 Applying the
Measurement

Method

Exploring the
Measurement

Results

Designing the
Measurement

Phase 1 Phase 2

Phase 4 Phase 3

 3

n1: Number of distinct operators.
n2: Nu mber of distinct operands.
N1: Total number of occurrences of operators.
N2: Total number of occurrences of operands.

In addition to the above, Halstead defines [3]:
n1*: Number of potential operators.

n2*: Number of potential operands.

Halstead refers to n1* and n2* as the minimum

possible number of operators and operands for a
module or a program respectively. This minimum
number would occur in a programming language
itself, in which the required operation already existed
(for example, in C language, any program must
contain at least the definition of the function main()),
possibly as a function or as a procedure; in such a
case, n1*=2, since at least two operators must appear

for any function or procedure: one for the name of the
function and one to serve as an assignment or
grouping symbol. Next, n2* represents the number of

parameters, without repetition, which would need to
be passed on to the function or the procedure [14].

All of the Halstead's so called "Software Science"
metrics are defined based on the above collective
measures (n1, n2, N1, N2, n1* and n2*).

Halstead defines the following metrics [3]:

- The length (N) of a program P is:
.N + N = N 21 (1)

- The vocabulary (n) of a program P is:
.n + n =n 21 (2)

- Program volume (V) is defined by Halstead in
his book as:

a) a suitable metric for the size of any
implementation of any algorithm; 1

b) a count of the number of mental
comparisons required to generate a
program.2

V can be computed using the following
equation:

n.log * N = V 2 (3)

The length, the vocabulary and volume of a
program are considered as reflecting different
views of program size [15].

- Program potential (minimal) volume (V*), which
is the volume of the minimal size
implementation of a program P, is defined as3:

1 Halstead’s book [3], p. 19.
2 Halstead’s book [3], p. 47.
3 No objective evidence documented in [3] that this is

indeed a minimal implementation.

). n + (2 log)n + (2 = V *
22

*
2

* (4)

- Program level (L) of a program P with volume V
is:

.
V

V
 = L

*
 (5)

The program level emphasizes that growth in
volume leads to a lower level of program, and
conversely. The largest value for L is 1. In
addition, this value is interpreted as referring to
the most ideally written program and as
measuring how well written a program is . Thus,
programs with L values close to 1 are
considered to be well written, in general L<1
[5].

- Program difficulty (D) is defined as the inverse
of program level L:

.
L
1

 = D (6)

- The program level estimator (L̂) of L is defined
by Halstead as:

.
N
n

*
n
2

 = L̂
2

2

1
 (7)

and interpreted by Menzies et al. [14] and by
Fenton and Pfleeger [16] as:

.
N
n

*
n
2

=
D
1

 = L̂
2

2

1
 (7.1)

- The intelligent content (I) of a program P is a
measure of the information content of program
P, and is defined as:

V.*L̂ = I (8)

- Programming effort (E) is a measure of the
mental activity required to reduce a
preconceived algorithm to a program P. E is
defined as the total number of elementary
mental discriminations required to generate a
program:

.
n 2

n log N N n
 =

L
V

= E
2

221 (9)

In the effort definition, the unit of measurement
of E is claimed by Halstead to be an elementary
mental discrimination .

- The required programming time (T) for a
program P of effort E is defined as:

.
S n 2

n log N N n
 =

S
E

 = T
2

221 (10)

 4

where S is the Stroud number1, defined as the
number of elementary discriminations
performed by the human brain per second. The S
value for software scientists is set to 18 [17].
The unit of measurement of T is the second.

All the above ten equations are based on the
results of n1, n2, N1, N2, n1* and n2*, which

themselves are based on a counting strategy to
classify the program tokens as operators or operands.

Unfortunately, there is a problem in distinguishing
between operators and operands. This problem occurs
because Halstead has provided an example 2 with
specific illustrations of operators and operands, but
without generic definitions applicable to any program
context. That is, Halstead has not explicitly described
the generic measurable concepts of operators and
operands. He has asserted only that – in the example
he provides – their description is intuitively obvious
and requires no further explanation. In practice, for
measurement purposes , intuition is insufficient to
obtain accurate, repeatable and reproducible
measurement results.

Therefore, it is important that the counting
strategy be clearly defined and consistent, since all
Halstead’s software science depends on counts of
operators and operands [18]. However, there is no
general agreement among researchers on the most
meaningful way to classify and count these tokens
[19]. Hence, individual researchers (and practitioners
as well) must state their own interpretation or,
alternatively, use one of the available counting
strategies proposed by other researchers, such as in
[20-23]. Furthermore , Li et al. have proposed rules
for identifying operators and operands in the object-
oriented programming (OOP) languages [24].

Of course, it is to be expected that different
counting strategies will produce different values of n1,
n2, N1 and N2, and, consequently, different values for
the above ten equations.

4. Analysis of the Design and Definitions
of Halstead’s Metrics

4.1. Defining the Context

The objective of Halstead’s metrics is to measure
the following characteristics of a program: length,
vocabulary, volume , level, difficulty and intelligence

1 In 1967, a psychologist, John M. Stroud, suggested

that the human mind is capable of making a limited
number of mental discrimination per second (Stroud
Number), in the range of 5 to 20.

2 Halstead’s book [3], pp. 6-8.

content . In addition, they are used to measuring what
is referred to as “other characteristics” of the
developer: programming effort and required
programming time. All these measures are based only
on the number of operators and the numb er of
operands the given program or algorithm contains.

The last two attributes , which refer to a
developer’s attributes (programming effort and
required programming time), seem to be identical,
since ‘effort to write a program’ is similar to
‘required programming time’.

4.2. Designing the measurement

4.2.1. The empirical and numerical worlds and
their mapping

The entities that can be used to apply Halstead’s
metrics are the source code itself or the algorithm of
that source code. However, applying Halstead’s
metrics to these two entities will produce different
values for the same base measures. For example, in
Java language, the number of operators in the source
code is different from the number of operators in the
equivalent algorithm for that source code, since – as
an example – in Java source code, each statement
must be end with a semicolon (;), which is an
operator.

Halstead’s metrics are based on two attributes : the
number of operators and the number of operands. As
mentioned in section 3, there is no agreement on how
to distinguish between operators and operands.
Therefore, different counting strategies will produce
different numbers of operators and operands for the
same program or algorithm. The two attributes can be
easily mapped to a mathematical structure by
counting the number of operators and operands in the
program source code or the equivalent algorithm.

Furthermore, Kiricenko and Ormandjieva [25]
investigated the validation of the representation
condition for Halstead’s program length metric.

4.2.2. The measurement method

To obtain a value for each of Halstead’s metrics,
ten equations have to be computed (see section 3). It
is to be noted that all of these equations (equations 1
to 10) correspond to a ‘derived measure’, as defined
by the international vocabulary of basic and general
terms in metrology (VIM) and the ISO 15939.

 Equation (3) is of a ratio scale type, while
equation (5) is of an ordinal scale type, as noted by
Fenton and Pfleeger [16]. By contrast, Zuse [26]
maintains that equation (1) is of the ratio scale type

 5

and equations (2), (3), (6) and (9) are of an ordinal
scale type. Moreover, it can be observed that equation
(4) is also of the ratio scale type. However, it is not
clear to which scale type equations (7), (8) and (10)
belong.

These conclusions on the scale types of Halstead’s
metrics need to be revisited when the units of
measurement in Halstead’s equations are taken into
consideration.

For instance, in equation (1), the program length
(N) is calculated by the addition of the total number
of occurrences of operators and the total number of
occurrences of operands. However, since their units
are different, operators and operands cannot be
directly added together unless the concept common to
them (and its related unit) is taken into consideration
in the addition of these numbers, that is, ‘occurrences
of tokens’: then, the right-hand side of equation (1)
gives ‘occurrences of tokens’ as a measurement unit
on the ratio scale:

.N +N=N
operands of

 soccurrence

2
operators of

 soccurrence

1
 tokensof

soccurrence

From equation (2), the program vocabulary (n)
can be constructed by adding the number of distinct
operators and the number of distinct operands:

 .n + n = n
operands
distinct

2
operators
distinct

1
tokens
distinct

The measurement unit here is ‘distinct tokens’. This
measurement unit must then also be assigned to the
left-hand side of this equation, labeled ‘vocabulary’,
and associating it to the related concepts.

It can be noted that, while the concept of ‘length’
is associated with a number, the concept of
‘vocabulary’ is not. Indeed, the program vocabulary
(n) reflects a different view of program size [15], and
it is a measure of ‘the repertoire of elements that a
programmer must deal with to implement the
program’ [27]. Most probably, an expression such as
‘size of a vocabulary’ would have been more
appropriate.

From equation (3), program volume (V) has been
interpreted with two different units of measurement;
‘the number of bits required to code the program’
[17] and ‘the number of mental comparisons needed
to write the program’ [14] on the left-hand side of the
equation:

.n log * N = V
tokens

distinct

2
 tokensof

soccurrence
scomparison

 mental
or

bits

Thus, there is no relationship between the
measurement unit on the left-hand side and those on
the right-hand side of this equation. Furthermore, on
the right-hand side, the true meaning of the
multiplication of ‘occurrences of tokens’ and ‘distinct
tokens’ is not clear. Such a multiplication would
normally produce a number without a measurement
unit, see Fig. 2.

Fig. 2: Explanation of the measurement unit
produced by log2

1.

Equation (4) gives the definition of the program
potential volume (V*), which is a prediction of the
program volume:

1 Contact by e-mail with Mr. Richard Peterson, The

Math Forum (Ask Dr. Math) at Drexel University,
http://www.mathforum.org/dr.math/.

In general, in engineering applications we do not
take the logarithm of a dimensioned number, only
of dimensionless quantities. For instance, in
calculating decibels , we take the logarithm of a
ratio of two quantities. A ratio of quantities with
the same dimensions is itself dimensionless. We
can write

log(a/b) = log(a) - log(b)

making it appear that we are taking the logs of
dimensioned quantities (a) and (b), but the
dimensions come out in the wash: by the time we
have finished (subtracting one log from the
other), we have effectively taken the log of a
dimensionless quantity, (a/b).

We can regard units as factors in an expression,
for instance:

 8 meters = 8 * [1 meter]
 800 cm = 800 * [1 cm]
 = 800 * 0.01 * [1 meter]

In these terms, we have:

(8m)*log2(8m) = 8*[1m]*log2(8*[1m])
 = 8*[1m]*(log2(8)+log2[1m])
 = (8*log2(8)+8*log2[1m])*[1m]

That inconvenient 8*log2[1m] is an additive term
that depends on the units being used. If it is part
of a valid engineering calculation, this term will
be canceled out somewhere in the process. It may
be, for instance, that when we take the log of 8
meters, we are actually taking the log of a ratio of
8 meters to a one-meter standard length.

 6

).n+(2log)n+(2 =V

operands
 potential

*
2

operators
 potential

2

operands
 potential

*
2

operators
 potential

*

In this equation, the value ‘2’ was assigned to n1*, as

seen in section 3. The measurement unit of the left-
hand side is the same as in the previous equation
(equation (3)), while there is no recognizable
measurement unit for the right-hand side. As in
equation (3), such a multiplication would also
normally produce a number without a measurement
unit, see Fig. 2.

The program level (L) can be calculated using
equation (5), in which there is no measurement unit
for the left hand-side, either from Halstead himself or
from other researchers. In the sense that this is the
correct structure for a ratio with the same unit in both
numerator and denominator; the end result is
therefore a percentage:

.

scomparison mental V

scomparison mental *V
 =

bits V

bits *V
 = L

For equation (6), the difficulty (D) is a measure of
‘ease of reading’ and can be seen as a measure of
‘ease of writing’ as well [27]. The right-hand side is
also a percentage. What the right-hand side of
equation (6) means is a riddle, as its associated label
on the left-hand side.

In Equation (7), for the program level estimator

(L̂), there is no measurement unit for the left-hand
side, while the right-hand side consists of a
combination of four distinct measurement units. The
exact meaning is again a riddle:

.

N

n
*

n

2
 = L̂

operands of
 soccurrence

2

operands
distinct

2

operators
distinct

1

operators
 potential

In equation (8), referred to as the intelligent
content of the program (I), there is no measurement
unit on the left-hand side. For the right-hand side of

this equation, the measurement unit of L̂ – which is
not known since it is a combination of units – is
multiplied by the measurement unit of V:

.V*L̂ =V*L̂ = I scomparison mentalbits

As for equations (6) and (7), the exact meaning of
the left-hand side of equation (8) is a riddle if we
attempt to interpret this number with measurement
units.

Equation (9) is used by Halstead to compute the
effort (E) required to generate a program:

.

n 2

n logN N n
= E

operands
distinct

2
operators

 potential

tokens
distinct

2
tokens

 of
soccurrence

operands
 of

 soccurrence

2
operators
distinct

1tionsdiscrimina
 mental

 elementary

The measurement unit of the left-hand side of this
equation, referred to as ‘effort’, would be expected to
be something such as ‘hours’ or ‘days’. Halstead,
however, referred to ‘the number of elementary
mental discriminations’ as the unit of measurement
for the left-hand side. Next, in the sense that the
‘distinct operators’, the ‘distinct operands’ and the
‘occurrences of operands’ are, in a generic sense,
‘tokens’, then it can be concluded that the
measurement unit of the right hand-side of this
equation is a combination of measurement units.
Therefore, there is no relationship between the units
of measurement of the left-hand and the right-hand
sides in equation (9).

Finally, equation (10) is used to compute the
required programming time (T) for the program:

.

operands
distinct

2n
second
per
moments

 calpsychologi

18
operators

 potential

2

tokens
distinct

n 2 log
tokens

 of
soccurrence

N
operands

 of
 soccurrence

2N
operators
distinct

1n
= seconds T

Again, the measurement unit of the left-hand side,
that is , seconds, does not in any way imply the
measurement unit of the right-hand side, that is , a
combination of many different measurement units. In
view of the fact that, Halstead refers to the ‘moments’
in this equations as “the time required by the human
brain to perform the most elementary
discrimination”1.

5. Discussion and Conclusions

In this paper, we have investigated a well-known
set of measures – Halstead’s metrics – by focusing on
their design and, in particular, on their measurement
units. The following comments can be made about
Halstead’s metrics:

- Based on ISO 15939 [10] and the international
vocabulary of basic and general terms in
metrology (VIM) [11], Halstead’s metrics can be
classified as six based measures (n1, n2, N1, N2,
n1* and n2*

) and ten derived measures (equations

(1) to (10)).

- Halstead has not explicitly provided a clear and
complete counting strategy to distinguish between
the operators and the operands in a given program
or algorithm. This has led researchers to come up

1 Halstead’s book [3], p. 48.

 7

with different counting strategies and,
correspondingly, with different measurement
results for the same measures and for the same
program or algorithm.

- There are problems with the units of measurement
for both the left-hand and the right-hand sides of
most of Halstead’s equations.

- The implementation of the measurement functions
of Halstead’s metrics has been interpreted in
different ways than the goals specified by
Halstead in their designs. For example, the
program length (N) has been interpreted as a
measure of program complexity, which is a
different characteristic of a program [15].

- Equations (6) and (7.1), using basic mathematical

concepts, lead to L̂ being identical to L; this
point can be clarified as follows:

L. = L̂

,

L
1
 1

 = L̂

,(7.1)
L
1

 = D , (6)
D
1

 = L̂

 (11)

Therefore, using Fenton’s description of L̂ 1, the
program level estimator is identical to the
program level.

- Using the previous observation (that is , L̂=L),
and from equations (5) and (8), it can be

concluded that *V I = . The clarification of this
point is as follows:

unit size = V =I

V, ×
V

V
 = I

V, * L = I

(11), L̂=L , (5)
V

V
 = L , (8) V*L̂ = I

*

*

*

Therefore, how we can use the same value to
measure both ‘intelligent content’ (I) and

‘program potential volume’ (*V), two different
attributes of a program or algorithm? Als o, how
do we give different units of measurement to the
same value?

- A number of addition issues can be raised such as
the following:
Equations (9) and (10), which give the
programming effort (E) and the required

1 Fenton and Pfleeger book [16], p. 251.

programming time (T) in seconds, do not take into
account technology evolution and characteristics:
for instance, new programming languages (i.e. the
4th generation programming languages) need less
time for programming since most of the
programming effort is expended by means of
drag-and-drop proces ses, as in Visual Basic.

In summary, the Halstead metrics, as designed
almost thirty years ago, do not meet a key design
criterion of measures in engineering and the physical
sciences. Further research is still required to address
the weaknesses identified in their designs. In a
follow-up research to the findings of this paper, [28]
has investigated these issues and explored them from
the perspective of the extensive structure from
measurement theory. In doing so, a number of
assumptions were made and will require further
investigation.

6. Acknowledgments

The authors would like to thank Dr. Olga
Ormandjieva and Mrs. Victoria Kiricenko for their
comments and suggestions, and Mr. Richard Peterson
from the Math Forum for his comments on the
measurement unit of the logarithm results.

The opinions expressed in this paper are solely
those of the authors.

References

[1] Abran, A., Lopez, M., and Habra, N., "An
Analysis of the McCabe Cyclomatic Complexity
Number", in Proceedings of the 14th
International Workshop on Software
Measurement (IWSM) IWSM-Metrikon, 2004,
Magdeburg, Germany: Springer-Verlag, pp.
391-405.

[2] Habra, N., Abran, A., Lopez, M., and Paulus,
V., "Toward a Framework for Measurement
Lifecycle", in University of Namur, Technical
Report TR37/04, 2004.

[3] Halstead, M. H., Elements of Software Science,
1977, New York: Elsevier North-Holland.

[4] Leach, R. J., "Using Metrics to Evaluate Student
Programs", ACM SIGCSE Bulletin, Vol. 27, No.
2, 1995, pp. 41-48.

[5] Chuan, C. H., Lin, L., Ping, L. L., and Lian, L.
V., "Evaluation of Query Languages with
Software Science Metrics", in Proceedings of
the IEEE Region 10's Ninth Annual
International Conference on Frontiers of
Computer Technology TENCON'94, 1994,
Singapore, pp. 516-520.

 Mental comparisons

 Bits

 8

[6] Bailey, C. T. and Dingee, W. L., "A Software
Study Using Halstead Metrics", in Proceedings
of the 1981 ACM Workshop / Symposium on
Measurement and Evaluation of Software
Quality, 1981, Maryland, USA, pp. 189-197.

[7] Booth, S. P. and Jones, S. B., "Are Ours Really
Smaller Than Theirs", in Glasgow Workshop on
Functional Programming, 1996, Ullapool,
Scotland, UK, pp. 1-7.

[8] Al Qutaish, R. E., Incorporating Software
Measurements into a Compiler, MSc thesis,
Department of Computer Science, 1998,
Serdang: Putra University of Malaysia.

[9] Samoladas, I., Stamelos, I., Angelis, L., and
Oikonomou, A., "Open Source Software
Development Should Strive for Even Greater
Code Maintainability", Communication of ACM,
Vol. 47, No. 10, 2004, pp. 83-8.

[10] ISO/IEC, ISO/IEC IS 15939: Software
Engineering - Software Measurement Process,
2002, Genève: International Organization for
Standardization.

[11] ISO/IEC, International Vocabulary of Basic and
General Terms in Metrology (VIM) , 1993,
Genève: International Organization for
Standardization.

[12] Jacquet, J. and Abran, A., "From Software
Metrics to Software Measurement Methods: A
Process Model", in the 3rd IEEE International
Software Engineering Standards Symposium
and Forum ISESS'97 , 1997, Walnut Creek,
California, USA, pp. 128-135.

[13] Henry, S. and Kafura, D., "Software Structure
Metrics Based in Information Follow" , IEEE
Transaction on Software Engineering , Vol. 7,
No. 5, 1981, pp. 510-518.

[14] Menzies, T., Stefano, J. S. D., Chapman, M.,
and McGil, K., "Metrics That Matter", in the
27th Annual NASA Goddard Software
Engineering Workshop , 2002, Greenbelt,
Maryland, USA, pp. 51-57.

[15] Fenton, N., "Software Measurement: A
Necessary Scientific Basis", IEEE Transaction
on Software Engineering, Vol. 20, No. 3, 1994,
pp. 199-206.

[16] Fenton, N. E. and Pfleeger, S. L., Software
Metrics: A Rigorous and Practical Approach.

2nd ed., 1997, Boston: PWS Publishing
Company.

[17] Hamer, P. G. and Frewin, G. D., "M. H.
Halstead's Software Science - A Critical
Examination", in the Proceedings of the 6th
International Conference on Software
Engineering, 1982, Tokyo, Japan, pp. 197-206.

[18] Lister, A. M., "Software Science - The
Emperor's New Clothes" , the Australian
Computer Journal , Vol. 14, No. 2, 1982, pp. 66-
70.

[19] Shen, V. Y., Conte, S. D., and Dunsmore, H. E.,
"Software Science Revisited: A Critical
Analysis of the Theory and its Emp irical
Support", IEEE Transaction on Software
Engineering, Vol. 9, No. 2, 1983, pp. 155-165.

[20] Salt, N. F., "Defining Software Science
Counting Strategies", ACM SIGPLAN Notices,
Vol. 17, No. 3, 1982, pp. 58-67.

[21] Szentes, S., QUALIGRAPH User Guide, 1986,
Budapest: Research and Innovation Center.

[22] Abd Ghani, A. A. and Hunter, R., "An Attribute
Grammar Approach to specifying Halstead's
Metrics", Malaysian Journal of Computer
Science, Vol. 9, No. 1, 1996, pp. 56-67.

[23] Conte, S. D., Dunsmore, H. E. , and Shen, V. Y.,
Software Engineering Metrics and Models,
1986, Menlo Park, California: Benjamin
Cummings.

[24] Li, D. Y., Kiricenko, V., and Ormandjieva, O.,
"Halstead's Software Science in Today's Object
Oriented World", Metrics News, Vol. 9, No. 2,
2004, pp. 33-40.

[25] Kiricenko, V. and Ormandjieva, O.,
"Measurement of OOP Size Based on Halstead's
Software Science", in Proceedings of the 2nd
Software Measurement European Forum, 2005,
Rome, Italy.

[26] Zuse, H., A Framework of Software
Measurement, 1998, Berlin: Walter de Gruyter.

[27] Christensen, K., Fitsos, G. P., and Smith, C. P.,
"A perspective on software science" , IBM
Systems Journal, Vol. 20, No. 4, 1981.

[28] Zuse, H., "Resolving the Mysteries of the
Halstead Measures", to be published in
METRIKON, Fall of 2005, Germany.

