Guide to the Software Engineering Body of K nowledge

Trial Verson

(Version 0.9)

N

February 2001

A project of the Softwar e Engineering Coor di nating Committee
(Joint IEEE Computer Society - ACM committee)

Corporate support by:
Ao CA MITRE NISI ol SR R,

™
Rational Raytheon F'
the e-davelopmaent campany™ .h : -‘

Project managed by:

UQAM

Executive Editors:

Alain Abran, Université du Québec a Montréal
James W. Moore, The MITRE Corp.

Editors:

Pierre Bourque, Ecole de technologie supérieure
Robert Dupuis, Université du Québec a Montréal

Chair of the Software Engineering Coordinating Committee

Leonard L. Tripp, IEEE Computer Society

Copyright © 2001, Institute of Electrical and Electronics Engineers, Inc. All rights reserved.

TABLE OF CONTENTS

PREFACE TO THE SWEBOK GUIDE

CHAPTER 1:

CHAPTER 2:

CHAPTER 3:

CHAPTER4:

CHAPTER5:

CHAPTER 6:

CHAPTER7:

CHAPTER 8:

CHAPTER 9:

CHAPTER 10:

CHAPTER 11.:

APPENDIX A:

APPENDIX B:

APPENDIX C:

APPENDIX D:

INTRODUCTION TO THE GUIDE

SOFTWARE REQUIREMENTS
Pete Sawyer, Gerald Kotonya, Lancaster University

SOFTWARE DESIGN
Guy Tremblay, Université du Québec a Montréal

SOFTWARE CONSTRUCTION
Terry Bollinger, The MITRE Corporation
Philippe Gabrini, Louis Martin, Université du Québec a Montréal

SOFTWARE TESTING
Antonia Bertolino, Istituto di Elaborazione della Informazione

SOFTWARE MAINTENANCE
Thomas M. Pigoski, Technical Software Services (TECHSOFT), Inc.

SOFTWARE CONFIGURATION MANAGEMENT
John A. Scott, David Nisse, Lawrence Livermore National Laboratory

SOFTWARE ENGINEERING MANAGEMENT
Sephen G. MacDonell, Andrew R. Gray, University of Otago

SOFTWARE ENGINEERING PROCESS
Khaled El Emam, Institute for Information Technology, National Research Council

SOFTWARE ENGINEERING TOOLSAND M ETHODS
David Carrington, The University of Queensland

SOFTWARE QUALITY
Dolores Wallace, Larry Reeker, National Institute of Standards and Technology

KNOWLEDGE AREA DESCRIPTION SPECIFICATIONSFOR THE TRIAL V ERSION OF THE GUIDE
TOTHE SOFTWARE ENGINEERING BODY OF KNOWLEDGE

A LIST OF RELATED DISCIPLINESFOR THE STONE MAN VERSION OF THE GUIDE TO THE
SWEBOK

CLASSIFICATION OF TOPICS ACCORDING TO BLOOM’S TAXONOMY

A PROPOSED BREAKDOWN FOR A COMPONENT INTEGRATION KNOWLEDGE AREA

© |EEE — Stoneman (Version 0.9) — February 2001

I mportant Notice

Thisisthe Trial version 0.9 of the Guide to the Software Engineering Body of
Knowledge. This phase of the project is the Stoneman phase, and previous versions
were entitled Stoneman versions. It isissued to give the opportunity to various bodies,
including the project’s Industrial Advisory Board and all the reviewers who
participated in the phase’ s third review cycle, to make a final look at the document
before the release of version 1.0. Please note that the document remainsto be
professionally edited by the Computer Society Press.

© |IEEE — Stoneman (Version 0.9) — February 2001

PREFACE

Software engineering is an emerging discipline and there

are unmistakable trends indicating an increasing level of

maturity:

¢ Several universities throughout the world offer
undergraduate degrees in software engineering. For
example, such degrees are offered at the University of
New South Wales (Australia), McMaster University
(Canada), the Rochester Institute of Technology (US),

the University of Sheffield (UK) and other
universities.

¢+ Inthe US, the Computer Science Accreditation Board
(CSAB) and the Accreditation Board for Engineering
and Technology (ABET) are cooperating closely and
CSAB is expected to be lead society for the
accreditation of university software engineering
programs.

¢ The Canadian Information Processing Society has
published criteria to accredit software engineering
undergraduate university programs.

¢ The Software Engineering Institute's Capability
Maturity Model for Software (SW CMM) and I1SO
9000 family of standards are used to assess
organizational capability for software engineering.

¢ The Texas Board of Professional Engineers has begun
to license professional software engineers.

*

The Association of Professional Engineers and
Geoscientists of British Columbia (APEGBC) has
begun registering software professional engineers and
the Professional Engineers of Ontario (PEO) has aso
announced reguirements for licensing.

¢ The Association for Computing Machinery (ACM)
and the Computer Society of the Institute of Electrical
and Electronics Engineers (IEEE) have jointly
developed and adopted a Code of Ethics for software
engineering professionals.

¢ The Institute for Certification of Computing
Professionals (ICCP) offers certification in software
development as well as software engineering
(www.iccp.org).
All of these efforts are based upon the presumption that
there is a Body of Knowledge that should be mastered by
practicing software engineers. This Body of Knowledge
exists in the literature that has accumulated over the past
thirty years. This book provides a Guide to that Body of
Knowledge.

© |EEE — Stoneman (Version 0.9) — February 2001

PURPOSE

The purpose of this Guide is to provide a consensualy-
validated characterization of the bounds of the software
engineering discipline and to provide a topical access to the
Body of Knowledge supporting that discipline. The Body
of Knowledge is subdivided into ten Knowledge Areas
(KA) and the descriptions of the KAs are designed to
discriminate among the various important concepts,
permitting readers to find their way quickly to subjects of
interest. Upon finding a subject, readers are referred to key
papers or book chapters selected because they succinctly
present the knowledge.

In browsing the Guide, readers will note that the content is
markedly different from Computer Science. Just as
electrical engineering is based upon the science of physics,
software engineering should be based upon computer
science. In both cases, though, the emphasis is necessarily
different. Scientists extend our knowledge of the laws of
nature while engineers apply those laws of nature to build
useful artifacts, under a number of constraints. Therefore,
the emphasis of the Guide is placed upon the construction
of useful software artifacts.

Readers will also notice that many important aspects of
information technology, that may constitute important
software engineering knowledge, are not covered in the
Guide; they include: specific programming languages,
relational databases and networks. This is a consequence of
an engineering-based approach. In all fields—not only
computing—the designers of engineering curricula have
realized that specific technologies are replaced much more
rapidly than the engineering work force. An engineer must
be equipped with the essential knowledge that supports the
selection of the appropriate technology at the appropriate
time in the appropriate circumstance. For example,
software systems might be built in Fortran using functional
decomposition or in C++ using object-oriented techniques.
The techniques for integrating and configuring instances of
those systems would be quite different. But, the principles
and objectives of configuration management remain the
same. The Guide therefore does not focus on the rapidly
changing technologies, although their general principles are
described in relevant Knowledge Areas.

These exclusions demonstrate that this Guide is necessarily
incomplete. The Guide includes the Software Engineering
knowledge that is necessary, but not sufficient to a software
engineer. Practicing software engineers will need to know
many things about computer science, project management
and systems engineering—to name a few—that fall outside
the Body of Knowledge characterized by this Guide.
However, stating that this information should be known by

software engineers is not the same as stating that this
knowledge falls within the bounds of the software
engineering discipline. Instead, it should be stated that
software engineers need to know some things taken from
other disciplines—and that is the approach adopted by this
Guide. So, this Guide characterizes the Body of Knowledge
falling within the scope of software engineering and
provides references to relevant information from other
disciplines.

The emphasis on engineering practice leads the Guide
toward a strong relationship with the normative literature.
Most of the computer science, information technology and
software engineering literature provides information useful
to software engineers, but a relatively small portion is
normative. A normative document prescribes what an
engineer should do in a specified situation rather than
providing informetion that might be helpful. The normative
literature is validated by consensus formed among
practitioners and is concentrated in standards and related
documents. From the beginning, the SWEBOK project was
conceived as having a strong relationship to the normative
literature of software engineering. The two major standards
bodies for software engineering (IEEE Software
Engineering Standards Committee and | SO/IEC JTC1/SC7)
are represented in the project. Ultimately, we hope that
software engineering practice standards will contain
principles traceable to the SWEBOK Guide.

INTENDED AUDIENCE

The Guide is oriented toward a variety of audiences, all
over the world. It aims to serve public and private
organizations in need of a consistent view of software
engineering for defining education and training
requirements, classifying jobs, developing performance
evaluation policies or specifying development tasks. It also
addresses practicing, or managing, software engineers and
the officials responsible for making public policy regarding
licensing and professional guidelines. In addition,
professional societies and educators defining the
certification rules, accreditation policies for university
curricula, and guidelines for professional practice will
benefit from SWEBOK, as well as the students |earning the
software engineering profession and educators and trainers
engaged in defining curriculaand course content.

EVOLUTION OF THE GUIDE

From 1993 to 2000, the IEEE Computer Society and the
ACM cooperated in promoting the professionalization of
software engineering through their joint Software
Engineering Coordinating Committee (SWECC). The Code
of Ethics was completed under stewardship of the SWECC
primarily through volunteer efforts. The SWEBOK project
was initiated by the SWECC in 1998.

The SWEBOK project’s scope, the variety of communities
involved, and the need for broad participation suggested a

need for full-time rather than volunteer management. For
this purpose, the |IEEE-Computer Society contracted the
Software Engineering Management Research Laboratory at
the Université du Québec & Montréal to manage the effort.

The project plan includes three successive phases:
Strawman, Stoneman and Ironman. The publication of this
Trial Version of the Guide marks the end of the Stoneman
phase of the project. An early prototype, Strawman,
demonstrated how the project might be organized.
Development of the Ironman version will commence after
we gain insight through trial application of the Trial
Version of the Guide.

The project team developed two important principles for
guiding the project: transparency and consensus By
transparency, we mean that the development process is
itself documented, published, and publicized so that
important decisions and status are visible to all concerned
parties. By consensus, we mean that the only practical
method for legitimizing a statement of this kind is through
broad participation and agreement by all significant sectors
of the relevant community. By the time the Trial version of
the Guide is completed, literally hundreds of contributors
and reviewers will have touched the product in some
manner. By the time the third phase—the Ironman—is
completed, the number of participants will number in the
thousands and additional efforts will have been made to
reach communities less likely to have participated in the
current review process.

Like any software project, the SWEBOK project has many
stakeholders—some of which are formally represented. An
Industrial Advisory Board, composed of representatives
fromindustry (Boeing, the MITRE Corporation, Rational
Software, Raytheon Systems, and SAP Labs-Canada)
research agencies (National Institute of Standards and
Technology, National Research Council of Canada) and of
the IEEE Computer Society, have provided financia
support for the project. The |AB’ s generous support permits
us to make the products of the SWEBOK project publicly
available without any charge (visit
http://www.swebok.org). IAB membership is supplemented
with the chairs of [ISO/IEC JTC1/SC7 and of the related
Computing Curricula 2001 initiative. The IAB reviews and
approves the project plans, oversees consensus building and
review processes, promotes the project, and lends
credibility to the effort. In general, it ensures the relevance
of the effort to real-world needs From the outset, it was
understood that an implicit Body of Knowledge already
exists in textbooks on software engineering. To ensure that
we took full advantage of existing literature, Steve
McConnell, Roger Pressman, and lan Sommerville—the
authors of the three best-selling textbooks on software
engineering—served on a Panel of Experts to provide
advice on the initial formulation of the project and the
structure of the Guide. In addition, the extensive review
process involves feedback from relevant communities. In

© IEEE —Trial (Version 0.9) — February 2001

all cases, we seek international participation to maintain a
broad scope of relevance.

We organized the development of the Trial version into
three public review cycles. The first review cycle focused
on the soundness of the proposed breakdown of topics
within each KA. Thirty-four domain experts completed this
review cycle in April 1999. The reviewer comments, as
well as the identities of the reviewers, are available on the
project’s Web site.

In the second review cycle completed in October 1999, a
considerably larger group of professionals, organized into
review viewpoints, answered a detailed questionnaire for
each KA description. The viewpoints (for example,
individual practitioners, educators, and makers of public
policy) were formulated to ensure relevance to the Guide's
various intended audiences. In all, roughly 200 reviewers
provided 5000 comments. The identities of the reviewers,
their comments, and the disposition of those comments can
be found on the project's web site. In the third review cycle,
considering the coherency of the Guide as a whole, we
received close to 3500 comments from 378 professionals
from 41 countries. These comments, as well as
demographic data about the reviewers, are also available at
www.swebok.org.

Readers are invited to access the project web site to be
informed on the future evolution of the Guide.

LIMITATIONS AND NEXT STEPS

Even though the current version 0.7 of the Guide has gone
through an elaborate development and review process, the
following limitations of this process must be recognized
and stated:

¢ Close to five hundred software engineering
professionals from 41 countries and representing
various viewpoints have participated in the project.
Even though thisis a significant number of competent
software engineering professionals, we cannot and do
not claim that this sample represents all viewpoints
from around the world and across all industry sectors.

+ Even though complementary definitions of what
constitutes "generally accepted knowledge" have been
developed, the identification of which topics meet this
definition within each Knowledge Area remains a
matter for continued consensus formation

© |EEE — Stoneman (Version 0.9) — February 2001

¢ The amount of literature that has been published on
software engineering is considerable and any
selection of reference material remains a matter of
judgment. In the case of the SWEBOK, references
were selected because they are written in English,
readily available, easily readable, and—, taken as a
group—, provide coverage of the topics within the

¢ Important and highly relevant reference material

written in other languages than English have been
omitted from the selected reference material.

+ Reports of "field-testing" by its intended audience
have not reached the editorial team at the time of
publication. We are aware of teams using the Guide
for evaluation and development of curriculum as well
as for various purposes in industry. Monitoring of

such field trials will be the next step in the evolution
of the Guide.

Additionally, one must consider that

+ Software engineering is an emerging discipline. This
is especially true if you compare it to certain more
established engineering disciplines. This means
notably that the boundaries between the Knowledge
Areas of software engineering and between software
engineering and its Related Disciplines remain a
matter for continued consensus formation,;

The contents of this Guide must therefore be viewed as an
"informed and reasonable" characterization of the software
engineering Body of Knowledge and as baseline document
for the Ironman phase. Additionally, please note that the
Guide is not attempting nor does it claim to replace or
amend in any way laws, rules and procedures that have
been defined by official public policy makers around the
world regarding the practice and definition of engineering
and software engineering in particular.

To address these limitations, the next -lronman- phase will
begin by monitoring and gathering feedback on actual
usage of the Trial version of the Guide by the various
intended audiences for a period of roughly two years.
Based on the gathered feedback, development of the
Ironman version would be initiated in the third year and
would follow a still to be determined development and
review process. Those interested in performing
experimental applications of the Guide are invited to
contact the project team.

Alain Abran
Université du Québec a Montréal

Pierre Bourque
Ecole de Technologie Supérieure

Leonard Tripp

Boeing Commercia Airplane
1999 President

|IEEE Computer Society

Executive Editors of the
Guideto the Software
Engineering Body of

Knowledge

Editors of the Guideto
the Software Engineering
Body of Knowledge

Chair of the Joint |[EEE
Computer Society — ACM
Software Engineering
Coordinating Committee

January 2001

James W. Moore
The MITRE Corporation

Robert Dupuis
Université du Québec a Montréal

The SWEBOK project web siteis http://www.swebok.org/

ACKNOWLEDGMENTS

The SWEBOK editorial team gratefully
acknowledges the support provided by the members
of the IAB. Funding for this project has been
provided by the Boeing, the IEEE Computer Society,
the MITRE corporation, the National Institute of
Standards and Technology, the National Research
Council of Canada, Rationa Software, Raytheon, and
SAP Labs (Canada). The team also appreciates the
important work performed by the Knowledge Area
specialists. We also wish to thank the following
members of the project team at the Université du
Québec a Montréal: Simon Bouchard, Frangois
Cossette, Michéle Hébert, Vinh T. Ho, dilie Hudon,
Louis Martin, Luis Molinié, Keith Paton, Evariste
Valery Bevo Wandji and Sybille Wolff. Finally, the
team acknowledges the indispensable contribution of
the hundreds of reviewers who have participated so
far. (Please note that the complete list of reviewersis
available on www.swebok.org and will be included
herein the final version)

© IEEE —Trial (Version 0.9) — February 2001

CHAPTER 1

INTRODUCTION TO THE GUIDE

In spite of the millions of software professionals worldwide
and the ubiquitous presence of software in our society,
software engineering has not yet reached the status of a
legitimate engineering discipline and a recognized
profession.

Originally formed in 1993 by the IEEE Computer Society
and the Association for Computing Machinery, the
Software Engineering Coordinating Committee (SWECC)
has been actively promoting software engineering as a
profession and an engineering discipline.

Achieving consensus by the profession on a core body of
knowledge is a key milestone in all disciplines and has
been identified by the SWECC as crucial for the evolution
of software engineering toward a professional status. This
Guide, written under the auspices of this committee, is the

part of a multi-year project designed to reach this
consensus.

What is Software Engineering?

The IEEE Computer Society defines software engineering
as

“(1) The application of a systematic, disciplined,
guantifiable approach to the development, operation, and
maintenance of software; that is, the application of
engineering to software.

(2) The study of approachesasin (1).

nl

What isa Recognized Profession?

For software engineering to be known as a legitimate
engineering discipline and a recognized profession,
consensus on a core body of knowledge is imperative. This
fact iswell illustrated by Starr when he defines what can be
considered a legitimate discipline and a recognized
profession. In his Pulitzer-prize-winning book on the
history of the medical profession inthe USA, he states that:

“the legitimization of professional authority involves three
distinctive claims: first, that the knowledge and competence
of the professional have been validated by a community of
his or her peers; second, that this consensually validated
knowledge rests on rational, scientific grounds; and third,
that the professional’s judgment and advice are oriented
toward a set of substantive values, such as health. These

! “|EEE Standard Glossary of Software Engineering Terminology,”

|EEE, Piscataway, NJ std 610.12-1990, 1990.

© |IEEE — Stoneman (Version 0.9) — February 2001

aspects of legitimacy correspond to the kinds of attributes
— collegial, cognitive and moral — usually cited in the
term “profession.”?

What arethe Characteristics of aProfession ?

But what are the characteristics of a profession? Gary Ford
and Norman Gibbs studied several recognized professions
including medicine, law, engineering and accounting®.
They concluded that an engineering profession is
characterized by several components:

¢+ An initia professional education in a curriculum
validated by society through accreditation;

+ Registration of fitness to practice via voluntary
certification or mandatory licensing;

¢ Specialized skill development and
professional education;

continuing

¢ Communal support via aprofessional society;

¢ A commitment to norms of conduct often prescribed
in acode of ethics.

This Guide contributes to the first three of these
components. Articulating a Body of Knowledge is an
essential step toward developing a profession because it
represents a broad consensus regarding what a software
engineering professional should know. Without such a
consensus, no licensing examination can be validated, no
curriculum can prepare an individual for an examination,
and no criteria can be formulated for accrediting a
curriculum. The development of the consensus is also
prerequisite to the adoption of coherent skill development
and continuing professional education programs in
organizations.

What arethe Ojectives of the SWEBOK Project?

The Guide should not be confused with the Body of
Knowledge itself. The Body of Knowledge already existsin
the published literature. The purpose of the Guide is to
describe what portion of the Body of Knowledge is

2 P, Starr, The Socia Transformation of American Medicine: Basic

Books, 1982. p. 15.

® G. Ford and N. E. Gibbs, “A Mature Profession of Software
Engineering” Software Engineering Ingtitute, Carnegie Mellon
University, Pittsburgh, Pennsylvania, Technica CMU/SEI-96-T R-
004, January 1996.

1-1

generally accepted, to organize that portion, and to provide
atopical accesstoit.

The Guide to the Software Engineering Body of
Knowledge (SWEBOK) was established with the
following five objectives:

1. Promote a consistent view of software engineering
worldwide.

2. Clarify the place—and set the boundary—of software
engineering with respect to other disciplines such as
computer science, project management, computer
engineering, and mathematics.

3. Characterize the contents of the software engineering
discipline.

4. Provide a topical access to the Software Engineering
Body of Knowledge.

5. Provide a foundation for curriculum development and
individual certification and licensing material.

The first of these objectives, the consistent worldwide view
of software engineering was supported by a development
process that has engaged approximately 500 reviewers from
42 countries. (More information regarding the devel opment
process can be found in the Preface and on the web site.
Professional and learned societies and public agencies
involved in software engineering were officially contacted,
made aware of this project and invited to participate in the
review process. Knowledge Area Specialists or chapter
authors were recruited from North America, the Pacific
Rim and Europe. Presentations on the project were made to
various international venues and more are scheduled for the
upcoming year.

The second of the objectives, the desire to set a boundary,
motivates the fundamental organization of the Guide. The
material that is recognized as being within software
engineering is organized into the ten Knowledge Areas
listed in Table 1. Each of theten KAsistreated as a chapter
in this Guide. Table 1. The SWEBOK knowledge areas
(KA).

Software requirements

Software design

Software construction

Software testing

Software maintenance

Software configuration management

Software engineering management

Software engineering process

Software engineering tools and methods

Software quality

In establishing a boundary, it is also important to identify
what disciplines share a boundary and often a common
intersection with software engineering. To this end, the
guide also recognizes seven related disciplines, listed in

1-2

Table 2 (See also Appendix B). Software engineers should
of course know material from these fields (and the KA
descriptions may make references to the fields). It is not
however an objective of the SWEBOK Guide to
characterize the knowledge of the related disciplines but
rather what is viewed as specific to software engineering.

Table2 Related disciplines.
Cognitive sciences and human factors
Computer engineering
Computer science
Management and management science
Mathematics
Project management
Systems engineering

Hierarchical Organization

The organization of the Knowledge Area Descriptions or
chapters, shown in Figure 1, supports the third of the
project's objectives—a characterization d the contents of
software engineering. The detailed specifications provided
by the project’s editorial team to the Knowledge Area
Specialists regarding the contents of the Knowledge Area
Descriptions can be found in Appendix A.

Matrix of Topics

Breakdown Reference
of Topics and Reference Materials
P Materials

> <

= —

— Lpre

Topic Referencesto
P ey e

Disciplines
Taxonomy P

Figure 1 The organization of a KA description

The Guide uses a hierarchical organization to decompose
each KA into a set of topics with recognizable labels. A
two- or three-level breakdown provides areasonable way to
find topics of interest. The Guide treats the selected topics
in a manner compatible with magjor schools of thought and
with breakdowns generally found in industry and in
software engineering literature and standards. The
breakdowns of topics do not presume particular application
domains, business uses, management philosophies,
development methods, and so forth. The extent of each
topic’s description is only that needed to understand the

© |EEE — Stoneman (Version 0.9) — February 2001

generally accepted nature of the topics and for the reader to
successfully find reference material. After all, the Body of
Knowledge is found in the reference materials, not in the
Guide itself.

Reference Materials and a Matrix

To provide a topical access to the Knowledge—the fourth
of the project's objectives—the Guide identifies reference
materials for each KA including book chapters, refereed
papers, or other well-recognized sources of authoritative
information. Each KA description also includes a matrix
that relates the reference materials to the listed topics. The
total volume of cited literature is intended to be suitable for
mastery through the completion of an undergraduate
education plusfour years of experience.

It should be noted that the Guide does not attempt to be
comprehensive in its citations. Much material that is both
suitable and excellent is not referenced. Materials were
selected, in part, because— taken as a collection—they
provide coverage of the described topics.

Depth of Treatment

From the outset, the question arose as to the depth of
treatment the Guide should provide. We adopted an
approach that supports the fifth of the project's objectives—
providing a foundation for curriculum development,
certification and licensing. We applied a criterion of
generally accepted knowledge, which we had to distinguish
from advanced and research knowledge (on the grounds of
maturity) and from specialized knowledge (on the grounds
of generality of application). A second definition of
generally accepted comes from the PMI: “The generally
accepted knowledge applies to most projects most of the
time, and widespread consensus validates its value and
effectiveness”

However, generally accepted knowledge does not imply
that one should apply the designated knowledge uniformly
to all software engineering endeavors—each project’s
needs determine that—but it does imply that competent,
capable software engineers should be equipped with this
knowledge for potential application. More precisely,
generally accepted knowledge should be included in the
study material for a software engineering licensing
examination that graduates would take after gaining four
years of work experience. Although thiscriterionis specific
to the U.S. style of education and does not necessarily
apply to other countries, we deem it useful. However, both
definitions of generally accepted knowledge should be seen
as complementary.

* Project Management Institute, A Guide to the Project Management Body
of Knowledge, Upper Darby, PA, 1996,
http://www.pmi.org/publictn/pmboktoc.htm/ “Project” in the quote
refersto projectsin general.

© |IEEE — Stoneman (Version 0.9) — February 2001

Additionally, the KA descriptions are somewhat forward-
looking—we're considering not only what is generaly
accepted today but also what could be generally accepted in
threeto five years.

Ratings

As an aid notably to curriculum developers and in support
of the project’s fifth objective, the Guide rates each topic
with one of a set of pedagogical categories commonly
attributed to Benjamin Bloon?. The concept is that
educational objectives can be classified into six categories
representing increasing depth: knowledge, comprehension,
application, analysis, synthesis, and evaluation Results of
this exercise for all KAs can be found in Appendix C. This
Appendix must however not be viewed as a definitive

classification but much more as a starting point for
curriculum devel opers.

KAsfrom Related Disciplines

A list of disciplines (Related Disciplines) that share a
common boundary with software engineering can be found
in Appendix B. Appendix B also identifies from an
authoritative source a list of KAs of these Related
Disciplines.

A proposed Breakdown for an Additional KA

One of the knowledge areas that was not included in this
Trial version because there was no consensus on the
generally accepted set of reference material is Component
integration. Since such a consensus may appear in the near
future, we include in Appendix D a proposa for a
breakdown of topics on that subject. This is intended to
serve as ajumpstart for future work on the topic.

We recognize aso that HCI is important and we will in
future versions indicate a point beyond which the software
engineer should seek the help os a specialist. There was
also no consensus on a set of reference material on the
subject.

THE KNOWLEDGE AREAS

Figure 2 maps out the 10 KAs and the important topics
incorporated within them. The first five KAs are presented
in traditional waterfall lifecycle sequence. The subsequent
Kas are presented in alphabetical order. Thisisidentica to
the sequence in which they are presented in the Guide.
Brief summaries of the KA descriptions appear next.

5 See chiron.valdosta.eduwhuitt/col/cogsyslbloom.html for a short
description of Bloom's taxonomy. The original source is Bloom, B.S.
(Ed.) (1956) Taxonomy of educationa objectives: The classification
of educational goals: Handbook I, cognitive domain. New York ;
Toronto: Longmans, Green

1-3

SOFTWARE REQUIREMENTS (see Figure 2, column a)

A requirement is defined as a property that must be
exhibited in order to solve some problem of the real world.

The first knowledge sub-area is the reguirement
engineering process, which introduces the requirements
engineering process, orienting the remaining five topics and
showing how requirements engineering dovetails with the
overall software engineering process. It describes process
models, process actors, process support and management
and process quality improvement.

The second sub-area is requirements elicitation, which is
concerned with where requirements come from and how
they can be collected by the requirements engineer. It
includes requirement sources and techniques for
elicitation.

The third sub-area, requirements analysis, is concerned
with the process of analyzing requirements to:

+ detect and resolve conflicts between requirements,

¢ discover the bounds of the system and how it must
interact with its environment;

+ elaborate system
requirements.

requirements to software

Requirements analysis includes requirements classification,

conceptual modeling, architectural design and requirements
allocation and requirements negotiation.

The fourth sub-area is software requirements specification.
It describes the structure, quality and verifiability of the
requirements document. This may take the form of two
documents, or two parts of the same document with
different readership and purposes. The first document is the
system requirements definition document, and the second is
the software requirements specification. The sub-area aso
describes the document structure and standards and
document quality.

The fifth sub-area is requirements validation whose aim is
to pick up any problems before resources are committed to
addressing the requirements. Requirements validation is
concerned with the process of examining the requirements
document to ensure that it defines the right system (i.e. the
system that the user expects). It is subdivided into
descriptions of the conduct of requirements reviews,
prototyping, model validation and acceptance tests.

The last sub-area is requirements management, which is an
activity that spans the whole software life-cycle. It is
fundamentally about change management and the
maintenance of the requirements in a state that accurately
mirrors the software to be, or that has been, built. It
includes change management, requirements attributes and
requirements tracing.

14

SOFTWARE DESIGN (see Figure 2, column b)

According to the |EEE, software design is an activity that
spans the whole software life-cycle. It is fundamentally
about change management and the maintenance of the
requirements in a state that accurately mirrors the software

to be, or that has been, built. The knowledge areais divided
into six sub-areas.

The first one presents the basic concepts and notions which
form an underlying basis to the understanding of the role
and scope of software design. These are general concepts,
the context of software design, the design process and the
enabling techniques for software design.

The second sub-area regroups the key issues of software
design. They include concurrency, control and handling of
events, distribution, error and exception handling,
interactive systems and persistence.

The third sub-area is structure and architecture, in
particular architectural structures and viewpoints,
architectural styles, design patterns, and finally families of
programs and frameworks.

The fourth sub-area describes software design quality
analysis and evaluation. While a whole knowledge area is
devoted to software quality, this sub-area presents the
topics more specifically related to software design. These
aspects are quality attributes, quality analysis and
evaluation tools and measures.

The fifth one is software design notations which are
divided into structural and behavioral descriptions.

The last sub-area covers software design strategies and
methods. First, general strategies are described, followed by
function-oriented methods, then object-oriented methods,
data-structure centered design and a group of other
methods, like formal and transformational methods.

SOFTWARE CONSTRUCTION (see Figure 2, column c)

Software Construction is a fundamental act of software
engineering: the construction of working meaningful
software through a combination of coding, validation, and
testing (unit testing).

The first and most important method of breaking the
subject of software construction into smaller units is to
recognize the four principles that most strongly affect the
way in which software is constructed. These principles are

the reduction of complexity, the anticipation of diversity,
the structuring for validation and the use of external
standards

A second and less important method of breaking the subject
of software construction into smaller units is to recognize
three styles/methods of software construction, namely :
Linguistic, Formal and Visual.

A synthesis of these two viewsis presented.

© |EEE — Stoneman (Version 0.9) — February 2001

SOFTWARE TESTING (see Figure 2, column d)

Software testing consists of the dynamic verification of the
behavior of a program on afinite set of test cases, suitably
selected from the usualy infinite executions domain,

against the specified expected behavior. It includes five
sub-areas.

It begins with a description of basic concepts. First, the
testing terminology is presented, then the theoretical
foundations of testing are described, with the relationship
of testing to other activities.

The second sub-area is the test levels. They are divided
between the targets and the objectives of the tests.

The third sub-area are the test techniques themselves. A
first category is grouped on the criterion of the base on
which tests are generated, and a second group based on the
ignorance of knowledge of implementation. A discussion of

how to select and combine the appropriate techniques is
presented.

The fourth sub-area covers test-related measures. The
measures are grouped into those related to the evaluation of
the program under test and the evaluation of the tests
performed.

The last sub-area describes the management specific to the

test process. It included management concerns and the test
activities.

SOFTWARE MAINTENANCE (see Figure 2, column €)

Once in operation, anomalies are uncovered, operating
environments change, and new user requirements surface.
The maintenance phase of the life cycle commences upon
delivery but maintenance activities occur much earlier. The
Software maintenance knowledge area is dived into six
sub-areas.

The first on presents the domain’s basic concepts,

definitions, the main activities and problems of software
maintenance.

The second sub-area describes the maintenance process,
based on the standards | EEE 1219 and I SO/IEC 14764.

The third sub-area regroups key issues related to software

maintenance. The topics covered are technical,
management, cost and estimation and measurement i ssues.

Techniques for maintenance constitute the fourth sub-area
Those techniques include program comprehension, re-
engineering, reverse engineering and impact analysis.

SOFTWARE CONFIGURATION MANAGEMENT (see Figure
2, column f)

Software Configuration Management (SCM) is the
discipline of identifying the configuration of a system at
distinct points in time for the purpose of systematicaly
controlling changes to the configuration and maintaining
the integrity and traceability of the configuration

© |IEEE — Stoneman (Version 0.9) — February 2001

throughout the system life cycle. This Knowledge area
includes six sub-areas.

Thefirst sub-areaisthe management of the SCM process. It
covers the ppics of the organizational context for SCM,
constraints and guidance for SCM, planning for SCM, the
SCM plan itself and surveillance of SCM.

The second sub-area is Software configuration
identification, which identifies items to be controlled,
establishes identification schemes for the items and their
versions, and establishes the tools and techniques to be
used in acquiring and managing controlled items. The
topics in this sub-area are first the identification of the
items to be controlled and the software library.

The third sub-area is the software configuration control,
which is the management of changes during the software
life-cycle. The topics are, first, reguesting, evaluating and
approving software changes, and, second, implementing
software changes, and third deviations and waivers.

The fourth sub-area is software configuration status
accounting. Its topics are software configuration status
information and status reporting.

The fifth sub-area is software configuration auditing.
Consisting of software functional configuration auditing,
software physical configuration auditing and in-process
audits of a software baseline.

The last sub-area is software release management and
delivery, covering software building and software release
management.

SOFTWARE ENGINEERING MANAGEMENT (see Figure 2,
column g)

Whilst it is true to say that in one sense it should be
possible to manage software engineering in the same way
as any other (complex) process, there are aspects particular
to software products and the software engineering process
that complicate effective management. There are three sub-
areas for software engineering management.

The first is organizational management, comprising policy
management, personnel management, communication
management, portfolio management and procurement
management.

The second sub-area is process/project management,
including initiation and scope definition, planning,
enactment, review and eval uation and closure.

The third and last sub-area is software engineering
measurement, where general principles about software
measurement are covered. The first topics presented are the
goals of a measurement program, followed by measurement
selection, measuring software and its development,
collection of dataand, finally, software metric models.

SOFTWARE ENGINEERING PROCESS (see Figure 2,
column h)

The Software Engineering Process Knowledge Area is
concerned with the definition, implementation,
measurement, management, change and improvement of

the software engineering process itself. It is divided into six
sub-areas.

The first one presents the basic concepts: themes and
terminology.

The second sub-area is process infrastructure, where the
Software Engineering Process group concept is described,
aswell as the Experience Factory.

The third sub-area deals with measurements specific to

software engineering process. It presents the methodology
and measurement paradigmsin the field.

The fourth sub-area describes knowledge related to process
definition: the various types of process definitions, the life-
cycle framework models, the software life-cycle models,
the notations used to represent these definitions, process
definitions methods and automation relative to the various
definitions.

The fifth sub-area presents qualitative process analysis,
especialy the process definition review and root cause
analysis.

Finaly, the sixth sub-area concludes with process
implementation and change. It describes the paradigms and
guidelines for process implementation and change, and the
evaluation of the outcome of implementation and change.

SOFTWARE ENGINEERING TOOLS AND METHODS (see
Figure2, columnii)

The Software Engineering Tools and Methods knowledge
area includes both the software development environments

and the development methods knowledge areas identified in
the Straw Man version of the guide.

Software development environments are the computer-
based tools that are intended to assist the software
development process. Development methods impose
structure on the software development activity with the
goal of making the activity systematic and ultimately more
likely to be successful.

The partitioning of the Software Tools section uses the
same structure as the Stone Man Version of the Guide to
the Software Engineering Body of Knowledge. The first
five subsections correspond to the five Knowledge Areas
(Requirements, Design, Construction, Testing, and
Maintenance) and the next four subsections correspond to
the remaining Knowledge Areas (Process, Quality,
Configuration Management and Management). Two
additional subsections are provided: one for infrastructure
support tools that do not fit in any of the earlier sections,
and a Miscellaneous subsection for topics, such as tool

1-6

integration techniques, that are potentially applicable to all
classes of tools.

The software development methods section is divided into
four subsections. heuristic methods dealing with informal
approaches, formal methods dealing with mathematically
based approaches, prototyping methods dealing with
software development approaches based on various forms
of prototyping, and miscellaneous method issues.

SOFTWARE QUALITY (see Figure 2, column j)

This chapter deals with software quality considerations that
transcend the life cycle processes. Software quality is a
ubiquitous concern in software engineering, so it is
considered in many of the other KAs and the reader will

notice pointers those KAs through this KA. The Knowledge
Areadescription covers four sub-areas.

The first sub-area describes the software quality concepts
such as measuring the value of quality, the ISO9126 quality
description, dependability and other special types of system
and quality needs.

The second sub-area covers the purpose and planning of
software quality assurance (SQA) and V&V (Verification

and Validation). It includes common planning activities,
and both the SQA and V& S plans.

The third sub-area describes the activities and techniques
for SQA and V&V. It includes static and dynamic
techniques as well as other SQA and V& Stesting.

The fourth sub-area describes measurement applied to
SQA and V&V. It includes the fundamentals of
measurement, measures, measurement analysis techniques,
defect characterization, and additional uses of SQA and
V&YV data

© |EEE — Stoneman (Version 0.9) — February 2001

Guide to the Softw are Engineering Body of Knowledge

(Version 0.9)

Software Software Software Software
— Ressifr“;vna}l:nts — Software Design — Cosr?gt\xzt?on — Software Testing M;g:‘e"‘rgnece — Configuration Engineering — Engineering — Engineering Tools — Software Quality
a Management Management Process and Methods
Requirement . - Testing Basic Software
. N Reduction in . izati N - i
Iy Engineering Softv_vare Design oot — b concepts and Basic Concepts Management of Organizational Iy Engineering l» Software Tools — | Software Quality
Process Basic Concepts plexity Definitions the SCM Process Management Process Concepts Concepts
Linguistic Construction Software Reguirements ~
Methods) : -
cormal G Maintenance Software Process/Project Process Software D Tools] Definition &
Requirements Key Issues in ormal Construction oftware Design Tools . .
ly- quireme Iy y | Methods - Test Levels Process - Configuration Management Infrastructure Planning for Quality
Elicitation Software Design A Software Constructi
Visual Construction Identification ware sonstruction
; Tools f
Methods « Key Issues in Software Process Techniques
S_Oﬂware Softw Engineering > Measurement Software Testing Tools | [~ Re€quiring Two or
|, Requirement Software Structure Anticipation of s Test Techni Maintenance b ¢ ? are Measurement Software Maintenance More People
Analysis and Architecture Diversity] est Techniques oré:)gnl.tl:;tlon Tools
Linauistc Construction Techniques for [Process Definition Software Engineering Support to Other
9 Methods - Maintenance Process Tools - Techniques
X Software Design Software
Requirements . 4 Formal Construction -) N o
b quiremer > Quality Analysis Methods - Test-Related l» Configuration Qualitative Process Software Quality Tools 4 . ’
Specification 4 Measures . > : X Testing Special to
and Evaluation Status Accounting Analysis Software Configuration Lal
Visual Construction 9 - SQA or V&V
Methods. <+ Management Tools
Softw Process Wanagement Toat
Ly Requirements Software Design Structuring for Managing the Test b ¢ ?_ art(_e > Implementation 9 Defect Finding
Validation Notations Validation Process onfiguration and Change Infrastructure Support Techniques
Auditing Tools
Linguistic Construction Miscellaneous Tool
. Methods Issues -« Measurement in
Requirements Soﬂwarg Design Formal Construction Software Release L. Software Quality
Management > Strategies and Methods L». Management and Analysis
Methods Visual Construction | Delivery ¥ Software Methods —
Methods
Use of External Heuristic Methods
Standards Formal Methods 4
Linguistic Construction g |
Methods Prototyping Methods 4
Formal Construction Miscell Method
eose " elaneous Veton
Visual Construction
Methods «
@) (b) () () ©) ® © W] 0} (0]

© |IEEE — Stoneman (Version 0.9) — February 2001

CHAPTER 2
SOFTWARE REQUIREMENTS

Pete Sawyer and Gerald Kotonya
Computing Department,
Lancaster University
United Kingdom
{sawyer} {gerad} @comp.lancs.ac.uk

Table of Contents
O e (o (U1 £ oo 1R 1

2 Definition of the Software Requirements Knowledge

3 Breakdown of Topics for Software Requirements........7

Breakdown Rationale............ccocvcrieniecnieensieensiseeinens 15
Matrix of Topics vs. Reference Material for Software
REQUITEMENTS......coiereecrereeeerreee e 16

6 Recommended References for Software
ReqUIrements.........ocveveevervenernescrreenneeens

Appendix A — List of Further Readings.

Appendix B — References Used to Write and Justify the
D 1=STor] o1 o o VOO 23

1 INTRODUCTION

This document proposes a breakdown of the SWEBOK
Software Requirements Knowledge Area. The knowledge
area is concerned with the acquisition, analysis,
specification, validation and management of software
requirements. It is widely acknowledged within the
software industry that software projects are critically
vulnerable when these activities are performed poorly. This
has led to the widespread use of the term 'requirements
engineering’ to denote the systematic handling of
requirements. This is the term we use in the rest of this
document. Software requirements are one of the products of
the requirements engineering process.

Software requirements express the needs and constraints
that are placed upon a software product that contribute to
the satisfaction of some real world application [Kot00]. The
application may be, for example, to solve some business
problem or exploit a business opportunity offered by a new
market. It isimportant to understand that, except where the
problem is motivated by technology, the problem is an
artifact of the problem domain and is generally technology-
neutral. The software product alone may satisfy this need
(for example, if it is a desktop application), or it may be a
component (for example, a speech compression module

© |IEEE — Stoneman (Version 0.9) — February 2001

used in a mobile phone) of a software-intensive system for
which satisfaction of the need is an emergent property. In
fundamental terms, the way in which the requirements are
handled for stand-alone products and components of
software-intensive systemsis the same.

One of the main objectives of requirements engineering is
to discover how to partition the system; to identify which
requirements should be allocated to which components. In
some systems, all the components will be implemented in
software. Others will comprise a mixture of technologies.
Almost all will have human users and sometimes it makes
sense to consider all components of the system to which
requirements should be alocated (for example, to save
costs or to exploit human adaptability and resourceful ness).
Because of this requirements engineering is fundamentally
an activity of systems engineering rather than one that is
specific to software engineering. In this lespect, the term
'software requirements engineering' is misleading because it
implies anarrow scope concerned only with the handling of
requirements that have already been acquired and allocated
to software components. Since it is increasingly common
for practicing software engineers to participate in the
elicitation and allocation of requirements, it is essential that
the scope of the knowledge area extends to the whole of the
reguirements engineering process.

One of the fundamenta tenets of good software
engineering is that there is good communication between
system users and system developers. It is the requirements
engineer who is the conduit for this communication. They
must mediate between the domain of the system user (and
other stakeholders) and the technical world of the software
engineer. This requires that they possess technical skills, an
ability to acquire an understanding of the application
domain, and the inter-personal skills to help build
consensus between heterogeneous groups of stakeholders
[Gog93].

We have tried to avoid domain dependency in the
document. The knowledge area document identifies
reguirements engineering practice and identifies when it is
and isn’t appropriate. We recognise that desktop software
products are different fromnuclear reactor control systems
and the document should be read in this light. Where we
refer to particular tools, methods, notations, SPI models,

etc. it does not imply our endorsement of them. They are
merely used as examples.

2 DEFINITION OF THE SOFTWARE REQUIREMENTS
KNOWLEDGE AREA

This section provides an overview of requirements
engineering in which:
" thenotion of a‘requirement’ is defined;

motivations for systems are identified and their
relationship to requirementsis discussed;

a generic process for analysis of requirements is
described, followed by a discussion of why, in

practice, organisations often deviate from this process;
and

the deliverables of the requirements engineering

process and the need to manage requirements are
described.

This overview is intended to provide a perspective or
‘viewpoint’ on the knowledge area that complements the

one in Section 3 — Breakdown of topics for the Software
Requirements Knowledge Area.

2.1 Whatisarequirement?

At its most basic, a requirement is a property that must be
exhibited in order to solve some problem of the real world
[Pfl98, Kot00, Som01, Tha97]. This document refers to
requirements on ‘systems’ rather than ‘solutions' because it
is concerned with problems that have software-based
solutions. Hence, a requirement is a property that must be
exhibited by a system developed or adapted to solve a
particular problem. The problem may be to automate part
of atask of someone who will use the system, to support
the business processes of the organisation that has
commissioned the system, to correct shortcomings of an
existing system, to control a device and many more. The
functioning of users, business processes and devices are
typically complex. By extension, therefore, the
requirements on a system are typicaly a complex
combination of requirements from different people at
different levels of an organisation and from the
environment in which the system must operate.

Requirements vary in intent and in the kinds of properties
they represent. A distinction can be drawn between product
parameters and process parameters. Product parameters
are requirements on the system to be developed and can be
further classified as [Kot00, Som97]:

Functional requirements on the system such as
formatting some text or modulating a signal.
Functional requirements are sometimes known as
capabilities.

Non-functional requirements that act to constrain the
solution. Non-functional requirements are sometimes

known as constraints or quality requirements. They
can be further classified according to whether they are
(for example) performance reguirements,
maintainability requirements, safety requirements,
reliability requirements, electro-magnetic
compatibility requirements and many other types of
requirements.

A process parameter is essentially a constraint on the
development of the system (e.g. 'the software shall be
written in Ada). These are sometimes known as process
reguirements.

Requirements must be stated clearly and unambiguously
and, where appropriate, quantitatively. It is important to
avoid vague and unverifiable requirements that depend for
their interpretation on subjective judgement (‘the system
shall be reliable’, ‘the system shall be user-friendly’). This
is particularly important for non-functional requirements.
Two examples of quantified requirements are: that a system
must increase a call-center's throughput by 20%; and a
requirement that a system shall have a probability of
generating a fatal error during any hour of operation of less
than 1 * 10°®. The throughput requirement is at a very high
level and will need to be used to derive a number of
detailed requirements. The reliability requirement will
tightly constrain the system architecture [Dav93, Som01].

Some requirements are emergent properties. That is,
requirements that can't be addressed by a single component,
but which depend for their satisfaction on how all the
system components inter-operate. The throughput
requirement for a call-centre given above would, for
example, depend upon how the telephone system,
information system and the operators all interacted under
actual operating conditions. Emergent properties are
crucially dependent upon the system architecture.

An essential property of all requirementsis that they should
be verifiable. It may be difficult or costly to verify certain
requirements. For example, verification of the throughput
requirement on the call-center may necessitate the
development of simulation software. The requirements
engineering and V&V personnel must ensure that the
requirements can be verified within the available resource
constraints.

Some reguirements generate implicit process requirements.
The choice of verification method is one example. Another
might be the use of particularly rigorous analysis
techniques (such as formal specification methods) to reduce
systemic errors that can lead to inadequate reliability.
Process requirements may also be imposed directly by the
development organization, their customer, or a third party
such as a safety regulator.

Requirements have other attributes in addition to the
behavioural property that they express. Common examples
include a priority rating to enable trade-offs in the face of
finite resources and a status val ue to enable project progress
to me monitored. Every requirement must be wiquely

© |EEE — Stoneman (Version 0.9) — February 2001

identified so that they can be subjected to configuration
control and managed over the entire system life-cycle.

2.2 System requirementsand processdrivers

The literature on requirements engineering sometimes calls
system requirements “user requirements’. We prefer a
restricted definition of the term user requirements in which
they denote the requirements of the people who will be the
system customers or end-users. System requirements, by
contrast, are inclusive of user requirements, requirementsof
other stakeholders (such as regulatory authorities) and
requirements that do not have an identifiable human source.

Typical examples of system stakeholders include (but are
not restricted to):

Users — the people who will operate the system. Users

are often a heterogeneous group comprising people
with different roles and requirements.

Customers — the people who have commissioned the
system or who represent the system’ starget market.

Market analysts — a mass-market product will not
have a commissioning customer so marketing people

are often needed to establish what the market needs
and to act as proxy customers.

Regulators — many application domains such as
banking and public transport are regulated. Systemsin
these domains must comply with the requirements of
the regulatory authorities.

System devel opers— these have alegitimate interest in
profiting from developing the system by, for example,
reusing components in different products. If, in this
scenario, a customer of a particular product has
specific requirements that compromise the potential
for component reuse, the developer must carefully
weigh their own stake against those of the customer.
For mass-market products, the developer is often the
primary stakeholder because they wish to maintain the
product in as large a market as possible for as long as
possible.

In addition to these human sources of requirements,
important system requirements often derive from other
devices or systems in the environment, which require some
services of the system or act to constrain the system, or
even from fundamental characteristics of the application
domain [Lou95, Tha97]. For example, a business system
may be required to inter-operate with a legacy database and
many military systems have to be tolerant of high levels of
electro-magnetic radiation. We talk of ‘eliciting'
requirements but in practice the requirements engineer has
to systematically extract and inventory the requirements
from a combination of human stakeholders, the system's
environment, feasibility studies, market analyses, business
plans, analyses of competing products and domain
knowledge [Som97].

© |IEEE — Stoneman (Version 0.9) — February 2001

The €elicitation and analysis of system requirements needs
to be driven by the need to achieve the overal project aims.
To provide this focus, a business case should be made
which clearly defines the benefits that the investment must
deliver. These should act as a 'redlity check' that can be
applied to the system requirements to ensure that project
focus does not drift. Where there is any doubt about the
technical, operational or financial viability of the project, a
feasibility analysis should be conducted. Thisisdesigned to
identify project risks and assess the extent to which they
threaten the system's viability. Risks should be documented
in the project management plan.

Typical risks include the ability to satisfy non-functional
requirements such as performance, or the availability of
off-the-shelf components. In some specialised domains, it
may be necessary to design simulations to generate data to
enable an assessment of the project risks to be made. In
domains such as public transport where safety is an issue, a

hazard analysis should be conducted from which safety
requirements can be identified.

2.3 Overview of requirements analysis

Once the aims of the project have been established, the
work of eliciting, analysing and validating the system
requirements can commence. This is crucial to gaining a
clear understanding of the problem for which the system is
to provide asolution and itslikely cost [Tha97].

The requirements engineer must strive for completeness by
ensuring that all the relevant sources of requirements are
identified and consulted. It will usually be infeasible to

consult everyone. There may be many of users of a large
system, for example. However, representative examples of
each class of system stakeholder should be identified and
consulted. Although individual stakeholders will be
authoritative about aspects of the system that represent their
interests or expertise, the requirements engineer has the
responsibility to create the ‘big picture’ to permit for the
assurance of completeness with all individual stakeholders.

Elicitation of the stakeholders requirements is rarely easy
and the requirements engineer has to learn a range of
techniques for helping people articulate how they do their
jobs and what would help them do their jobs better. There
are many social and political issues that can affect
stakeholders' requirements and their ability or willingness
to articulate them and it is necessary to be sensitive to them
[Gog93]. In many cases, it is necessary to provide a
contextual framework that serves to focus the consultation;
to help the stakeholder identify what is possible and help
the requirements engineer verify their understanding.
Exposing the stakeholders to prototypes may help, and
these don't necessarily have to be high fidelity. A series of
rough sketches on a flip chart can sometimes serve the
same purpose as a software prototype, whilst avoiding the
pitfalls of distraction caused by cosmetic features of the
software. Walking the stakeholder through a small number

2-3

of scenarios representing sequences of events in the
application domain can aso help the stakeholder and
reguirements engineer to explore the key factors affecting
the requirements.

Once identified, the system requirements should be
validated by the stakeholders and trade-offs negotiated
before further resources are committed to the project. To
enable validation, the system requirements are normally
kept at a high level and expressed in terms of the
application domain rather than in technical terms. Hence
the system requirements for an Internet book store will be
expressed in terms of books, authors, warehousing and
credit card transactions, not in terms of the communication
protocols, or key distribution algorithms that may form part
of the solution. Too much technical detail at this stage
obscures the essential characteristics of the system viewed
from the perspective of its customer and users.

Some system requirements may not be satisfiable. Some
may be technically infeasible, others may be too costly to
implement and some will be mutually incompatible. The
requirements engineer must analyse the requirements to
understand their implications and how they interact. They
must be prioritised and their costs estimated. The goal is to
identify the scope of the system and a ‘baselineg’ set of
system requirements that is feasible and acceptable. This
may necessitate helping stakeholders whose requirements
conflict (with each other or with cost or other constraints)
to negotiate acceptabl e trade-offs.

To help the analysis of the system requirements, conceptual
models of the system are constructed. These aid
understanding of the logical partitioning of the system, its
context in the operational environment and the data and
control communications between the logical entities. In
general, amix of static (e.g. an object model) and dynamic
(e.g. event traces and state diagrams) should be developed
to explore different aspects of the system and it’s problem

domain. However, the choice of which aspects to model is
conditioned by the nature of the problem domain.

The system requirements must be analysed in the context of
all the applicable constraints. Constraints come from many
sources, such as the business environment, the customer’s
organisational structure and the system’s operational
environment. They include budget, schedule, technical
(non-functional requirements), regulatory and other
constraints. Hence, the requirements engineer’s job is not
restricted to eliciting stakeholders requirements, but
includes making assessments of their feasibility.
Requirements that are clearly infeasible should be rejected
and the reason for rejection recorded. Requirements that are
merely suspected of being infeasible are more difficult. A
feasibility study may be justified if, for example, a doubtful
requirement is strongly advocated by stakeholders [KotQO0,
Lou9s].

Project resources should be focused on the most important
priority requirements. In principle, the requirements should
be both necessary and sufficient — there should be nothing

2.4

left out or anything that doesn't need to be included.
Achieving this is, of course, difficult. The absence of
important requirements information can only be detected by
rigorous analysis. Similarly, it may take considerable effort
to reach consensus on requirement priorities because one
stakeholder’'s essential requirement may have only
cosmetic value to another. In practice, the existence of
sufficient resources will alow some non-essentia
requirements to be satisfied, while insufficient resources
may force even strongly advocated requirements to be
excluded. Regardless of how the baseline is identified,
requirements and V&V personnel must derive acceptance
tests that will assure compliance with the requirements
before delivery or release of the product.

Eventually, a complete and coherent set of system
requirements will emerge as the result of the analysis
process. At this point, the principal areas of functionality
should be clear. Subsystems or components are defined to
handle each principle area of functionality. The system
requirements are then allocated or distributed to
subsystems/components.

This activity of partitioning and allocation is part of
architectural design. Architectural design is a skill that is
driven by many factors such as the recognition of reusable
architectural 'patterns’ or the existence of off-the shelf
components. Derivation of the system architecture
represents a major milestone in the project and it is crucial
to get the architecture right. In particular, the interaction of
the system components crucialy affects the extent to which
the system will exhibit the desired emergent properties. At
this point, the system requirements and system architecture
are documented, reviewed and 'signed off' as the baseline
for subsequent development, project planning and cost
estimation.

Except in small-scale systems, it is generally infeasible for
software developers to begin detailed design of system
components from the system requirements document. The
requirements alocated to components that are complex
systems in themselves will need to undergo further cycles
of analysis in order to add more detail, and to interpret the
domain-oriented system requirements for developers who
may lack sufficient knowledge of the application domain to
interpret them correctly. Hence, a number of detailed
technical requirements are typically derived from each
high-level system requirement. It is crucia to record and
mai ntain this derivation to enable requirementsto be traced.
Tracing is crucial to requirements management because it
alows, for example, the impact of any subsequent changes
to the requirements to be assessed.

Refinement of the requirements and system achitecture is
where requirements engineering merges with software
design. There is no clear-cut boundary but it is rare for
requirements analysis to continue beyond 2 or 3 levels of

architectural decomposition before responsibility is handed
over to the design teams for the individual components.

© |EEE — Stoneman (Version 0.9) — February 2001

2.4 Requirementsengineeringin practice

The overview of requirements analysis given in section 2.3
described the process of eliciting and anaysing
requirements and deriving the system architecture as if it
was alinear sequence of activities. Thisisan idealised view
of the process. This section examines some reasons why a
linear process is seldom practicable in the context of real
software projects.

There is a general pressure in the software industry for
ever-shorter development cycles, and this is particularly
pronounced in highly competitive market-driven sectors.
Moreover, most projects are constrained in some way by
their environment and many are upgrades to or revisions of
existing systems where the system architecture is a given.
In practice, therefore, it is amost always impractical to
implement requirements engineering as a linear,
deterministic process where system requirements are
elicited from the stakeholders, baselined, allocated and
handed over to the software development team. It is
certainly a myth that the requirements for large systems are
ever perfectly understood or perfectly specified [Som97].

Instead, requirements typicaly iterate toward a level of
quality and detail that is sufficient to permit design and
procurement decisions to me made. In some projects, this
may result in the requirements being baselined before all
their properties are fully understood. This risks expensive
rework if problems emerge late in the development process.
However, requirements engineers are necessarily
constrained by project management plans and must
therefore take steps to ensure that the requirements' quality
is as high as possible given the available resources. They
should, for example, make explicit any assumptions that
underpin the requirements, and any known problems.

Even where requirements engineering is well resourced, the
level of analysis will seldom be uniformly applied. For
example, early in the analysis process experienced
engineers are often able to identify where existing or off-
the-shelf solutions can be adapted to the implementation of
system components. The requirements allocated to these
need not be elaborated further, while others, for which a
solution isless obvious, may need to be subjected to further
analysis. Critical requirements, such as those concerned
with public safety, must always be analyzed rigorously.

In amost all cases requirements understanding continues to
evolve as design and development proceeds. This often
leads to the revision of requirements late in the life-cycle.
Perhaps the most crucial point of understanding about
requirements engineering is that a significant proportion of
the requirements will change. This is sometimes due to
errors in the analysis, but it is frequently an inevitable
consequence of change in the 'environment': the customer's
operating or business environment; or in the market into
which the system must sell, for example. Whatever the
cause, it is important to recognise the inevitability of
change and adopt measures to mitigate the effects of

© |IEEE — Stoneman (Version 0.9) — February 2001

change. Change has to be managed by ensuring that
proposed changes go through a defined review and
approval process, and by applying careful requirements
tracing, impact analysis and version management. Hence,
the requirements engineering process is not merely a front-
end task to software development, but spans the whole
development life-cycle. In atypical project the activities of
the requirements engineer evolve over time from elicitation
to change management.

2.5 Productsand deliverables

Good requirements engineering requires that the products
of the process - the deliverables - are defined. The most
fundamental of these in reguirements engineering is the
requirements document. This often comprises two separate
documents (an architecture description may also be
developed at this stage - see the knowledge are description
for software design):

A document that specifies the system requirements. Thisis
sometimes known as the requirements definition document,
user requirements document or, as defined by IEEE std
1362-1998, the concept of operations (ConOps) document.
This document serves to define the high-level system
requirements from the stakeholders' perspective(s). It also
serves as a vehicle for validating the system requirements.
Its readership includes representatives of the system
stakeholders. It must therefore be couched in terms of the
customer's domain. In addition to a list of the system
reguirements, the requirements definition needs to include
background information such as statements of the overall
objectives for the system, a description of its target
environment and a statement of the constraints and non-
functional requirements on the system. It may include
conceptual models designed to illustrate the system context,
usage scenarios, the principal domain entities, and data,
information and work flows[Tha97].

A document that specifies the software requirements. This
is sometimes known as the software requirements
specification (SRS). The purposeand readership of the SRS
is somewhat different than the requirements definition

document. In crude terms, the SRS documents the detailed
requirements derived from the system requirements, and

which have been allocated to software. The non-functional
requirements in the requirements definition should have
been elaborated and quantified. The principal readership of
the SRS can be assumed to have some knowledge of
software engineering concepts. This can be reflected in the
language and notations used to describe the requirements,

and in the detail of models used to illustrate the system. For

custom software, the SRS may form the basis of a contract
between the developer and customer [Kot00, Tha97].

Requirements documents must be structured so as to
minimize the effort needed to read and locate information
within them. Failure to achieve this reduces the likelihood
that the system will conform to the requirements. It also

2-5

hinders the ability to make controlled changes to the
document as the system and its requirements evolve over
time. Standards such as |IEEE std 1362-1998 and |EEE std
830-1998 provide templates for requirements documents.
Such standards are intended to be generic and need to be
tailored to the context in which they are used.

Care must also be taken to describe requirements as
precisely as possible. Requirements are usually written in
natural language but in the SRS this may be supplemented
by forma or semi-forma descriptions. Selection of
appropriate notations permits particular requirements and
aspects of the system architecture to be described more
precisely and concisely than natural language. The general
rule is that notations should be used that alow the
requirements to be described as precisely as possible. This
is particularly crucia for safety-critica and certain other
types of dependable systems. However, the choice of
notation is often constrained by the training, skills and
preferences of the document’ s authors and readers.

Natural language has many serious shortcomings as a
mediumfor description. Among the most serious are that it
is ambiguous and hard to describe complex concepts
precisely. Formal notations such as Z or CSP avoid the
ambiguity problem because their syntax and semantics are
formally defined. However, such notations are not
expressive enough to adequately describe every system
aspect. Natural language, by contrast, is extraordinarily rich
and able to describe, however imperfectly, aimost any
concept or system property. A natural language is aso
likely to be the document author and readerships only
lingua franca. Because natural language is unavoidable,
requirements engineers must be trained to use language
simply, concisely and to avoid common causes of mistaken
interpretation. Theseinclude:

long sentences with complex sub-clauses;

the use of terms with more than one plausible
interpretation (ambiguity);

presenting several
requirement;

requirements as a single

inconsistency in the use of terms such as the use of
synonyms.

To counteract these problems, requirements descriptions
often adopt a stylized form and use a restricted subset of a
natural language. It is good practice, for example, to
standardize on a small set of modal verbs to indicate
relative priorities. For example, 'shall' is commonly used to
indicate that a requirement is mandatory, and 'should' to
indicate a requirement that is merely desirable. Hence, the
requirement ‘The emergency breaks shall be applied to
bring the train to a stop if the nose of the train passes a
signal at DANGER’ is mandatory.

The requirements documents(s) must be subject to
validation and verification procedures. The requirements
must be validated to ensure that the requirements engineer

has understood the requirements. It is also important to
verify that a requirements document conforms to company
standards, and is understandable, consistent and compl ete.
Formal notations offer the important advantage that they
permit the last two properties to be proven (in a restricted
sense, at least). The document(s) should be subjected to
review by different stakeholders including representatives
of the customer and developer. Crucialy, requirements
documents must be placed under the same configuration
management regime as the other deliverables of the
development process [Byr94, Ros98].

The requirements document(s) are only the most visible
manifestation of the requirements. They exclude
information that is not required by the document
readership. However this other information is needed in
order to manage them. In particular, it is essential that
requirements are traced.

One method for tracing regquirements is through the
construction of a directed acyclic graph (DAG) that records
the derivation of requirements and provides audit trails of
requirements. As a minimum, requirements need to be
traceable backwards to their source (e.g. from a software
requirement back to the system requirement(s) from which
it was elaborated), and forwards to the design or
implementation artifacts that implement them (e.g. from a
software requirement to the design document for a
component that implements it). Tracing alows the
requirements to be managed. In particular, it allows an

impact analysis to be performed for a proposed change to
one of the requirements.

Modern requirements management tools help maintain

tracing information. They typically comprise a database of
requirements and a graphical user interface:

to store the requirement descriptions and attributes;

to alow the trace DAGs to be generated
automatically;

to allow the propagation of requirements changes to
be depicted graphically;

to generate reports on the status of requirements (such
as whether they have been analysed, approved,
implemented, etc.);

to generate requirements documents that conform to
selected standards;

and to apply configuration management to the
requirements.

It should be noted that not every organisation has a culture
of documenting and managing requirements. It is common
for dynamic start-up companies which are driven by a
strong ‘product vision’ and limited resources to view
requirements documentation as an unnecessary overhead.
Inevitably, however, as these companies expand, as their
customer base grows and as their product starts to evolve,
they discover that they need to recover the requirements
that motivated product featuresin order to assess the impact

© |EEE — Stoneman (Version 0.9) — February 2001

of proposed changes. Hence, requirements documentation
and management are fundamental to the any requirements
engineering process.

3 BREAKDOWN OF TOPICS

REQUIREMENTS

FOR SOFTWARE

The knowledge area breakdown we have chosen is broadly
compatible with the sections of ISO/IEC 12207-1995 that
refer to requirements engineering activities. This standard
views the software process at 3 different levels as primary,
supporting and organisational life-cycle processes. In order
to keep the breakdown simple, we conflate this structure
into a single life-cycle process for reguirements
engineering. The separate topics that we identify include
primary life-cycle process activities such as requirements
elicitation and requirements anaysis, aong with
requirements engineering-specific descriptions of
management and, to a lesser degree, organisational
processes. Hence, we identify requirements validation and
requirements management as separate topics.

We are aware that a risk of this breakdown is that a
waterfall-like process may be inferred. To guard against

this, the first topic, the requirements engineering process, is
designed to provide a high-level overview of requirements
engineering by setting out the resources and constraints that
requirements engineering operates under and which act to
configure the requirements engineering process.

There are, of course, many other ways to structure the
breakdown. For example, instead of a process-based
structure, we could have used a product-based structure
(system requirements, software requirements, prototypes,
use-cases, etc.). We have chosen the process-based
breakdown to reflect the fact that requirements engineering,
if it is to be successful, must be considered as a process
with complex, tightly coupled activities (both sequential
and concurrent) rather than as a discrete, one-off activity at
the outset of a software development project. The
breakdown is compatible with that used by many of the
works in the recommended reading list (Appendices C and

D). See section 4. for an itemised rationale for the
breakdown.

The breakdown comprises 6 topics as shown in Table 1
[Kot00, Lou9s, Thad7].

Softwar e Requir ements

Requirements Requirements Requirements Requirement Requirements Requirements
— Engineering N . — e — - —
= Elicitation Analysis Specification Validation M anagement
r 0cess
) . Requirements Conduct of
B Process Models Requirements Requ[r_emgnts — Definition B Requirements P> Change
Sources Classification . Management
Document Reviews
Software
Elicitation Conceptual Requirements , Requirements
. H Prototypin
= Process Actors Techniques Modeling ™ Specification yping ™ Attributes
. (SR9
Architectural Document
Process Support Design and Model Requirements
L . B Structure and L didati :
and Management Requirements Vaélidation Tracing
) Standards
Allocation
Process Quality .
Ly and R’jqugt?gt]ieonf Dg;”;??m > Acceptance tests
Improvement € y
Table 1 Knowledge area breakdown
© |IEEE — Stoneman (Version 0.9) — February 2001 -7

Figure 1 shows conceptually, how these activities comprise
an iterative requirements engineering process. The different
activities in requirements engineering are repeated until an

process to terminate. It isimportant to note that terminating
the requirements engineering process prematurely can have
a detrimental effect on the system design. After a final

requirements document has been produced, any further
changes become part of the requirements management
process.

acceptable requirements specification document s
produced or until external factors such as schedule pressure
or lack of resources cause the requirements engineering

Informal statement of
reguirements

User needs
Domain information
Standards

Decision point: Accept
document or reenter spiral

K\\

Requi rements dlicitation Requirements analysis
and negotlatlon

Requirements document Start

e | /
and validation report \ \ \

Agreed

Requirements validation

/

\J

Draft requirements
document

/ / / reqUi rements

Requirements specification

—r—

Figure 1l A spiral model of the requirements engineering process

3.1 Therequirementsengineering process

This section introduces the requirements engineering
process, orienting the remaining 5 topics and showing how

requirements engineering dovetails with the overall
software engineering process.

3.1.1 Process models.

The objective of this subtopic is to provide an
understanding that the requirements engineering process.

is not a discrete front-end activity of the software life-
cycle, but rather, a process that is initiated at the
beginning of a project and continues to be refined
throughout the life-cycle of the software process;

must identify requirements as configuration items, and
manage them under the same configuration regime as
other products of the development process;

will need to be tailored to the organisation and project
context.

In particular, the subtopic is concerned with how the
activities of elicitation, analysis, specification, validation

2-8

and management are configured for different types of
project and constraints. The subtopic is also with activities

that provide input to the reguirements engineering process
such as marketing and feasibility studies.

3.1.2 Process actors.

This subtopic introduces the roles of the people who
participate in the requirements engineering process.
Requirements engineering is fundamentally
interdisciplinary and the requirements engineer needs to
mediate between the domains of the user and software
engineering. There are often many people involved besides
the requirements engineer, each of whom have a stake in
the system. The stakeholders will vary across different
projects but always includes users/operators and customer
(who need not be the same) [Gog93]. These need not be
homogeneous groups because there may be many users and
many customers, each with different concerns. There may
also be other stakeholders who are external to the
user’slcustomer’s organisation, such as regulatory
authorities, who's requirements need to be carefully
analysed. The system/software developers are also
stakeholders because they have a legitimate interest in

© |EEE — Stoneman (Version 0.9) — February 2001

profiting from the system. Again, these may be a
heterogeneous goup in which (for example) the system
architect has different concerns from the system tester.

It will not be possible to perfectly satisfy the requirements
of every stakeholder and the requirements engineer's job is
to negotiate a compromise that is both acceptable to the
principal stakeholders and within budgetary, technical,
regulatory and other constraints. A prerequisite for thisis

that all the stakeholders are indentified, the nature of their
‘stake’ isanalysed and their requirements are elicited.

3.1.3 Process support and management.

This subtopic introduces the project management resources
required and consumed by the regquirements engineering
process. This topic merely sets the context for topic 3
(Initiation and scope definition) of the software
management KA. It's principal purpose is to make the link
from process activities identified in 3.1.1 to issues of cost,
human resources, training and tools.

Table 2 shows the links to common themes in other KAs.

3.1.4 Processquality and improvement.

This subtopic is concerned with requirements engineering
process quality assessment. Its purpose is to emphasize the
key role requirements engineering plays in terms of the
cost, timeliness and customer satisfaction of software
products [Som97]. It will help to orient the reguirements
engineering process with quality standards and process
improvement models for software and systems. Process
quality and improvement is closely related to the software
quality KA and the software process KA. Of particular
interest are issues of software quality attributes and
measurement, and software process definition. This
subtopic covers:

requirements engineering coverage by process
improvement standards and models;

requirements engineering metrics and benchmarking;

improvement planning and implementation;

Linksto common themes

Quality

The process quality and improvement subtopic is concerned with quality. It
contains links to SPI standards such as the software and systems engineering
capability maturity models, the forthcoming 1SO/IEC 15504 and 1SO 9001-3
guideline. Requirements engineering process is at best peripheral to these and
the only work to address requirements engineering processes specifically, is the
requirements engineering good practice guide [Som97].

Standards

SPI models/standards as described in the quality theme above. In addition, the
life-cycle software engineering standard ISO/IEC 12207-1995 describes

requirements engineering activities in the context of the primary, supporting
and organisational life-cycle processes for software.

M easurement

At the process level, requirements metrics tend to be relatively coarse-grained
and concerned with (e.g.) counting numbers of requirements and numbers and
effects of requirements changes. If these indicate room for improvement (as
they inevitably will) it is possible to measure the extent and rigour with which
requirements 'good practice' is used in a process. These measures can serve to
highlight process weaknesses that should be the target improvement efforts.

Tools

General project management tools. Refer to the software management KA.

Table 2 Process quality links to other KAs

3.2 Requirementselicitation

This topic covers what is sometimes termed ‘requirements
capture’, ‘'requirements discovery’ or ‘requirements
acquisition’. It is concerned with where reguirements come
from and how they can be collected by the requirements
engineer. Requirements elicitation is the first stage in
building an understanding of the problem the software is
required to solve. It is fundamentally a human activity and
is where the stakeholders are identified and relationships
established between the development team (usualy in the
form of the requirements engineer) and the customer.

© |IEEE — Stoneman (Version 0.9) — February 2001

3.2.1 Requirements sources

In a typical system, there will be many sources of
requirements and it is essential that all potential sources are
identified and evaluated for their impact on the system.
This subtopic is designed to promote awareness of different
requirements sources and frameworks for managing them.
The main points covered are:

Goals. The term 'Goal' (sometimes called 'business
concern' or ‘critical success factor') refers to the
overall, high-level objectives of the system. Goals

2-9

provide the motivation for a system but are often
vaguely formulated. Requirements engineers need to
pay particular attention to assessing the value (relative
to priority) and cost of goals. A feasibility study is a
relatively low-cost way of doing this[Lou95].

Domain knowledge. The requirements engineer needs
to acquire or to have available knowledge about the
application domain. This enables them to infer tacit
knowledge that the stakeholders do not articulate,
assess the trade-offs that will be necessary between
conflicting requirements and sometimes to act as a
‘user' champion.

System stakeholders (see 3.1.2). Many systems have
proven unsatisfactory because they have stressed the
requirements for one group of stakeholders at the
expense of others. Hence, systems are delivered that
are hard to use or which subvert the cultural or
political structures of the customer organisation. The
requirements engineer needs to identify represent and

manage the 'viewpoints' of many different types of
stakeholder [Kot00].

The operational environment. Requirements will be
derived from the environment in which the software
will execute. These may be, for example, timing
constraints in a real-time system or interoperability
congtraints in an office environment. These must be
actively sought because they can greatly affect system
feasibility, cost, and restrict design choices[Tha97].

The organizational environment. Many systems are
required to support a business process and this may be
conditioned by the structure, culture and internal
politics of the organisation. The requirements
engineer needs to be sensitive to these since, in
general, new software systems should not force
unplanned change to the business process.

3.2.2 Elicitation techniques

When the requirements sources have been identified the
requirements engineer can start eliciting requirements from
them. This subtopic concentrates on techniques for getting
human stakeholders to articulate their requirements. Thisis
avery difficult area and the requirements engineer needs to
be sensitized to the fact that (for example) users may have
difficulty describing their tasks, may leave important
information unstated, or may be unwilling or unable to
cooperate. It is particularly important to understand that
elicitation is not a passive activity and that even if
cooperative and articulate stakeholders are available, the
requirements engineer has to work hard to €licit the right
information. A number of techniques will be covered, but
the principal ones are [Gog93]:

Interviews. Interviews are a ‘'traditional’ means of
eliciting requirements. It is important to understand

2-10

the advantages and limitations of interviews and how
they should be conducted.

Scenarios. Scenarios are vauable for providing
context to the elicitation of users requirements. They
alow the requirements engineer to provide a
framework for questions about users tasks by
permitting 'what if? and 'how is this done? questions
to be asked. There is a link to 3.3.2. (conceptual
modeling) because recent modeling notations have
attempted to integrate scenario notations with object-
oriented analysis techniques.

Prototypes. Prototypes are a vauable tool for
clarifying unclear requirements. They can act in a
similar way to scenarios by providing a context within
which users better understand what information they
need to provide. There is a wide range of prototyping
techniques, which range from paper mockups of
screen designs to betatest versions of software
products. There is a strong overlap with the use of
prototypes for requirements validation (3.5.2).

Facilitated meetings. The purpose of these is to try to
achieve a summative effect whereby a group of people
can bring more insight to their requirements than by
working individually. They can brainstorm and refine
ideas that may be difficult to surface using (e.g.)
interviews. Another advantage is that conflicting
requirements are surfaced early on in a way that lets
the stakeholders recognise where there is conflict. At
its best, this technique may result in a richer and more
consistent set of requirements than might otherwise be
achievable. However, meetings need to be handled
carefully (hence the need for afacilitator) to prevent a
situation where the critical abilities of the team are
eroded by group loyalty, or the requirements
reflecting the concerns of a few vociferous (and
perhaps senior) people to the detriment of others.

Observation. The importance of systems context
within the organizational environment has led to the
adaptation of observational techniques for
requirements elicitation. The requirements engineer
learns about users' tasks by immersing themselves in
the environment and observing how users interact
with their systems and each other. These techniques
are relatively new and expensive but are instructive
because they illustrate that many user tasks and
business processes are too subtle and complex for
their actorsto describe easily.

© |EEE — Stoneman (Version 0.9) — February 2001

Table 3 shows the process quality links to common themesin other KAs.

Linksto common themes

Quality The quality of requirements elicitation has a direct effect on product quality.
The critical issues are to recognise the relevant sources, to strive to avoid
missing important requirements and to accurately report the requirements.

M easurement Very little work on metric requirements elicitation has been carried out.

Table 3 Elicitation techniques links to other KAs

3.3 Requirementsanalysis

This subtopic is concerned with the process of analysing
requirementsto:

detect and resolve conflicts between requirements;

discover the bounds of the system and how it must
interact with its environment;

elaborate system
requirements.

requirements to software

The traditional view of reguirements analysis was to reduce
it to conceptual modeling using one of a number of analysis
methods such as SADT or OOA. While conceptual
modeling is important, we include the classification of
requirements to help inform trade-offs between
requirements (requirements classification), and the process
of establishing these trade-offs (requirements negotiation)
[Dav9ag].

3.3.1 Requirements classification

There is a strong overlap between requirements
classification and requirements attributes (3.6.2).
Requirements can be classified on a number of dimensions.
Examples include:

Whether the requirement is functional or non-
functional (see2.1).

Whether the requirement is derived from one or more
high-level requirements, an emergent property (see
2.1), or at a high level and imposed directly on the
system by a stakeholder or some other source.

Whether the requirement is on the product or the
process. Requirements on the process constrain, for
example, the choice of contractor, the development
practices to be adopted, and the standards to be
adhered to.

The requirement priority. In general, the higher the
priority, the more essential the requirement is for
meeting the overall goals of the system. Often
classified on a fixed point scale such as mandatory,
highly desirable, desirable, optional. Priority often
has to be balanced against cost of development and
implementation.

© |IEEE — Stoneman (Version 0.9) — February 2001

The scope of the requirement. Scope refers to the
extent to which a requirement affects the system and
system components. Some requirements, particularly
certain non-functional ones, have a global scope in
that their satisfaction cannot be allocated to a discrete
component. Hence a requirement with global scope
may strongly affect the system architecture and the
design of many components, one with a narrow scope
may offer a number of design choices with little
impact on the satisfaction of other requirements.

Volatility/stability. Some requirements will change
during the life-cycle of the software and even during
the development process itself. It is useful if some
estimate of the likelihood of a requirement changing
can be made. For example, in a banking application,
requirements for functions to calculate and credit
interest to customers accounts are likely to be more
stable than a requirement to support a particular kind
of taxfree account. The former reflect a fundamental
feature of the banking domain (that accounts can earn
interest), while the latter may be rendered obsolete by
a change to government legislation. Flagging
requirements that may be volatile can help the
software engineer establish a design that is more
tolerant of change.

Other classifications may be appropriate, depending upon
the development organization's normal practice and the
application itself.

3.3.2 Conceptual modeling

The development of models of the problem is fundamental
to requirements analysis (see 2.4). The purpose is to aid
understanding of the problem rather than to initiate design
of the solution. Hence, conceptual models comprise models

of entities from the problem domain configured to reflect
their real-world relationships and dependencies.

There are several kinds of models that can be developed.
These include data and control flows, state models, event

traces, user interactions, object models and many others.
The factors that influence the choice of model include:

The nature of the problem. Some types of application
demand that certain aspects be analysed particularly
rigorously. For example, control flow and state
models are likely to be more important for rea-time
systems than for an information system.

2-11

The expertise of the requirements engineer. It is often
more productive to adopt a modeling notation or
method that the reguirements engineer has experience
with. However, it may be appropriate or necessary to
adopt a notation that is better supported by tools,
imposed as a process requirement (see 3.3.1), or
simply ‘better’.

The process requirements of the customer. Customers
may impose a particular notation or method on the

requirements engineer. This can conflict with the
previous factor.

The availability of methods and tools. Notations or
methods that are poorly supported by training and

tools may mot reach widespread acceptance even if
they are suited to particular types of problem.

Note that in aimost all cases, it is useful to start by building
amodel of the system context. The system context provides
an understanding between the intended system and its
external environment. This is crucial to understanding the

system's context in its operational environment and to
identify itsinterfaces to the environment.

The issue of modeling is tightly coupled with that of
methods. For practical purposes, a method is a notation (or
set of notations) supported by a process that guides the
application of the notations. Methods and notations come
and go in fashion. Object-oriented notations are currently in
vogue but the issue of what is the 'best’ notation is sddom
clear. There is little empirical evidence to support claims
for the superiority of one notation over another.

Formal modeling using notations based upon discrete
mathematics and which are tractable to logical reasoning
have made an impact in some speciaized domains. These
may be imposed by customers or standards or may offer
compelling advantages to the analysis of certain critical
functions or components.

This topic does not seek to 'teach’ a particular modeling

style or notation but rather to provide guidance on the
purpose and intent of modeling.

3.3.3 Architectural design and requirements allocation

At some point the architecture of the solution must be
derived. Architectural design is the point at which
requirements engineering overlaps with software or
systems design and illustrates how impossible it is to
cleanly decouple both tasks [SomO01]. This subtopic is
closely related to topic 2, in Chapter 3 (software
architecture). In many cases, the requirements engineer acts

2-12

as system architect because the process of analysing and
elaborating the requirements demands that the subsystems
and components that will be responsible for satisfying the
reguirements be identified. This is requirements allocation
— the assignment of responsibility for satisfying
requirements to subsystems.

Allocation is important to permit detailed analysis of
requirements. Hence, for example, once a set of
requirements have been allocated to a component, they can
be further analysed to discover requirements on how the
component needs to interact with other components in
order to satisfy the allocated requirements. In large
projects, alocation stimulates a new round of analysis for
each subsystem. As an example, requirements for a
particular braking performance for a car (braking distance,
safety in poor driving conditions, smoothness of
application, pedal pressure required, etc.) may be allocated
to the braking hardware (mechanical and hydraulic
assemblies) and an anti-lock braking system (ABS). Only
when a requirement for an anti-lock system has been
identified, and the requirements are alocated to it can the
capabilities of the ABS, the braking hardware and emergent
properties (such as the car weight) be used to identify the
detailed ABS software requirements.

Architectural design is closely identified with conceptual
modeling. The mapping from real-world domain entities to
computational components not aways obvious, so
architectural design is identified as a separate sub-topic.
The requirements of notations and methods are broadly the
same for conceptual modeling and architectural design.

3.3.4 Requirements negotiation

Another name commonly used for this subtopic is ‘conflict
resolution’. It is concerned with resolving problems with
requirements where conflicts occur; between two
stakeholders' requiring mutually incompatible features, or
between requirements and resources or between capabilities
and constraints, for example [Kot00, Som97]. In most
cases, it is unwise for the requirements engineer to make a
unilateral decision so it is necessary to consult with the
stakehol der(s) to reach a consensus on an appropriate trade-
off. It is often important for contractual reasons that such
decisions are traceable back to the customer. We have
classified this as a requirements analysis topic because
problems emerge as the result of analysis. However, a
strong case can also be made for counting it as part of
requirements validation.

© |EEE — Stoneman (Version 0.9) — February 2001

Table 4 shows the requirements negotiation links to common themesin other KAs.

Linksto common themes

Quality The quality of the analysis directly affects product quality. In principle, the
more rigorous the analysis, the more confidence can be attached to the software
quality.

M easurement Part of the purpose of analysis is to quantify required properties. This is

particularly important for constraints such as reliability or safety requirements
where suitable metrics need to be identified to allow the requirements to be
quantified and verified.

Table 4 Requirements negotiation links to other KAs

3.4 Softwarerequirements specification

This topic is concerned with the structure, quality and
verifiability of the requirements document. This may take
the form of two documents, or two parts of the same
document with different readership and purposes (see 2.5):
the requirements definition document and the software
requirements specification. The topic stresses that
documenting the requirements is the most fundamental
precondition for successful requirements handling.

3.4.1 The system requirements definition document

This document (sometimes known as the user requirements
document or concept of operations) records the system
requirements. It defines the high-level system requirements
from the domain perspective. Its readership includes
representatives of the system users/customers (marketing
may play these roles for market-driven software) so it must
be couched in terms of the domain. It must list the system
requirements along with background information about the
overall objectivesfor the system, itstarget environment and
a statement of the constraints, assumptions and non-
functional requirements. It may include conceptual models
designed to illustrate the system context, usage scenarios,
the principal domain entities, and data, information and
workflows.

3.4.2 The software requirements specification (SRS)

The benefits of the SRS include:

It establishes the basis for agreement between the
customers and contractors or suppliers (in market-
driven projects, these roles may be played by
marketing and development divisions) on what the
software product is to do and as well as what it is not
expected do. For non-technical readership, the SRS is
often accompanied by the requirements definition
document.

© |IEEE — Stoneman (Version 0.9) — February 2001

It forces arigorous assessment of requirements before
design can begin and reduces later redesign.

It provides a realistic basis for estimating product
costs, risks and schedules.

Organisations can use a SRS to develop their own
validation and verification plans more productively.

Provides an informed a basis for transferring a
software product to new users or new machines.

Provides abasis for software enhancement
3.4.3 Document structure and standards

Several recommended guides and standards exist to help
define the structure of requirements documentation. These
include |EEE P1233/D3 guide, |EEE Std. 1233 guide, |EEE
std. 830-1998, ISO/IEC 12119-1994. |EEE std 1362-1998
concept of operations (ConOps) is a recent standard for a
requirements definition document.

3.4.4 Document quality

This is one area where metrics can be usefully employed in
requirements engineering. There are tangible attributes that
can be measured. Moreover, the quality of the requirements
document can dramatically affect the quality of the product.

A number of quality indicators have been developed that
can be used to relate the quality of an SRS to other project
variables such as cost, acceptance, performance, schedule,
reproducibility etc. Quality indicators for individua SRS
statements include imperatives, directives, weak phrases,
options ad continuances. Indicators for the entire SRS
document include size, readability, specification depth and
text structure [Dav93, Ros98, Thad7].

There is a strong overlap with 3.5.1 (the conduct of
requirements reviews). Table 5 shows the document quality
links to common themes in other KAs.

2-13

Linksto common themes

Quality The quality of the requirements documents dramatically affects the quality of
the product.

M easurement Quality attributes of requirements documents can be identified and measured.
See3.4.4.

Table5 Document quality linksto other KAs

3.5 Requirements validation

It is normal for there to be one or more formally scheduled
points in the requirements engineering process where the
requirements are validated. The aim is to pick up any
problems before resources are committed to addressing the
requirements. Requirements validation is concerned with
the process of examining the requirements document to
ensure that it defines the right system (i.e. the system that
the user expects) [Kot0O]. There are four important
subtopics.

3.5.1 Theconduct of requirements reviews.

Perhaps the most common means of validation is by
inspection or forma reviews of the requirements
document(s). A group of reviewers is constituted with a
brief to look for emrors, mistaken assumptions, lack of
clarity and deviation from standard practice. The
composition of the group that conducts the review is
important (at least one representative of the customer
should be included for a customer-driven project, for
example) and it may help to provide guidance on what to
look for in the form of checklists.

Reviews may be constituted on completion of the system
requirements definition document, the software
requirements specification document, the baseline
specification for anew release, etc.

3.5.2 Prototyping.

Prototyping is commonly employed for validating the
requirements engineer's interpretation of the system
requirements, as well as for eliciting new requirements. As
with elicitation, there is a range of prototyping techniques
and a number of points in the process when prototype
validation may be appropriate. The advantage of prototypes
is that they can make it easier to interpret the requirements

engineer's assumptions and give useful feedback on why
they are wrong. For example, the dynamic behaviour of a
user interface can be better understood through an animated
prototype than through textual description or graphical
models. There are also disadvantages, however. These
include the danger of users attention being distracted from
the core underlying functionality by cosmetic issues or
quality problems with the prototype. For this reason,
several people recommend prototypes that avoid software —
such asflip -chart-based mockups. Prototypes may be costly
to develop. However, if they avoid the wastage of resources
caused by trying to satisfy erroneous requirements, their
cost can be more easily justified.

3.5.3 Model validation.

The quality of the models developed during analysis should
be validated. For example, in object models, it is useful to
perform astatic analysis to verify that communication paths
exist between aobjects that, in the stakeholders domain,

exchange data. If formal specification notations are used, it
is possible to use formal reasoning to prove properties of
the specification (e.g. completeness).

3.5.4 Acceptancetests.

An essential property of a system requirement is that it
should be possible to verify that the finished product
satisfies the requirement. Requirements that can't be
verified are really just ‘wishes. An important task is
therefore planning how to verify each requirement. In most
cases, thisis done by designing acceptance tests.

Identifying and designing acceptance test may be difficult
for non-functional requirements (see 2.1). To be verifiable,
they must first be analysed to the point where they can be
expressed quantitatively.

Table 6 shows the acceptance tests links to common themes in other KAs.

Linksto common themes

Quality Validation is all about quality - the quality of the requirements.
M easurement Measurement is important for acceptance tests and definitions of how
requirements are to be verified.
Table 6 Acceptance tests linksto other KAs
2-14 © |EEE — Stoneman (Version 0.9) — February 2001

3.6 Requirements management

Requirements management is an activity that spans te
whole software life-cycle. It is fundamentally about change
management and the maintenance of the requirements in a

state that accurately mirrors the software to be, or that has
been, built [Kot00, Lou95].

There are 3 subtopics concerned with requirements
management.

3.6.1 Change management

Change management is centra to the management of
requirements. This subtopic describes the role of change
management, the procedures that need to be in place and
the analysis that should be applied to proposed changes. It
has strong links to the configuration management
knowledge area.

3.6.2 Requirements attributes

Requirements should consist not only of a specification of
what isrequired, but also of ancillary information that helps
manage and interpret the requirements. This should include
the various classification dimensions of the requirement
(see 3.3.1) and the verification method or acceptance test
plan. It may also include additional information such as a
summary rationale for each requirement, the source of each
requirement and a change history. The most fundamental
requirements attribute, however, is an identifier that allows
the requirements to be uniquely and unambiguously

identified. A naming scheme for generating these IDs is an
essential feature of a quality system for a requirements
engineering process.

3.6.3 Requirementstracing

Requirements tracing is concerned with recovering the
source of requirements and predicting the effects of
requirements. Tracing is fundamental to performing impact
analysis when requirements change. A requirement should
be traceable backwards to the requirements and
stakeholders that motivated it (from a software requirement
back to the system requirement(s) that it helps satisfy, for
example). Conversely, a requirement should be traceable
forwards into requirements and design entities that satisfy it
(for example, from a system requirement into the software
requirements that have been elaborated from it and on into
the code modules that implement it).

The requirements trace for a typical project will form a
complex directed acyclic graph (DAG) of requirements. In
the past, development organizations either had to write
bespoke tools or manage it manually. This made tracing a
short-term overhead on a project and vulnerable to
expediency when resources were short. In most cases, this
resulted in it either not being done at all or being performed
poorly. The availability of modern requirements
management tools has improved this situation and the
importance of tracing (and requirements management in
general) is starting to make an impact in software quality.

Table 7 shows the requirements tracing links to common themes in other KAs.

Linksto common themes

Quality Requirements management is a level 2 key practice area in the software CMM
and this has boosted recognition of itsimportance for quality.

M easurement Mature organizations may measure the number of requirements changes and
use quantitative measures of impact assessment.

Table 7 Requirements tracing links to other KAs

4 BREAKDOWN RATIONALE

The criterion mentioned below are the criterion described
in Appendix A of the Guide: Knowledge Area Description

Specifications for the Trial Version of the Guide to the
SWEBOK.

Criterion (a): Number of topic breakdowns
One breakdown provided
Criterion (b): Reasonableness

The breakdown is reasonable in that it covers the areas
discussed in most requirements engineering texts and
standards.

© |IEEE — Stoneman (Version 0.9) — February 2001

Criterion (c): Generally accepted

The topic breakdowns (shown in Table 1) are generally

accepted in that they cover areas typically in texts and
standards.

At level A.1 the breakdown is identical to that given in
most requirements engineering texts, apart from process
improvement. Requirements engineering process
improvement is an important emerging area in regquirements
engineering. We believe this topic adds great value to any
the discussion of the requirements engineering as its
directly concerned with process quality assessment.

At level A.2 the breakdown is identical to that given in
most requirements engineering texts. At level A.3 the

2-15

breakdown is similar to that discussed in most texts. We
have incorporated a reasonably detailed section on
reguirement characterization to take into account the most
commonly discussed ways of characterizing requirements.
A.4 the breakdown is similar to that discussed in most
texts, apart from document quality assessment. We believe
this an important aspect of the requirements specification
document and deserves to be treated as a separate sub-
section. In A.5 and A.6 the breakdown is similar to that
discussed in most texts.

Criterion (d): No specific domains have been assumed
No specific domains have been assumed
Criterion (e): Compatible with various schools of though

Requirements engineering concept at the process level are
general mature and stable.

Criterion (f): Compatible with industry, literature and
standards

The breakdown used here has been derived from literature
and relevant standards to reflect a consensus of opinion.

Criterion (g): Asinclusive aspossible

The inclusion of the requirements engineering process A.1
sets the context for all requirements engineering topics.
This level is intended to capture the mature and stable
concepts in requirements engineering. The subsequent
levels al relate to level 1 but are general enough to allow
more specific discussion or further breakdown.

Criterion (h): Themes of quality, tools, measurement and
standards

The relationship of requirements engineering product

quality assurance, tools and standards is provided in the
breakdown.

Criterion (i): 2to 3levels, 5to 9 topics at thefirst level
The proposed breakdown satisfies this criterion.
Criterion (j): Topic nhames meaningful outside the guide
The topic names satisfy this criterion

Criterion (K): Version 0.1 of the description

Criterion (I): Text on the rationale underlying the proposed
breakdowns

This document providestherationale

5 MATRIX OF TOPICSVS. REFERENCE MATERIAL FOR
SOFTWARE REQUIREMENTS

In Table B.1 shows the topic/reference matrix. The table is
organized according to requirements engineering topics in
section 3. A ‘X’ indicates that the topic is covered to a
reasonable degree in the reference. A ‘X’ in appearing in
main topic but not the sub-topic indicates that the main
topic is reasonably covered (in general) but the sub-topicis
not covered to any appreciable depth. This situation is quite
common in most software engineering texts, where the
subject of requirements engineering is viewed in the large
context of software engineering.

TOPIC

REFERENCE

[Bry94]
[Gog93]
[Lou9s]
[Pf198]

[Ros98]
[Tha97]

Requirements engineering process

X | [Dav9g]

Process models

x| x| [Som9se]

Process actors

x| x| x| [Kotog]

X

Processsupport

Process improvement

x| x| x|x|x]| [Som97]

Requirementselicitation

Requirements sources

X
>
X

Elicitation techniques

Requirementsanalysis

Requirements classification

Conceptual modeling

x

X| X | X[X|X]|X]|X
>
x

Architectural design and requirements allocation

XXX X| X[X][X

XX XX

Requirements negotiation

2-16

© |EEE — Stoneman (Version 0.9) — February 2001

Requirement specification

The regquirements definition document

X

The software requirements specification (SRS)

Document structure

Document quality

XX X[X|[X

XX X[X|[X

XX X[X|[X
>

X | X | X[X

Requirements validation

X[X[X]X]|X]| X

The conduct of requirements reviews

Prototyping

X

Model validation

>
X | X | X[X

x

Acceptance tests

Requirements management

XX XX

Change management

Requirement attributes

Requirements tracing

XX XX

Table B.1 Topics and their references

Key Reference

[Byr94] [Byrne 1994]

[Davo3] [Davis 1993]

[Gog93] [Goguen and Linde 1993]

[Kot0Q] [Kotonya and Sommerville 2000]
[Lou9s] [Loucopulos and Karakostas 1995]
[Pfl198] [Pfleeger 1998]

[Ros98] [Rosenberg 1998]

[SomO01] [Sommerville 2001]

[Som97] [Sommervelle and Sawyer 1997]
[Thad7] [Thayer and Dorfman 1997]

6 RECOMMENDED REFERENCESFOR SOFTWARE
REQUIREMENTS

[Byrne 1994]. Bryne, E. "IEEE Standard 830:
Recommended Practice for Software Requirements
Specification,” IEEE International Conference on

Requirements Engineering, IEEE Computer Society Press,
April 1994, p. 58.

Describes the IEEE Standard 830-1993 for requirements
specification.

[Davis 1993]. Davis, A.M., Software Requirements:
Objects, Functions and States. Prentice-Hall, 1993.

Provides a way of categorizing software reguirements
techniques--objects, functions, and states. The author takes
an analytical approach by helping the reader analyze
which technique is best, rather than imposing one specific
technique. Discussion of a wide variety of techniques and
their uses is augmented with application illustration using
three case studies.

© |IEEE — Stoneman (Version 0.9) — February 2001

[Goguen and Linde 1993]. Goguen, J., and C. Linde,
"Techniques for Requirements Elicitation,” International
Symposium on Requirements Engineering, San Diego,
Cadlifornia. IEEE Computer Society Press, January 1993,
pp. 152-164.

This paper is an attempt to address the failings of
traditional requirements practice, particularly in eliciting
requirements. The paper explores a different paradigm for
understanding requirements engineering: the process is
seen essentially as a social process, in which requirements
emerge and evolve from the discourse between users and
developers. The paper describes a number of techniques for
requirements elicitation and examines their strengths and
weaknesses.

[Kotonya and Sommerville 2000]. Kotonya, G., and I.
Sommerville, Requirements Engineering: Processes and
Techniques. John Wiley and Sons, 2000.

Introduces reguirements engineering to undergraduate and
graduate students in computer science, software
engineering, and systems engineering. Part | is process-
oriented and describes different activities in the
requirements engineering process. Part 1l focuses on
requirements engineering techniques, covering the use of
structured methods, viewpoint-oriented approaches, and
specification of non- functional requirements and of
interactive systems. A final chapter presents a case study
illustrating a viewpoint-oriented approach. Includes
chapter key points and exercises.

[Loucopulos and Karakostas 1995]. Loucopulos, P., and V.
Karakostas, Systems Requirements Engineering. McGraw
Hill, pp. 1995.

It provides software professionals with a practical
framework for a formal requirements engineering (RE)
process. Readers will exchange their RE problem-solving

2-17

skills in chapters that help them accurately assess the
nature of the problems and implement effective solutions.

[Pfleeger 1998]. Pfleeger, S.L., Software Engineering-
Theory and Practice. Prentice-Hall, Chap. 4, 1998.

Applies concepts to two common examples: one that
represents a typical information system, and one that
represents a real-time system. This work features an
associated web page containing examples from literature

and links to web pages for relevant tool and method
vendors.

[Rosenberg 1998]. Rosenberg, L., T.F. Hammer and L.L.
Huffman, "Requirements, testing and metrics, " 15th

Annual Pacific Northwest Software Quality Conference,
Utah, October 1998.

This paper addresses the issue of evaluating the quality of a
requirements document. The authors describe a tool
developed to parse requirements documents. The
Automated Requirements Measurement (ARM) software
scans a file containing the text of the requirements
specification. The tool searches each line of text for specific

words and phrases based on seven quality indicators. ARM
has been applied to 56 NASA reguirements documents.

[Sommerville 2001]. Sommerville, I. Software Engineering
(6™ edition), Addison-Wesley, pp. 63-97,

97-147, 2001.

A textbook that presents a general introduction to software
engineering, for students in undergraduate and graduate
courses and software engineers in commerce and industry.
It doesn't describe commercial design methods or CASE

systems, but paints a broad picture of software engineering
methods and tools.

[Sommerville 1997]. Sommerville, I., and P. Sawyer,
Requirements engineering: A Good Practice Guide. John
Wiley and Sons, Chap. 1-2, 1997.

Presents guidelines which reflect good practice in
requirements engineering, based on the authors' experience
in research and in software and systems development. The
guidelines range from common sense tips to complex new
methods, and can be used in any order, which suits the
reader's problems, goals and budget. Guidelines are
consistent with 1SO 9000 and CMM, are ranked with cost
and benefit analysis, include implementation advice, and

can be combined and applied to suit an organization's
needs.

[Thayer and Dorfman 1997]. Thayer, R.H., and M.
Dorfman, Software Requirements Engineering (2™ Ed).
|IEEE Computer Society Press, pp. 176-205, 389-404, 1997.

A new edition of the comprehensive collection of original
and reprinted articles describing the current best practices
in requirement engineering focused primarily on software
systems but also including hardware and people systems.
The 35 papers introduce current issues and basic
terminology, and cover the phases of software requirements
engineering including elicitation, analysis, specification,

2-18

verification, and management. Specific discussions feature
descriptions of the process developers and users use to
review and articulate needs and constraints on
development, examine software requirements and
documentation, and supply details on management
planning and control. Lacks an index.

© |EEE — Stoneman (Version 0.9) — February 2001

APPENDIX A — LIST OF FURTHER READINGS

[Ardis 1997]. Ardis, M., "Forma Methods for
Telecommunication System Requirements: A survey of

Standardized Languages," Annals of Software Engineering,
3, N. Mead, ed., 1997.

[Berzins, et al. 1997]. Berzins, V., et a., "A Requirements
Evolution Model for Computer Aided Prototyping,” Ninth
IEEE International Conference on Software Engineering
and Knowledge Engineering, Skokie, Illinois: Knowledge
Systems Institute, June 1997, pp. 38-47.

[Beyer and Holtzblatt 1995]. Beyer, H., and Holtzblatt, K.,

"Apprenticing with the Customer,” Communications of the
ACM, 38, 5 (May 1995), pp.45-52.

[Bruno and Agarwal 1995]. Bruno, G., and R. Agarwal,
"Validating Software Requirements Using Operational
Models," Second Sympoium on Software Quality

Techniques and Acquisition Criteria, Florence, Italy, May
1995.

[Bucci, et al. 1994]. Bucci, G., et al., "An Object-Oriented
Dua Language for Specifying Reactive Systems," IEEE
International Conference on Requirements Engineering,
|EEE Computer Society Press, April 1994, pp. 6-15.

[Bustard and Lundy 1995]. Bustard, D., and P. Lundy,
"Enhancing Soft Systems Analysis with Forma Modeling,"
Second International Symposium on Requirements
Engineering, |IEEE Computer Society Press, 1995.

[Chechik and Gannon 1994]. Chechik, M., and J. Gannon,
"Automated Verification of Requirements
Implementation,” ACM Software Engineering Notes,
Proceedings of the International Symposium on Software
Testing and Analysis, Special Issue (October 1994), pp. 1-
15.

[Chung and Nixon 1995]. Chung, L., and B. Nixon,
"Dealing with Non-Functional Requirements. Three
Experimental Studies of a Process-Oriented Approach,"”
Seventeenth |EEE International Conference on Software
Engineering, |IEEE Computer Society Press, 1995.

[Ciancarini, et a. 1997]. Ciancarini, P., et a., "Engineering
Formal Requirements. An Analysis and Testing Method for
Z Documents,"” Annals of Software Engineering, 3, N.
Mead, ed., 1997.

[Crespo 1994]. Crespo, R., "We Need to ldentify the
Requirements of the Statements of Non-Functional
Requirements,” International Workshop on Requirements
Engineering: Foundations of Software Quality, June 1994,

[Curran, et a. 1994]. Curran, P., et a., "BORIS-R
Specification of the Requirements of a Large-Scale
Software Intensive System," Conference on Requirements
Elicitation for Software-Based Systems, July 1994,

[Darimont and Souquieres 1997]. Darimont, R., and J.
Souquieres, "Reusing Operational Requirements. A
Process-Oriented Approach,” IEEE International

© |IEEE — Stoneman (Version 0.9) — February 2001

Symposium on Requirements Engineering, |EEE Computer
Society Press, January 1997.

[Davis and Hsia 1994]. Davis, A., and P. Hsia, "Giving
Voice to Requirements Engineering: Guest Editors
Introduction,” |EEE Software, 11, 2 (March 1994), pp. 12
16.

[DeFoe 1994]. DeFoe, J, "Requirements Engineering
Technology in Industrial Education,” IEEE International
Conference on Requirements Engineering, |IEEE Computer
Society Press, April 1994, p. 145.

[Demirors 1997]. Demirors, E., "A Blackboard Framework
for Supporting Teams in Software Development,” Ninth
IEEE International Conference on Software Engineering
and Knowledge Engineering, Skokie, Illinois: Knowledge
Systems Institute, June 1997, pp. 232-239.

[Diepstraten 1995]. Diepstraten, M., "Command and
Control System Requirements Analysis and System
Requirements Specification for a Tactical System," First
|EEE International Conference on Engineering of Complex
Computer Systems, |IEEE Computer Society Press,
November 1995.

[Dobson and Strens 1994] Dobson, J.,, and R. Strens,
"Organizational Reguirements Definition for Information
Technology,” |IEEE International Conference on
Requirements Engineering, IEEE Computer Society Press,
April 1994, pp. 158-165.

[Duffy, et al. 1995]. Duffy, D., et a., "A Framework for
Requirements Analysis Using Automated Reasoning,”
Seventh International Conference on Advanced Information
Systems Engineering (CAISE '95), Springer-Verlag, 1995.

[Easterbrook and Nuseibeh 1995]. Easterbrook, S., and B.
Nuseibeh, "Managing Inconsistencies in an Evolving
Specification,” Second International Symposium on
Requirements Engineering, |EEE Computer Society Press,
January 1995.

[Edwards, et al 1995]. Edwards, M., et a., "RECAP: A
Requirements Elicitation, Capture, and Analysis Process
Prototype Tool for Large Complex Systems,” First IEEE
International Conference on Engineering of Complex
Computer Systems, IEEE Computer Society Press,
November 1995.

[El Emam and Madhavji 1995a]. EI Emam, K., and N.
Madhavji, "Requirements Engineering Practices in
Information Systems Development: A Multiple Case
Study," Second International Symposium on Requirements
Engineering, |IEEE Computer Society Press, 1995.

[Fairley and Thayer 1997]. Fairley, R., and R. Thayer, "The
Concept of Operations: The Bridge From Operational
Requirements to Technical Specifications,” Annals of
Software Engineering, 3, N. Mead, ed., 1997.

[Fickas and Feather 1995]. Fickas, S., and M. Feather,
"Requirements Monitoring in Dynamic Environments,”

Second International Symposium on Regquirements
Engineering, |IEEE Computer Society Press, 1995.

2-19

[Fields, et a. 1995]. Fields, R., et a., "A Task-Centered
Approach to Anayzing Human Error Tolerance
Requirements,” Second International Symposium on

Requirements Engineering, IEEE Computer Society Press,
1995.

[Ghajar-Dowlatshahi and Varnekar 1994]. Ghajar-
Dowlatshahi, J., and A. Varnekar, "Rapid Prototyping in
Requirements Specification Phase of Software Systems,"
Fourth Intemational Symposium on Systems Engineering,
Sunnyvale, Californiaz National Council on Systems
Engineering, August 1994, pp. 135-140.

[Gibson 1995]. Gibson, M., "Domain Knowledge Reuse
During Requirements Engineering," Seventh International
Conference on Advanced Information Systems Engineering
(CAISE '95), Springer-Verlag, 1995.

[Goldin and Berry 1994]. Goldin, L., and D. Berry,
"AbstFinder: A Prototype Abstraction Finder for Natural
Language Text for Use in Requirements Elicitation:
Design, Methodology and Evaluation,” |EEE International
Conference on Requirements Engineering, IEEE Computer
Society Press, April 1994, pp. 84-93.

[Gotel and Finkelstein 1997]. Gotel, O., and A. Finkelstein,
"Extending Requirements Traceability: Lessons Learned
from an Industrial Case Study,” IEEE International

Symposium on Requirements Engineering, |EEE Computer
Society Press, January 1997.

[Heimdahl 1996]. Heimdahl, M., "Errors Introduced during
the TACS Il Requirements Specification Effort: A
Retrospective Case Study," Eighteenth |EEE International

Conference on Software Engineering, |IEEE Computer
Society Press, 1996.

[Heitmeyer, et al. 1996]. Heitmeyer, C., et al., "Automated
Consistency Checking Requirements Specifications," ACM

Transactions on Software Engineering and Methodology, 5,
3 (July 1996), pp. 231-261.

[Holtzblatt and Beyer 1995]. Holtzblatt, K., and H. Beyer,

"Requirements Gathering: The Human Factor,”
Communications of the ACM, 38, 5 (May 1995), pp. 31-32.

[Hudlicka 1996]. Hudlicka, E., "Requirements Elicitation
with Indirect Knowledge Elicitation Techniques:
Comparison of Three Methods," Second |EEE International
Conference on Requirements Engineering, |IEEE Computer
Society Press, April 1996.

[Hughes, et al. 1994]. Hughes, K., et a., "A Taxonomy for
Requirements Analysis Techniques,” |IEEE International

Conference on Requirements Engineering, |IEEE Computer
Society Press, April 1994, pp. 176-179.

[Hughes, et a. 1995]. Hughes, J., et al., "Presenting
Ethnography in the Reguirements Process,” Second |EEE
International Symposium on Requirements Engineering,
|IEEE Computer Society Press, April 1995.

[Hutt 1994]. Hutt, A., Object-Oriented Analysis and
Design, New York, New York: Wiley, 1994.

2-20

[Jackson 1995]. Jackson, M., Software Requirements and

Specifications, Reading, Massachusetts: Addison Wesley,
1995.

[Jackson 1997]. Jackson, M., "The Meaning of
Requirements,” Annals of Software Engineering, 3, N.
Mead, ed., 1997.

[Jones and Britton 1996]. Jones, S., and C. Britton, "Early
Elicitation and Definition of Requirements for an
Interactive Multimedia Information System,” Second |EEE
International Conference on Requirements Engineering,
|IEEE Computer Society Press, April 1996.

[Kirner and Davis 1995]. Kirner, T., and A. Davis,

"Nonfunctional Requirements for Rea-Time Systems,"
Advancesin Computers, 1996.

[Klein 1997]. Klein, M., "Handling Exceptions in
Collaborative Requirements Acquisition," IEEE
International Symposium on Requirements Engineering,
|EEE Computer Society Press, January 1997.

[Kosman 1997]. Kosman, R., "A Two-Step Methodology to
Reduce Requirements Defects,” Annals of Software
Engineering, 3, N. Mead, ed., 1997.

[Krogstie, et a. 1995]. Krogstie, J., et a., "Towards a
Deeper Understanding of Quality in Requirements
Engineering," Seventh International Conference on
Advanced Information Systems Engineering (CAiISE '95),
Springer-Verlag, 1995.

[Lalioti and Theodoulidis 1995]. Lalioti, V., and B.
Theodoulidis, "Visual Scenarios for Validation of
Requirements Specification,” Seventh International
Conference on Software Engineering and Knowledge

Engineering, Skokie, Illinois. Knowledge Systems Institute,
June 1995, pp. 114-116.

[Leite, et al. 1997]. Leite, J., et a., "Enhancing a
Requirements Baseline with Scenarios,” |EEE International

Symposium on Requirements Engineering, |EEE Computer
Society Press, January 1997.

[Lerch, et a. 1997]. Lerch, F., et a., "Using Simulation-
Based Experiments for Software Requirements
Engineering,” Annals of Software Engineering, 3, N. Mead,
ed., 1997.

[Leveson, et al. 1994]. Leveson, N., et al., "Requirements
Specification for Process-Control Systems,” |EEE

Transactions on Software Engineering, 20,, 9 (September
1994), pp. 684-707.

[Lutz and Woodhouse 1996]. Lutz, R., and R. Woodhouse,
"Contributions of SFMEA to Requirements Analysis,
Second IEEE International Conference on Requirements
Engineering, Computer Society Press, April 1996.

[Lutz and Woodhouse 1997]. Lutz,R., and R. Woodhouse,
"Requirements Analysis Using Forward and Backward

Search,” Annals of Software Engineering, 3, N. Mead, ed.,
1997.

© |EEE — Stoneman (Version 0.9) — February 2001

[Macaulay 1996]. Macaulay, L.,
Engineering, London, UK: Springer, 1996.

Requirements

[Macfarlane and Reilly 1995]. Macfarlane, I., and I. Reilly,
"Requirements Traceability in an Integrated Development
Environment," Second |EEE International Symposium on

Requirements Engineering, IEEE Computer Society Press,
March 1995.

[Maiden and Rugg 1995]. Maiden, N., e 4.,
"Computational Mechanisms for Distributed Requirements
Engineering,” Seventh International Conference on

Software Engineering and Knowledge Engineering, Skokie,
Illinois: Knowledge Systems I nstitute, June 1995, pp. 8-15.

[Mar 1994]. Mar, B., "Requirements for Development of
Software Requirements,” Fourth International Symposium
on Systems Engineering, Sunnyvale, California: National
Council on Systems Engineering, August 1994, pp. 39-44.

[Massonet and van Lamsweerde 1997]. Massonet, P., and
A. van Lamsweerde, "Analogical Reuse of Reguirements
Frameworks," |IEEE Internationa Symposium on
Requirements Engineering, IEEE Computer Society Press,
January 1997.

[McFarland and Reilly 1995]. McFarland, I., and I. Reilly,
"Requirements Traceability in an Integrated Development
Environment,” Second International Symposium on
Requirements Engineering, IEEE Computer Society Press,
1995.

[Mead 1994]. Mead, N., "The Role of Software
Architecture in Requirements Engineering,” |EEE

International Conference on Reguirements Engineering,
|IEEE Computer Society Press, April 1994, p. 242.

[Mostert and von Solms 1995]. Mostert, D., and S. von
Solms, "A Technique to Include Computer Security, Safety,
and Resilience Requirements as Part of the Requirements
Specification," Journal of Systems and Software, 31, 1
(October 1995), pp. 45-53.

[Mylopoulos, et al. 1995]. Mylopoulos, J.,, et a., "Multiple
Viewpoints Analysis of Software Specification Process,"
submitted to |EEE Transactions on Software Engineering.

[Nishimura and Honiden 1992]. Nishimura, K., and S.
Honiden, "Representing and Using Non-Functional
Requirements: A Process-Oriented Approach,” submitted to
IEEE Transactions on Software Engineering, December
1992.

[Nissen, et a. 1997]. Nissen, H., et a., "View-Directed
Requirements Engineering: A Framework and Metamodel,"
Ninth |EEE International Conference on Software
Engineering and Knowledge Engineering, Skokie, Illinois:
Knowledge Systems I nstitute, June 1997, pp. 366-373.

[O'Brien 1996]. O'Brien, L., "From Use Case to Database:

Implementing a Requirements Tracking System," Software
Development, 4, 2 (February 1996), pp. 43-47.

[Opdahl 1994]. Opdahl, A., "Requirements Engineering for
Software Performance,” International Workshop on

© |IEEE — Stoneman (Version 0.9) — February 2001

Requirements Engineering: Foundations of Software
Quality, June 1994,

[Pinheiro and Goguen 1996]. Pinheiro,F., and J. Goguen,

"An Object-Oriented Tool for Tracing Requirements,”
| EEE Software, 13, 2 (March 1996), pp. 52-64.

[Playle and Schroeder 1996]. Playle, G., and C. Schroeder,
"Software Requirements Elicitation: Problems, Tools, and
Techniques,” Crosstalk: The Journal of Defense Software
Engineering, 9, 12 (December 1996), pp. 19-24.

[Pohl, et a. 1994]. Pohl, K., et a., "Applying Al
Techniques to Requirements Engineering: The NATURE
Prototype," |IEEE Workshop on Research Issues in the

Intersection Between Software Engineering and Artificial
Intelligence, IEEE Computer Society Press, May 1994.

[Porter, et a. 1995]. Porter, A., et a., "Comparing
Detection Methods for Software Requirements Inspections:
A Replicated Experiment," |EEE Transactions on Software
Engineering, 21, 6 (June 1995), pp. 563-575.

[Potts and Hsi 1997]. Potts, C., and |. Hsi, "Abstraction and
Context in Requirements Engineering: Toward a
Synthesis,” Annals of Software Engineering, 3, N. Mead,
ed., 1997.

[Potts and Newstetter 1997]. Potts, C., and W. Newstetter.,
"Naturalistic Inquiry and Requirements Engineering:
Reconciling Their Theoretical Foundations," |EEE
International Symposium on Requirements Engineering,
|EEE Computer Society Press, January 1997.

[Potts, et a. 1995] Potts, C., et a., "An Evaluation of
Inquiry-Based Requirements Analysis for an Internet

Server," Second International Symposium on Requirements
Engineering, |IEEE Computer Society Press, 1995.

[Ramesh, et a. 1995]. Ramesh, B., et al., "Implementing
Requirements Traceability: A Case Study,” Second
International Symposium on Requirements Engineering,
|EEE Computer Society Press, 1995.

[Regnell, et a. 1995]. Regnell, B., et da., "Improving the
Use Case Driven Approach to Requirements Engineering,"
Second IEEE International Symposium on Reguirements
Engineering, |EEE Computer Society Press, April 1995.

[Reubenstein 1994]. Reubenstein, H., "The Role of
Software Architecture in Software Requirements
Engineering,” |EEE International Conference on
Requirements Engineering, Computer Society Press, April
1994, p. 244.

[Robertson and Robertson 1994]. Robertson, J., and S.
Robertson, Complete Systems Analysis, Vols. 1 and 2,
Englewood Cliffs, New Jersey: Prentice Hall, 1994.

[Robinson and Fickas 1994]. Robinson, W., and S. Fickas,
"Supporting Multi-Perspective Requirements Engineering,”
IEEE International Conference on Requirements
Engineering, |IEEE Computer Society Press, April 1994, pp.
206-215.

2-21

[Rolland 1994]. Rolland, C., "Modeling and Evolution of
Artifacts," IEEE International Conference on Requirements
Engineering, IEEE Computer Society Press, April 1994, pp.
216-219.

[Schoening 1994]. Schoening, W., "The Next Big Step in
Systems Engineering Tools: Integrating Automated
Requirements Tools with Computer Simulated Synthesis
and Test," Fourth International Symposium on Systems

Engineering, Sunnyvale, California: National Council on
Systems Engineering, August 1994, pp. 409-415.

[Shekaran 1994]. Shekaran, M., "The Role of Software
Architecture in Requirements Engineering,” |EEE
International Conference on Requirements Engineering,
|IEEE Computer Society Press, April 1994, p. 245.

[Siddiqi, et a. 1997]. Siddiqi, J., et a., "Towards Quality
Requirements Via Animated Formal Specifications,”
Annals of Software Engineering, 3, N. Mead, ed., 1997.

[Spanoudakis and Finkelstein 1997]. Spanoudakis, G., and
A. Finkelstein, "Reconciling Requirements: A Method for
Managing Interference, Inconsistency, and Conflict,"
Annals of Software Engineering, 3, N. Mead, ed., 1997.

[Stevens 1994]. Stevens, R., "Structured Requirements,”
Fourth International Symposium on Systems Engineering,
Sunnyvale, Californiaz National Council on Systems
Engineering, August 1994, pp. 99-104.

[van Lamsweerde, et al. 1995] van Lamsweerde, A., et al.,
"Goal-Directed Elaboration of Reguirements for a Meeting
Scheduler: Problems and Lessons Learnt,” Second

International Symposium on Requirements Engineering,
|EEE Computer Society Press, 1995.

[White and Edwards 1995]. White, S., and M. Edwards, "A
Requirements Taxonomy for Specifying Complex
Systems," First |IEEE International Conference on
Engineering of Complex Computer Systems, |EEE
Computer Society Press, November 1995.

[Wiley 1999]. Wiley, B., Essential System Requirements:
A Practica Guide to Event-Driven Methods, Addison-
Wesley, 1999.

[Wyder 1996]. Wyder, T., "Capturing Requirements With
Use Cases," Software Development, 4, 2 (February 1996),
pp. 36-40.

[Yen and Tiao 1997]. Yen, J., and W. Tiao, "A Systematic
Tradeoff Anaysis for Conflicting Imprecise
Requirements,” |EEE International Symposium on
Requirements Engineering, Computer Society Press, March
1997.

[Yu 1997]. Yu, E., "Towards Modeling and Reasoning
Support for Early-Phase Requirements Engineering," |EEE
International Symposium on Requirements Engineering,
|EEE Computer Society Press, March 1997.

[Zave and Jackson 1996]. Zave, P., and M. Jackson,
"Where Do Operations Come From? A Multiparadigm

2-22

Specification Technique," |IEEE Transactions on Software
Engineering, 22, 7 (July 1996), pp. 508-528.

© |EEE — Stoneman (Version 0.9) — February 2001

APPENDIX B — REFERENCES USED TO WRITE AND
JUSTIFY THE DESCRIPTION

[Acosta 1994]. Acosta, R., et a., "A Case Study of
Applying Rapid Prototyping Techniques in the
Requirements Engineering Environment," IEEE
International Conference on Reguirements Engineering,
IEEE Computer Society Press, April 1994, pp. 66-73.

[Alford 1994]. Alford, M., "Attacking Regquirements
Complexity Using a Separation of Concerns," |EEE

International Conference on Requirements Engineering,
|IEEE Computer Society Press, April 1994, pp. 2-5.

[Alford 1994]. Alford, M., "Panel Session Issues in
Requirements Engineering Technology Transfer: From
Researcher to Entrepreneur,” |EEE International

Conference on Requirements Engineering, IEEE Computer
Society Press, April 1994, p. 144.

[Anderson 1985]. Anderson, T., Software Reguirements:
Specification and Testing, Oxford, UK: Blackwell
Publishing, 1985.

[Anderson and Durney 1993]. Anderson, J., and B. Durney,
"Using Scenarios in Deficiency-Driven Requirements
Engineering,” International Symposium on Requirements

Engineering, IEEE Computer Society Press, January 1993,
pp. 134-141.

[Andriole 1992]. Andriole, S., "Storyboard Prototyping For
Requirements Verification,” Large Scale Systems, 12
(1987), pp. 231-247. 14.[Andriole 1992]

[Andriole 1995]. Andriole, S., "Interactive Collaborative

Requirements Management,” Software Development,
(September 1995).

[Andriole 1996]. Andriole, S. J., Managing Systems

Requirements: Methods, Tools and Cases. McGraw-Hill,
1996.

[Anton and Potts 1998]. Anton, A., and C. Potts, "The Use
of Goals to Surface Requirements for Evolving Systems,"

Twentieth International Conference on Software
Engineering, IEEE Computer Society, 1998.

[Ardis, et a. 1995]. Ardis, M., et al., "A Framework for
Evaluating Specification Methods for Reactive Systems,"
Seventeenth |IEEE International Conference on Software
Engineering, |IEEE Computer Society Press, 1995.

[Bickerton and Siddigi 1993]. Bickerton, M., and J. Siddiqi,
"The Classification of Requirements Engineering
Methods," |EEE International Symposium on Requirements
Engineering, IEEE Computer Society Press, January 1993,
pp. 182-186.

[Blanchard and Fabrycky 1998]. Blanchard, B. and
Fabrycky, W. J., Systems Engineering Analysis, Prentice
Hall, 1998.

[Blum 1983]. Blum, B., "Still More About Prototyping,"

ACM Software Engineering Notes, 8, 3 (May 1983), pp. &
11.

© |IEEE — Stoneman (Version 0.9) — February 2001

[Blum 1993]. Blum, B, "Representing Open Requirements
with a Fragment-Based Specification,” |IEEE Transaction
on Systems, Man and Cybernetics, 23, 3 (May-June 1993),
pp. 724-736.

[Blyth, et a. 1993a]. Blyth, A., et al., "A Framework for
Modelling Evolving Requirements,” IEEE International

Conference on Computer Software and Applications, IEEE
Computer Society Press, 1993.

[Boehm 1994]. Boehm, B., P. Bose, et a., "Software
Requirements as Negotiated Win Conditions,” Proc. 1%
International Conference on Requirements Engineering
(ICRE), Colorado Springs, Co, USA, (1994), pp.74-83.

[Boehm, et a. 1995]. Boehm, B., et a., "Software
Requirements Negotiation and Renegotiation Aids. A
Theory-W Based Spiral Approach,” Seventeenth |EEE

International Conference on Software Engineering, IEEE
Computer Society Press, 1995.

[Brown and Cady 1993]. Brown, P., and K. Cady,
"Functional Analysisvs. Object-Oriented Analysis: A View
From the Trenches," Third International Symposium on
Systems Engineering, Sunnyvale, California: National
Council on Systems Engineering, July 1993.

[Bryne 1994]. Bryne, E., "IEEE Standard 830:
Recommended Practice for Software Requirements
Specification,” IEEE International Conference on

Requirements Engineering, IEEE Computer Society Press,
April 1994, p. 58.

[Burns and McDermid 1994]. Burns, A., and J. McDermid,
"Rea-Time Safety-Critical Systems. Analysis and
Synthesis,” |EE Software Engineering Journal, 9, 6
(November 1994), pp. 267-281.

[Checkland and Scholes 1990]. Checkland, P., and J.

Scholes, Soft Sysems Methodology in Action. John Wiley
and Sons, 1990.

[Chung 19914]. Chung, L., "Representation and Utilization
of Nonfunctional Requirements for Information System
Design,” Third International Conference on Advanced
Information Systems Engineering (CAISE '90), Springer-
Verlag, 1991, pp. 5-30.

[Chung 1999]. Chung, L., Nixon, B.A., Yu. E,

Mylopoulos, J., Non-functional Requirements in Software
Engineering, Kluwer Academic Publishers, 1999.

[Chung, et a. 1995]. Chung, L., et a., "Using Non-
Functional Requirements to Systematicaly Support
Change,* Second International Symposium on
Requirements Engineering, |EEE Computer Society Press,
1995.

[Connell and Shafer 1989]. Connell, J.,, and L. Shafer,

Structured Rapid Prototyping, Englewood Cliffs, New
Jersey, 1989.

[Coonmbes and McDermid 1994]. Coombes, A., and J.
McDermid, "Using Quantitative Physics in Requirements
Specification of Safety Critical Systems' Workshop on

2-23

Research Issues in the Intersection Between Software
Engineering and Artificial Intelligence, Sorrento, Italy,
May 1994.

[Costello and Liu 1995]. Costello, R., and D. Liu, "Metrics
for Requirements Engineering," Journal of Systems and
Software, 29, 1 (April 1995), pp. 39-63.

[Curtis 1994]. Curtis, A., "How to Do and Use
Requirements Traceability Effectively,” Fourth
International Symposium on Systems Engineering,
Sunnyvale, Californiaz National Council on Systems
Engineering, August 1994, pp. 57-64.

[Davis 1993]. Davis, A.M., Software Requirements:
Objects, Functions and States. Prentice-Hall, 1993.

[Davis 1995a]. Davis, A., 201 Principles of Software
Development, New York, New York: McGraw Hill, 1995.

[Davis 1995b]. Davis, A., "Software Prototyping," in

Advances in Computing, 40, M. Zelkowitz, ed., New York,
New York: Academic Press, 1995.

[Davis, et a. 1997]. Davis, A., et a., "Elements Underlying
Requirements Specification,” Annas of Software
Engineering, 3, N. Mead, ed., 1997.

[De Lemos, et a. 1992]. De Lemos, R, et a., "Analysis of
Timeliness Requirements in Safety-Critical Systems,”
Symposium on Formal Techniques in Real-Time and Fault

Tolerant Systems, Nijmegen, The Netherlands: Springer
Verlag, January 1992, pp. 171-192.

[Dobson 1991]. Dobson, J., "A methodology for analysing
human computer-related issues in secure systems,"
International Conference on Computer Security and
Integrity in our Changing World, Espoo, Finland, (1991),
pp. 151-170.

[Dobson, et al. 1992]. Dobson, J., et a., "The ORDIT
Approach to Requirements Identification,” |EEE
International Conference on Computer Software and

Applications, IEEE Computer Society Press, 1992, pp. 356-
361.

[Dorfman and Thayer 1997]. Dorfman, M., and R. H.

Thayer, Software Engineering. |IEEE Computer Society
Press, 1997.

[Easterbrook and Nuseibeh 1996]. Easterbrook, S., and B.
Nuseibeh, "Using viewpoints for inconsistency
management,” Software Engineering Journal, 11, 1, 1996,
pp.31-43.

[Ebert 1997]. Ebert, C., "Dealing with Non-Functional
Requirements in Large Software Systems,” Annals of
Software Engineering, 3, N. Mead, ed., 1997.

[El Emam 1997]. EL Amam K., J. Drouin, et a., SPICE:
The theory and Practice of Software Process Improvement
and Capability Determination. |[EEE Computer Society
Press, 1997.

[El Emam and Madhavji 1995]. EI Emam, K., and N.
Madhavji, "Measuring the Success of Requirements
Engineering," Second International Symposium on

2-24

Requirements Engineering, IEEE Computer Society Press,
19095.

[Fagan 1986]. Fagan, M.E., "Advances in Software

Inspection," |EEE Transactions on Software Engineering
12, 7, 1986, pp. 744-51.

[Feather 1991]. Feather, M., "Requirements Engineering:
Getting Right from Wrong," Third European Software
Engineering Conference, Springer Verlag, 1991.

[Fenton 1991]. Fenton, N. E., Software metrics. A rigorous
approach. Chapman and Hall, 1991.

[Fiksel 1991]. Fiksel, J., "The Requirements Manager: A
Tool for Coordination of Multiple Engineering
Disciplines,” CALS and CE '91, Washington, D.C., June
1991.

[Finkelstein 1992]. Finkelstein, A., Kramer, J., B. Nuseibeh
and M. Goedicke, "Viewpoints:. A framework for
integrating multiple perspectives in systems development,”
International Journal of Software Engineering and
Knowledge Engineering, 2, 10, (1992), pp.31-58.

[Garlan 1994]. Garlan, D., "The Role of Software
Architecture in Requirements Engineering,” |EEE

International Conference on Regquirements Engineering,
|IEEE Computer Society Press, April 1994, p. 240.

[Gause and Weinberg 1989]. Gause, D.C., and G. M.
Weinberg, Exploring Requirements : Quality Before
Design, Dorset House, 1989.

[Gilb and Graham 1993]. Gilb, T., and D. Graham
Software Inspection. Wokingham: Addison-Wesley, 1993.

[Goguen and Linde 1993]. Goguen, J., and C. Linde,
"Techniques for Requirements Elicitation,” International

Symposium on Requirements Engineering, |IEEE Computer
Society Press, January 1993, pp. 152-164.

[Gomaa 1995]. Gomaa, H., "Reusable Software
Requirements and Architectures for Families of Systems,”
Journal of Systems and Software, 28, 3 (March 1995), pp.
189-202.

[Grady 19933]. Grady, J., Systems Requirements Analysis,
New York, New York: McGraw Hill, 1993.

[Graham 1998]. Graham, 1., Reguirements Engineering and
Rapid Development: An Object-Oriented Approach,
Addison Wesley, 1998.

[Hadden 1997]. Hadden, R., "Does Managing
Requirements Pay Off?" American Programmer, 10, 4
(April 1997), pp. 10-12.

[Hall 1996]. Hall, A., "Using Formal Methods to Develop
an ATC Information System," |[EEE Software 13, 2, 1996,
pp.66-76.

[Hansen, et al. 1991]. Hansen, K., et a., "Specifying and
Verifying Requirements of Rea-Time Systems,” ACM
SIGSOFT Conference on Software for Critical Systems,
December 1991, pp. 44-54.

© |EEE — Stoneman (Version 0.9) — February 2001

[Harel 1988]. Harel, D., "On Visua Formalisms,"
Communications of the ACM, 31, 5 (May 1988), pp. 8-20.

[Harel 1992]. Harel, D., "Biting the Silver Bullet: Towards

a Brighter Future for System Development,” |EEE
Computer, 25, 1 (January 1992), pp. 8-20.

[Harel and Kahana 1992]. Harel, D., and C. Kahana, "On
Statecharts with Overlapping,” ACM Transactions on

Software Engineering and Methodology, 1, 4 (October
1992), pp. 399-421.

[Harwell 1993]. Harwell, R., et a, "What is a

Requirement," Proc 3% Ann. Int! Symp. Nat'l Council
Systems Eng., (1993), pp.17-24.

[Heimdahl and Leveson 1995]. Heimdahl, M., and N.
Leveson, "Completeness and Consistency Analysis of
State-Based Requirements," Seventeenth IEEE
International Conference on Software Engineering, |EEE
Computer Society Press, 1995.

[Hofmann 1993]. Hofmann, H., Requirements Engineering:
A Survey of Methods and Tools, Technical Report #TR-
93.05, Institute for Informatics, Zurich, Switzerland:
University of Zurich, 1993.

[Honour 1994]. Honour, E., "Requirements Management
Cost/Benefit Selection Criteria,” Fourth International
Symposium on Systems Engineering, Sunnyvale,
Cdiforniaz National Council on Systems Engineering,
August 1994, pp. 149-156.

[Hooks and Stone 1992] Hooks, |., and D. Stone,
"Requirements Management: A Case Study -- NASA's
Assured Crew Return Vehicle" Second Annual
International Symposium on Requirements Engineering,
Seattle, Washington: National Council on Systems
Engineering, July 1992.

[Hsia, et al. 1997]. Hsia, P. et al., "Software Requirements

and Acceptance Testing,” Annals of Software Engineering,
3, N. Mead, ed., 1997.

[Humphery 1988]. Humphery, W.S., "Characterizing the
Software Process," |EEE Software 5, 2 (1988), pp. 73-79.

[Humphery 1989]. Humphery, W., Managing the Software
Process, Reading, Massachusetts: Addison Wesley, 19809.

[Hutchings 1995]. Hutchings, A., and S. Knox, "Creating

products customers demand,” Communications of the
ACM, 38, 5, (May 1995), pp. 72-80.

[IEEE 19984). |EEE Std 830-1998. |IEEE Recommended
Practice for Software Requirements Specifications.

[IEEE 1998h]. IEEE Std 1362-1998. IEEE Guide for
Information Technology — System Definition — Concept of
Operations (ConOps) Document.

[Ince 1994]. Ince, D., I1SO 9001 and Software Quality
Assurance. London: McGraw-Hill, 1994.

[Jackson and Zave 1995]. Jackson, M., and P. Zave,
"Deriving Specifications from Requirements: An

© |IEEE — Stoneman (Version 0.9) — February 2001

Example," Seventeenth |EEE International Conference on
Software Engineering, |EEE Computer Society Press, 1995.

[Jarke and Pohl 1994]. Jarke, M., and K. Pohl,
"Requirements Engineering in 2001: Virtually Managing a
Changing Reality," |EE Software Engineering Journal, 9, 6
(November 1994), pp. 257-266.

[Jarke, et a. 1993]. Jarke, M., et a., "Theories Underlying
Requirements Engineering: An Overview of NATURE at
Genesis," |EEE International Symposium on Requirements
Engineering, IEEE Computer Society Press, January 1993,
pp. 19-31.

[Jenkins 1994]. Jenkins, M., "Requirements Capture,"

Conference on Requirements Elicitation for Software-
Based Systems, July 1994.

[Jirotka 1991]. Jrotka, M., Ethnomethodology and
Requirements Engineering, Centre for Reguirements and
Foundations Technica Report, Oxford, UK: Oxford
University Computing Laboratory, 1991.

[Kotonya 1999]. Kotonya, G., "Practical Experience with
Viewpoint-oriented Requirements Specification,”
Requirements Engineering, 4, 3, 1999, pp.115-133.

[Kotonya and Sommerville 1996]. Kotonya, G., and I.

Sommerville, "Requirements Engineering with
viewpoints,” Software Engineering, 1, 11, 1996, pp.5-18.

[Kotonyaand Sommerville 1998]. Kotonya, G., and 1.

Sommerville, Requirements Engineering: Processes and
Techniques. John Wiley and Sons, 1998.

[Lam, et a. 1997a]. Lam, W., et a., "Ten Steps Towards
Systematic Requirements Reuse," |EEE International
Symposium on Requirements Engineering, |EEE Computer
Society Press, January 1997.

[Leveson 1986]. Leveson, N. G., "Software safety - why,
what, and how,” Computing surveys, 18, 2, (1986), pp.
125-163.

[Leveson 1995]. Leveson, N. G., Safeware: System Safety

and Computers. Reading, Massachusetts: Addison-Wesley,
19095.

[Loucopulos and Karakostas 1995]. Loucopulos, P., and V.

Karakostas, Systems Requirements Engineering. McGraw
Hill, 1995.

[Lutz 1993]. Lutz, R., "Anayzing Software Requirements
Errors in Safety-Critical, Embedded Systems,” |IEEE

International Symposium on Requirements Engineering,
|EEE Computer Society Press, January 1993, pp. 126-133.

[Lutz 1996]. Lutz, R., "Targeting Safety-Related Errors
During Software Requirements Analysis," The Journa of
Systems and Software, 34, 3 (September 1996), pp. 223
230.

[Maiden and Sutcliffe 1993]. Maiden, N., and A. Sutcliffe,
"Requirements Engineering By Example: An Empirical
Study," International Symposium on Requirements

Engineering, IEEE Computer Society Press, January 1993,
pp. 104-111.

2-25

[Maiden, et a., 1995] Maiden, N., et a., "How People
Categorise Requirements for Reuse: A Natural Approach,"
Second International Symposium on Requirements
Engineering, IEEE Computer Society Press, 1995.

[Mazza 1996]. Mazza, C., J. Fairclough, B. Melton, D.

DePablo, A. Scheffer, and R. Stevens, Software
Engineering Standards, Prentice-Hall, 1996.

[Mazza 1996]. Mazza, C., J. Fairclough, B. Melton, D.
DePablo, A. Scheffer, R. Stevens, M. Jones, G. Alvisi,
Software Engineering Guides, Prentice-Hall, 1996.

[Modugno, et a. 1997]. Modugno, F., et a., "Integrating
Safety Analysis of Reguirements Specification,” |EEE

International Symposium on Requirements Engineering,
|IEEE Computer Society Press, January 1997.

[Morris, et al. 1994]. Morris, P., et a., "Requirements and

Traceability," International Workshop on Requirements
Engineering: Foundations of Software Quality, June 1994.

[Paulk 1996]. Paulk, M. C., C. V. Weber, et a., Capability
Maturity Model: Guidelines for Improving the Software
Process. Addison-Wesley, 1995.

[Pfleeger 1998]. Pfleeger, S.L., Software Engineering-
Theory and Practice. Prentice-Hall, 1998.

[Pohl 1994]. Pohl, K., "The Three Dimensions of
Requirements Engineering: A Framework and Its
Applications,” Information Systems 19, 3 (1994), pp. 243
258.

[Pohl 1999]. Pohl, K., Process-centered Requirements
Engineering, Research Studies Press, 1999.

[Potts 1993]. Potts, C., "Choices and Assumptions in
Requirements Definition," International Symposium on

Requirements Engineering, IEEE Computer Society Press,
January 1993, p. 285.

[Potts 1994]. Potts, C., K. Takahashi, et. a., "Inquiry-based
Requirements Analysis," |IEEE Software, 11, 2, 1994, pp.
21-32.

[Pressman 1997]. Pressman, R.S. Software Engineering: A
Practitioner’s Approach (4 edition). McGraw-Hill, 1997.

[Ramesh et al. 1997]. Ramesh, B., et al., "Requirements
Traceability: Theory and Practice,” Annals of Software
Engineering, 3, N. Mead, ed., 1997.

[Roberston and Robertson 1999]. Robertson, S., and J.
Robertson, Mastering the Requirements Process, Addison
Wesley, 1999.

[Rosenberg 1998]. Rosenberg, L., T.F. Hammer and L.L.
Huffman, "Requirements, testing and metrics, " 15th

Annual Pacific Northwest Software Quality Conference,
Utah, October 1998.

[Rudd and Isense 1994]. Rudd, J., and S. Isense, "Twenty-

two Tips for a Happier, Headthier Prototype" ACM
Interactions, 1, 1, 1994,

[Rzepka 1992]. Rzepka, W., "A Requirements Engineering
Testbed: Concept and Status," 2nd IEEE International

2-26

Conference on Systems Integration, IEEE Computer
Society Press, June 1992, pp. 118-126.

[SElI 1995]. A Systems Engineering Capability Model,
Version 1.1, CMU/SEI95-MM-003, Software Engineering
Institute, 1995.

[Siddigi and Shekaran 1996]. Siddigi, J., and M.C.
Shekaran, "Requirements Engineering: The Emerging
Wisdom," |EEE Software, pp.15-19, 1996.

[Sommerville 1996].Sommerville, |. Software Engineering
(5" edition), Addison-Wesley, pp. 63-97,

117-136, 1996.

[Sommerville and Sawyer 1997]. Sommerville, I., and P.
Sawyer, "Viewpoints: Principles, Problems, and a Practical

Approach to Requirements Engineering,” Annas of
Software Engineering, 3, N. Mead, ed., 1997.

[Sommerville, et a. 1993]. Sommerville, 1., et 4a.,
"Integrating Ethnography into the Requirements
Engineering Process,” International Symposium on
Requirements Engineering, IEEE Computer Society Press,
January 1993, pp. 165-173.

[Sommerville 1997].Sommerville, I., and P. Sawyer,
Requirements engineering: A Good Practice Guide. John
Wiley and Sons, 1997

[Stevens 1998]. Stevens, R., P. Brook, K. Jackson and S.
Arnold, Systems Engineering, Prentice Hall, 1998.

[Thayer and Dorfman 1990]. Thayer, R., and M. Dorfman,
Standards, Guidelines and Examples on System and
Software Requirements Engineering. IEEE Computer
Society, 1990.

[Thayer and Dorfman 1997]. Thayer, R.H., and M.

Dorfman, Software Requirements Engineering (2nd Ed).
|EEE Computer Society Press, 1997.

[White 1993]. White, S., "Requirements Engineering in
Systems Engineering Practice,” IEEE International

Symposium on Requirements Engineering, |IEEE Computer
Society Press, January 1993, pp. 192-193.

[White 1994]. White, S., "Comparative Anaysis of
Embedded Computer System Requirements Methods,"
IEEE International Conference on Requirements
Engineering, IEEE Computer Society Press, April 1994, pp.
126-134.

© |EEE — Stoneman (Version 0.9) — February 2001

CHAPTER 3
SOFTWARE DESIGN

Guy Tremblay
Département d’ informatique
Université du Québec a Montréal
C.P. 8888, Succ. Centre-Ville
Montréal, Québec, Canada, H3C 3P8
tremblay.guy @ugam.ca

Table of Contents

L INErOAUCTION. ... 1
2. Definition of Software Design........cccccceeeveeceeeeenennns 1
3. Breakdown of Topicsfor Software Design.................... 2
4. Breakdown Rationale ... 7
5. Matrix of Topicsvs. Reference Material...........cccceuueee. 8
6. Recommended References for Software Design......... 10
Appendix A — List of Further Readings........c.cccoeevrvereernurene. 13
Appendix B — References Used to Write and Justify the
Knowledge Area DesCriptionoccevevereeereseneeerenens 16

1. INTRODUCTION

This chapter presents a description of the Software Design
knowledge area for the Guide to the SWEBOK (Stone Man
version). First, a general definition of the knowledge areais
given. A breakdown of topics is then presented for the
knowledge area along with brief descriptions of the various
topics. These topic descriptions are also accompanied by
references to material that provide more detailed
presentation and coverage of these topics. The
recommended references are then briefly described,
followed by a number of suggestions for further readings.

It is important to stress that various constraints had to be
satisfied by the resulting Knowledge Area (KA) description
to satisfy the requirements set forth for these descriptions
(see Appendix A of the whole Guide to the SWEBOK).
Among the major constraints were that the KA description
had to describe “generally accepted” knowledge not
specific to any application domains or development
methods and had to be compatible with typical breakdowns
found in the literature. For those interested, Section 4
presents a more detailed Breakdown Rationale explaining
how the various requirements for the KA description were
met. A final note concerning the requirements was that the
KA description had to suggest a list of “Reconmended

© |IEEE — Stoneman (Version 0.9) — February 2001

references” with a reasonably limited number of entries.
Satisfying this requirement meant, sadly, that not all
interesting references could be included in the recom-
mended references list, thus the list of further readings.

2. DEFINITION OF SOFTWARE DESIGN

According to the IEEE definition [IEE90], design is both
“the process of defining the architecture, components,
interfaces, and other characteristics of a system or
component” and “the result of [that] process’. Viewed as a
process, software design is the activity, within the software
development life cycle, where software requirements are
analyzed in order to produce a description of the internal
structure and organization of the system that will serve as
the basis for its construction. More precisely, a software
design (the result) must describe the architecture of the
system, that is, how the system is decomposed and
organized into components and must describe the interfaces
between these components. It must also describe these
components into a level of detail suitable for allowing their
construction.

In a classical software development life cycle such as
ISO/IEC 12207 Software life cycle processes [ISO95b],
software design consist of two activities that fit between
software requirements analysis and software coding and
testing: i) software architectural design — sometimes called
top-level design, where the top-level structure and
organization of the system is described and the various
components are identified; ii) software detailed design —
where each component is sufficiently described to allow for
its coding.

Software design plays an important role in the devd opment
of a software system in that it allows the developer to
produce various models that form a kind of blueprint of the
solution to be implemented. These models can be analyzed
and evaluated to determine if they will allow the various
requirements to be fulfilled. Various aternative solutions
and trade-offs can also be examined and evduated. Finaly,
the resulting models can be used to plan the subsequent

31

development activities, in addition to being used as input
and starting point of the coding and testing activities.

Concerning the scope of the Software Design KA, it is
important to note that not all topics containing the word
“design” in their names will be discussed in the present KA
description. In the terminology of DeMarco [DeM99], the
present KA is concerned mainly with D-design (Deconpo-
sition design), as discussed in the above paragraphs
(mapping a system into component pieces). However,
because of its importance within the growing field of
Software Architecture, FP-design (Family Pattern design,
whose goal is to establish exploitable commonalities over a
family of sysems) will also be addressed. On the other
hand, kdesign (Invention design, usually done by system
analysts with the objective of conceptualizing and spe-
cifying a system to satisfy discovered needs and require-
ments) will not be addressed, since this latter topic should
be considered part of the requirements analysis and
specification activity. Finally, also note that because of the
requirements that the KA description had to include
knowledge not specific to any appli cation domains and the
fact that some topics are better addressed in knowledge
areas of related disciplines (see Appendix D of the whole
Guide), certain specialized areas — for example, User
Interface Design or Real-time Design — are not explicitly
discussed in the present Software Design KA description.
See Section 4 of the present chapter for further details
concerning these and other specialized “design” topics. Of
course, many of the topics included in the present Software
Design KA description may still apply to these specialized
areas.

3. BREAKDOWNOF TOPICS FOR SOFTWARE DESIGN

This section presents the breakdown of the Software
Design Knowledge Area together with brief descriptions of
each of the major topics. Appropriate references are aso
given for each of the topic. Figure 1 gives a graphical
presentation of the top-level decomposition of the

breakdown for the Software Design Knowledge Area. The
detailed breakdown is presented in the following pages.

Note: The numbers in the reference keys, e.g., [Bud94:8,
Pre97:23], indicate specific chapter(s) of the reference. In
the case of Mar94, e.g., [Mar94:D], the letters indicates
specific entries of the encyclopedia: “D” = Design; “DR” =
Design Representation; “DD” = Design of Distributed
systems’. Note also that, contrary to the matrix presentedin
Section 5, only the appropriate chapter (or part) number,
not the specific sections or pages, have been indicated.

|. Software Design Basic Concepts

This first section introduces a number of concepts and
notions which form an underlying basis to the understanding
of the role and scope of Software Design.

+ Genera design concepts. Software is not the only field
where design is involved. In the general sense, design

32

can be seen as aform of problem-solving [Bud94:1]. For
example, the notion of wicked problem — a problem that
has no definitive solution — is interesting for under-
standing the limits of design [Bud94:1]. A number of
notions and concepts are also interesting to understand
design in its general sense. goas, constraints,
alternatives, representations, and solutions[SB93].

The context of software design: To understand the role
and place of software design, it is important to
understand the context in which software design fits,
i.e., the software development life cycle. Thus, the
major characteristics of software requirements analysis
vs. software design vs. software construction vs. testing
must be understood [ISO95b, LGO01:11, Mar94:D,
Pf198:2, Pre97:2].

The software design process: Software design is
generally considered a two steps process. architectural
design describes how the system is decomposed and
organized into components (the software architecture),
whereas detailed design describes the specific behavior
of these components [DT97:7, FW83:l, 1S095bh,
LGO01:13, Mar94:D]. The output of this process is a set
of models and artifacts that record the major decisions
that have been taken [Bud94:2, |EE98, LG01:13,
Pre97:13].

Enabling techniques for software design: According to
the Oxford dictionary, a principle is “a basic truth or a
general law [...] that is used as a basis of reasoning or a
guide to action”. Such principles for software design,
called enabling techniquesin [BMR+96], are key notions
considered fundamental to many different software
design approaches, concepts and notions that form a kind
of foundation for many of those approaches. Some of the
key notions are the following [BCK98:6, BMR+96:6,
IEE98, Jal97:5,6, LG01:1,3, Pfl98: 5, Pre97:13,23]:

- Abstraction: “the process of forgetting information so
that things that are different can be treated as if they
are the same” [LGO1]. In the context of software
design, two key abstraction mechanisms are
abstraction by parameterization and by specification,
which in turn lead to three major kinds of abstraction:
procedural abdraction, data abdraction and control
(iteration) abstracion [BCK98:6, LG01:1,3,5,6
Jal97:5, Pre97:13].

- Coupling and cohesion: whereas coupling measures
the strength of the relationships that exist between
modules, cohesion measures how the elements

making up a module are related [BCK98:6, Jal97:5,
Pf198:5, Pre97:13].

- Decomposition and modularization: the operation of
decomposing a large system into a number of smaller
independent ones, usually with the goal of placing
different functionalities or responsibilitiesin different
components [BCK98:6, BMR+96:6, Jal97:5, Pfl98:5,
Pre97:13].

© |EEE — Stoneman (Version 0.9) — February 2001

Software Design

; ’ 111. Software V. Software Design V1. Software Design
1. Software Design 11. Key Issuesin X - V. Software X
— : — : — Structure and —{Quality Analysisanfl — . B — Strategiesand
Basic Concepts Software Design Architecture Evaluation Design Notations Methods
|, General design —» Concurrency Architectural B> Quality attributes Structural F» General Strategies
concepts F» structuresand > descriptions
viewpoints (static view)
Ly T?e contzxt of Ly Controfl and handling Quality analysisand _ Behavior L, Functciionl—oriented
software design of events Architectural styles evaluation tools Ly descriptions e
] F»- and patterns (macro- icvi iect-ori
Ly The sof:\g/i:sdwgn Ly Distribution grchitecu(:re) (dynamic view) Ly Ob]ec(;t erented
p Software design reviewsé esign
Ly Enabling techniques - Exception handling Design patterns Saticandyss <€ |, Datastructrure
for software design _ (micro-architecture) 4 centered design
[Interactive systems Smuaionand |
Ly Families of programs prototyping & Other methods
—> Persistence and frameworks
Ly Measures —

Function-oriented
(structured) design -«
measures

Object-oriented design
measures

Figure 1 Breakdown of the Software Design KA

- Encapsulation/information hiding: deals with topics. On the other hand, there are also other issues that

grouping and packaging the elements and internal “deal with some aspect of the system’s behaviour that is not
details of an abstraction and making those details in the application domain, but which addresses some of the
inaccessible [BCK 98:6, BMR+96:6, Jal97:6, Pfl98:5, ~ supporting domains’ [Bos00]. Such issues, which often
Pre97:13, 23]. cross-cut the system’s functionality, have been referred to as

aspects: “[aspects] tend not to be units of the system’s func-
tional decomposition, but rather to be properties that affect
the performance or semantics of the components in sysemic
ways’ [KLM+97]. A number of these major, cross-cutting
issues are the following (presented in al phabetical order):

- Separation of interface and implementation: involves
defining a component by specifying a public
interface, known to the clients, separate from the
details of how the component is realized [BCK98:6,

Bos00:10, LG01:1,9].
i . S] ¢ Concurrency: how to decompose the systems into
o ot OGS Ik and s a0 de i rele

9 P a efficiency, atomicity, synchronization and scheduling

the important characteristics of an abstraction, and ; . . . :
nothing more [BMR+96:6, L GO1:5]. issues [Bos00:5, Mar94:DD, Mey97:30, Pre97:21].

¢ Control and handling of events: how to organize the flow
of data and the flow of control, how to handle reactive
and temporal events through various mechanisms, e.g.,

A number of key issues must be dealt with when designing implicit invocation and call-backs [BCK98:5, Mey97:32,

software systems. Some of these are really quality concerns Pf198:5].

that must be addrg:.sed by all_ SVStef_“S' for example, perfor- + Distribution: how the software is distributed on the

mance. Another important issue is how to decompose, hardware, how the components conmunicate, how

organize and package the software components. This is so middlewa{re can be used to deal with heterogéneous

fundamental that it must be addressed, in one way or) . . .
another, by all approaches to design; this is discussed in the e rab, Prearog 002, Bos0S, MarS4D,

Enabling techniques and in the Software Design Strategies

I1. Key Issuesin Software Design

© |IEEE — Stoneman (Version 0.9) — February 2001

+ Error and exception handling and fault tolerance: how

to prevent and tolerate faults and deal with exceptional
conditions [LGO01:4, Mey97:12, Pfl98:5].

+ Interactive systems. which approach to use to interact
with users [BCK98:6, BMR+96:2.4, Bos00:5, LG01:13,
Mey97:32].

(Note: this topic is not about the specifications of the details
of the user interface, which would be considered the task of
the Ul design, atopic beyond the scope of the current KA.)

+ Persistence: how long-lived data is to be handled
[Bos00:5, Mey97:31].

I11. Software Structure and Architecture

In its strict sense, “a software architecture is a description
of the subsystems and components of a software system
and the relationships between them” [BMR+96:6]. An
architecture thus attempts to define the internal structure —
“the way in which something is constructed or organized”
(Oxford dictionary) — of the resulting software. During the
mid-90s, however, Software Architecture started to emerge
as a broader discipline involved with studying software
structures and architectures in a more generic way [SG96].
This gave rise to a number of interesting notions involved
with the design of software at different levels of abstrac-
tion. Some of these notions can be useful during the archi-
tectural design (e.g., architectural style) as well as during
the detailed design (e.g., lower-level design patterns) of a
specific software system. But they can also be useful for
designing generic systems, leading to the design of families
of systems (aka. product lines). Interestingly, most of these
notions can be seen as attempts to describe, and thus reuse,
generic design knowledge.

+ Architectural structures and viewpoints: Different high-
level facets of a software design can and should be
described and documented. These facets are often called
views. “a view represents a partial aspect of a software
architecture that shows specific properties of a software
system” [BMR+96]. These different views pertain to
different issues associated with the design of software,
for example, the logical view (satisfying the functional
requirements) vs. the process view (concurrency issues)
vs. the physical view (distribution issues) vs. the
development view (how the design is broken down into
implementation units). Other authors use different
terminologies, e.g., behavioral vs. functional vs. struc-
tural vs. data modeling views. The key idea is that a
software design is a multi-faceted artifact produced by
the design process and generally composed of relatively
independent and orthogonal views [BCK98:2,
BMR+96:6, BRJ99:31, Bud94:5, IEE9S].

+ Architectural styles (macro-architectural patterns): An
architectural style is “a set of constraints on an
architecture [that] define a set or fami ly of architectures
that satisfy them” [BCK98:2]. An architectural style can
thus be seen as a meta-model that can provide the high-
level organization (the macro-architecture) of a

34

software system. A number of major styles have been
identified by various authors. These styles can
(tentatively) be organized as follows [BCK98:5,
BMR+96:1,6, Bos00:6, BRJ99:28, Pfl98:5]:

- General structure (e.g., layers, pipes and filters,
blackboard);

- Didtributed systems (e.g., client-server, three-tiers,
broker);

- Interactive systems (e.g., Model-View-Controller,
Presentation-Abstraction-Control);

- Adaptable systems (e.g., micro-kernel, reflection);

- Other styles (e.g., batch, interpreters, process
control, rule-based).

¢ Design patterns (micro-architectural patterns):
Described succinctly, a pattern is “a common solution
to a common problem in a given context”
[JBR99:p. 447]. Whereas architectural styles can be
seen as patterns describing the high-level organization
of software systems, thus their macro-architecture, other
design patterns can be used to describe details at a
lower, more local level, thus describing their micro-
architecture. A wide range of patterns have been
discussed in the literature. Such design patterns can
(tentatively) be categorized as follows [BCK98:13,
BMR+96:1, BRJ99:28]:

- Creational patterns. e.g., builder, factory, prototype,
singleton.

- Structural patterns: e.g., adapter, bridge, composite,
decorator, fagade, flyweight, proxy.

- Behavioral patterns. e.g., command, interpreter,

iterator, mediator, memento, observer, state,
strategy, template, visitor.

+ Families of programs and frameworks: One possible
approach to allow the reuse of software designs and
components is to design families of systems — aso
known as software product lines — which can be done
by identifying the commonalities among members of
such families and by using reusable and customizable
components to account for the variabilities among the
various members of the family [BCK98:15, Bos00:7,10,
Pre97:26].

In the field of OO programming, a key related notion is
that of framework [BMR+96:6, Bos00:11, BRJ99:28]: a
framework is a patially complete software subsysem

which can be extended by appropriately instantiating
some specific plug-ins (also known as hot spots).

IV. Software Design Quality Analysis and Evaluation

A whole knowledge area is dedicated to Software Quality

(see chapter 11). Here, we simply mention a number of
topics more specifically related with software design.

+ Quality attributes: Various attributes are generally
considered important for obtaining a design of good

© |EEE — Stoneman (Version 0.9) — February 2001

quality, e.g., various “ilities’ (e.g., maintainability,
portability, testability, traceability), various “nesses’
(e.g., correctness, robustness), including “fitness of pur-
pose” [BMR+96:6, Bo0s00:5, Bud97:4, Mar94:D,
Mey97:3, Pfl198:5]. An interesting distinction is the one
between quality attributes discernable at run-time (e.g.,
performance, security, availability, functionality,
usability), those not discernable at run-time (eg.,
modifiability, portability, reusability, integrability and
testability) and those related with the intrinsic qualities
of the architecture (e.g., conceptua integrity,
correctness and completeness, buildability) [BCK98:4].

Quality analysis and evaluation tools. There exists a
variety of tools and techniques that can help ensure the

quality of a design. These can be decomposed into a
number of categories:

- Software design reviews. informal or semi-formal,
often group-based, techniques to verify and ensure
the quality of design artifacts, e.g., architecture
reviews [BCK98:10], design reviews and inspections
[Bud94:4, FW83:VIII, Jal97:5,7, LGO01:14, Pfl98:5],
scenario-based techniques [BCK98:9, Bo0s00:5],
requirementstracing [DT97:6, Pfl198:10].

- Static analysis: forma or semi-formal static (non-
executable) analysis that can be used to evaluate a
design, e.g., fault-tree analysis or automated cross-
checking [Jal97:5, Pfl98:5].

- Simulation and prototyping: dynamic techniques to
evaluate a design, e.g., performance simulation or
feasibility prototype [BCK98:10, Bos00:5, Bud94:4,
Pf198:5].

Measures: Forma measures (aka. metrics) can be used
to estimate, in a quantitative way, various aspects of the
size, structure or quality of adesign. Most measures that
have been proposed generally depend on the approach
used for producing the design. These measures can thus
be classified in two broad categories:

- Function-oriented (structured) design measures:
these measures are used for designs developed using
the structured design approach, where the emphasis
ismostly on functional decomposition. The structure
of the design is generally represented as a structure
chart (sometimes called a hierarchical diagram), on
which various measures can be computed [Jal97:5,7,
Pre97:18].

- Object-oriented design measures. these measures are
used for designs based on object-oriented
decomposition. The overall structure of the design is
often represented as a class diagram, on which
various measures can be defined [JAl97:6,7,
Pre97:23]. Measures can also be defined on pro-
perties of the internal content of each class.

© |IEEE — Stoneman (Version 0.9) — February 2001

V. Software Design Notations

A large number of notations and languages exist to
represent software design artifacts. Some are used mainly
to describe the structural organization of a design, whereas
others are used to represent the behavior of such software
systems. Note that certain notations are used mostly during
architectural design whereas others are useful mainly
during detailed design, although some can be used in both
steps. In addition, some notations are used mostly in the
context of certain specific methods (see section VI1). Here,
we categorize them into notations for describing the
structural (static) view vs. the behavioral (dynamic) view.

*

Structural descriptions (static view): These notations,
mostly (but not always) graphical, can be used to
describe and represent the structural aspects of a
software design, that is, to describe what the major
components are and how they are interconnected (static
view).
- Architecture Description Languages (ADL): textual,
often formal, languages used to describe an

architecture in terms of components and connectors
[BCK98:12];

- Class and object diagrams: diagrams used to show a
set of classes (and objects) and their relationships
[BRJ99:8,14, Jal97:5-6];

- Component diagrams. used to show a set of
components (“physical and replaceable part of a
system that conforms to and provides the realization
of a set of interfaces” [BRJ99]) and their
relationships [BRJ99:12,31]

- CRC Cards: used to denote the name of components

(class), their responsibilities and the names of their
collaborating components [BRJ99:4, BMR+96];

- Deployment diagrams. used to show a set of

(physical) nodes and their relationships and, thus, to
model the physical aspects of a system [BRJ99:30];

- Entity-Relationship Diagrams (ERD): used to define
conceptual models of data stored in information
systems [Bud94:6, DT97:4, Mar94:DR];

- Interface Description Languages (IDL):
programming-like languages used to define the
interface (name and types of exported operations) of
software components [BCK98:8, BJR99:11];

- Jackson structure diagrams: used to describe the
structure of data in terms of sejuence, selection and
iteration [Bud94.6, Mar94.DRY];

- Structure charts: used to describe the calling structure
of programs (which procedure/module callg/is called
by which other) [Bud94:6, Ja97:5 Mar94:DR,
Pre97:14];

Behavioral descriptions (dynamic view): These notations

and languages are used to describe the dynamic behavior

of systems and components. Such notations include

35

various graphical notations (e.g., activity diagrams,
DFD, sequence diagrams, state transition diagrams) as
well as some textual notations (e.g., formal specification
languages, pseudo-code and PDL). Many of these
notations are useful mostly, but not exclusively, during
detailed design.

- Activity diagrams: used to show the flow of control
from activity (“ongoing non-atomic execution within
astate machine”) to activity [BRJ99:19];

- Collaboration diagrams:. used to show the interactions
that occur among a group of objects, where the
emphasis is on the objects, their links and the
messages they exchange on these links[BRJ99:18];

- Data flow diagrams: used to show the flow of data
among a set of processes [Bud94:6, Mar94:DR,
Pre97:14];

- Decision tables and diagrams. used to represent

complex combination of conditions and actions
[Pre97:14];

- Flowcharts and structured flowcharts: used to
represent the flow of control and the associated
actions to be performed [FW83:VII, Mar94.DR,
Pre97:14];

- Formal specification languages. textual languages
that use basic notions from mathematics (e.g., logic,
set, sequence) to rigorously and abstractly define the
interface and behavior of software components, often
in terms of pre/post-conditions; [Bud94:14, DT97:5,
Mey97:11];

- Pseudo-code and Program Design Languages (PDL):
structured, programming-like languages used to
describe, generaly at the detailed design stage, the

behavior of a procedure or method [Bud94:6,
FW83:VIl, Jal97:7, Pre97:12,14];

- Sequence diagrams; used to show the interactions

among a group of objects, with the emphasis on the
time-ordering of messages [BRJ99:18];

- State transition and statechart diagrams: used to show
the flow of control from state to state in a state
machine [BRJ99:24, Bud94:6, Mar94:DR, Jal97:7].

VI. Software Design Strategies and Methods

Various general strategies can be used to help guide the
design process [Bud94:8, Mar94:D]. By contrast with
general strategies, methods are more specific in that they
generally suggest and provide i) a set of notations to be
used with the method; ii) a description of the process to be
used when following the method; iii) a set of heuristics that
provide guidance in using the method [Bud97:7]. Such
methods are useful as a means of transferring knowledge
and as a common framework for teams of developers
[Bud97:7]. In the following paragraphs, a number of
general strategies are first briefly mentioned, followed by a
number of methods.

3-6

*

General strategies: Some often cited examples of
general strategies useful in the design process are
divide-and-conquer and stepwise refinement [FW83:V],
top-down vs. bottomup strategies [Jal97:5, LG01:13],
data abstraction and information hiding [FW83:V], use
of heurigtics [Bud94:7], use of patterns and pattern
languages [BMR+96:5], use of an iteative and
incremental approach [Pf198:2].

Function-oriented (structured) design [DT97:5,
FW83:V, Jal97:5, Pred7:13-14]: This is one of the
classical approach to software design, where the
decomposition is centered around the identification of
the major systems functions and their elaboration and
refinement in a top-down manner. Structured design is
generally used after structured analysis has been
performed, thus producing, among other things,
dataflow diagrams and associated processes
descriptions. Various strategies (e.g., tranformation
analysis, transaction analysis) and heuristics (e.g., fan-
in/fan-out, scope of effect vs. scope of control) have
been proposed to transform a DFD into a software
architecture generally represented as a structure chart.

Object-oriented design [DT97:5, FW83:VI, Jal97:6,
Mar94:D, Pre97:19,21]: Numerous software design
methods based on objects have been proposed. The field
evolved from the early object-based design of the mid-
1980's (noun = object; verb = method; adjective =
attribute) through object-oriented design, where
inheritance and polymorphism play a key role, and to
the field of component-based design, where meta-
information can be defined and accessed (e.g., through
reflection). Although object-oriented design’s deep
roots stem from the concept of data abstraction, the
notion of responsibility-driven design has aso been
proposed as an alternative approach to object-oriented
design.

Data-structure centered design [FW83:111,VII,
Mar94:D]: Although less popular in North America
than in Europe, there has been some interesting work
(e.g., Jackson, Warnier-Orr) on designing a program
starting from the data structures it manipulates rather
than from the function it performs. The structures of the
input and output data are first described (e.g., using
Jackson structure diagrams) and then the control
structure of the program is developed based on these
data structure diagrams. Various heuristics have been
proposed to deal with special cases, for example, when
there is mismatch between the input and output
structures.

Other methods: Although software design based on
functional decomposition or on object-oriented
approaches are probably the most well-known methods
to software design, other interesting approaches,
although probably less “mainstream”, do exist, e.g.,
formal and rigorous methods [Bud94:14, DT97:5,

© |EEE — Stoneman (Version 0.9) — February 2001

Mey97:11, transformational methods

[Pfi98:2].

Pre97:25],

4. BREAKDOWN RATIONALE

This section explains the rational e behind the breakdown of
topics for the Software Design KA. This is done informally
by going through a number of the requirements described in
the “Knowledge Area Description Specifications for the
Stone Man Version of the Guide to the SWEBOK” (see
Appendix A of the whole Guide) and by trying to explain
how these regquirements influenced the organization and
content of the Software Design KA description.

First and foremost, the breakdown of topics must describe
“generally accepted” knowledge, that is, knowledge for
which there is a “widespread consensus’. Furthermore, and
thisis clearly where this becomes difficult, such knowledge
must be “generally accepted” today and expected to be so
in a 3 to 5 years timeframe. This latter requirement first
explains why elements related with software architecture
(see below), including notions related with architectural
styles have been included, even though these are relatively
recent topics that might not yet be generally accepted.

The need for the breakdown to be independent of specific
application domains, life cycle models, technologies,
development methods, etc., and to be compatible with the
various schools within software engineering, is particularly
apparent within the “Software Design Strategies and
Methods” section. In that section, numerous approaches
and methods have been included and references given. This
is also the case in the * Software Design Notations’, which
incorporates pointers to many of the existing notations and
description techniques for software design artifacts.
Although many of the design methods use specific design
notations and description techniques, many of these
notations are generally useful independently of the
particular method that uses them. Note that thisis also the
approach used in many software engineering books,
including the recent UML series of books by Booch,
Jacobson and Rumbaugh, which describe “The Unified
Modeling Language” apart from “The Unified Software
Development Process”.

One point worth mentioning about UML is that although
“UML" (Unified Modeling Language) is not explicitly
mentioned in the Design Notations section, many of its
elements are indeed present, for example: class and object

diagrams, collaboration diagrams, deployment diagrams,
sequence diagrams, statecharts.

The specifications document also specifically asked that the
breakdown be as inclusive as possible and that it includes
topics related with quality and measurements. Thus, a
certain number of topics have been included in the list of
topics even though they may not yet be fully considered as
generally accepted. For example, although there are a
number of books on measures and metrics, design measures
per se are rarely discussed in detail and few “main stream”

© |IEEE — Stoneman (Version 0.9) — February 2001

software engineering books formally discuss this topic. But
they are indeed discussed in some books and may become
more mainstream in the coming years. Note that although
those measures can sometimes be categorized into high-
level (architectural) design vs. component-level (detailed)
design, the way such measures are defined and used gene-
rally depend on the approach used for producing the design,
for example, structured vs. object-oriented design. Thus,
the measures sub-topics have been divided into function-
(structured-) vs. object-oriented design. As the software
engineering field matures and classes of software designs
evolve, the measures appropriate to each class will become
more apparent.

Similarly, there may not yet be a generally accepted list of
basic principles and concepts (what was called here the
“enabling techniques’: see next paragraph for the choice of
these terms) on which all authors and software engineers

would agree. Only those that seemed the most commonly
cited in the literature were included.

As required by the KA Description Specifications, the
breakdown is at most three levels deep and use topic names
which, based on our survey of the existing literature and on
the various reviewers comments, should be meaningful

when cited outside Guide to the SWEBOK. One possible
exception might be the use of the terms “enabling
techniques’, taken from [BMR+96]. In the current context,
the term “concept” seemed too general, not specific
enough, whereas the term “principle”’, sometimes used in
the literature for some of these notions, sounded too strong
(see the definition provided in Section 3).

The rationale for the section “Key Issues in Software
Design” is that a number of reviewers of an earlier version
suggested that certain topics, not explicitly mentioned in
that previous version, be added, e.g., concurrency and
multi-threading, exception handling. Although some of
these aspects are addressed by some of the existing design
methods, it seemed appropriate that these key issues be
explicitly identified and that more specific references be
given for them, thus the addition of this new section.
However, like for the enabling techniques, there does not
seem to yet be a complete consensus on what these issues
should be, what aspects they should really be addressing,
especially since some of those that have been indicated may
also be addressed by other topics (e.g., quality). Thus, this
section should be seen as a tentative and prototype
description that could yet be improved: the author of the
Software Design KA Description would gladly welcome
any suggestions that could improve and/or refine the con-
tent of this section.

In the KA breakdown, as mentioned earlier, an explicit
“Software Architecture” section has been included. Here,
the notion of “architecture” is to be understood in the large
sense of defining the structure, organization and interfaces
of the components of a software system, by opposition to
producing the “detailed design” of the specific components.
Thisis what realy is at the heart of Software Design. Thus,

37

the “ Software Architecture” section includes topics which
pertain to the macro-architecture of a system —what is now
becoming known as “Architecture” per se, including
notions such as “architectural styles’ and “family of
programs’ — as well as topics related with the micro-
architecture of the smaller subsystems — for example,
lower-level design patterns which can be used at the
detailed design state. Although some of these topics are
relatively new, they should become much more generally
accepted within the 3-5 years timeframe expected from the
Guide to the SWEBOK specifications. By contrast, note
that no explicit “Detailed Design” section has been
included: topics relevant to detailed design can implicitly
be found in many places. the “ Software Design Notations’
and “Software Design Strategies and Methods” sections,
“Software Architecture” (design patterns), as well as in
“The software design process’ subsection.

The “ Software Design Strategies and Methods” section has
been divided, asis done in many books discussing software
design, in a first section that presents general strategies,

followed by subsequent sections that present the various
classes of approaches (data-, function-, object-oriented or
other approaches). For each of these approaches, numerous
methods have been proposed and can be found in the
software engineering literature. Because of the limit on the
number of references, mostly general references have been
given, pointers that can then be used as starting point for
more specific references.

Another issue, alluded to in the introduction but worth
explaining in more detail, is the exclusion of a number of
topics which contain the word “design” in their name and
which, indeed, pertain to the development of software
systems. Among these are the followings: User Interface
Design, Real-time Design, Database Design, Participatory
Design, Collaborative Design. The first two topics were
specifically excluded, in the Straw Man document
[BDA+98], fom the Software Design KA: User Interface
Design was considered to be a related dis cipline (see the
Relevant knowledge areas of related disciplines, where
both Computer Science and Cognitive Sciences can be
pertinent for Ul Design) whereas Real-time Design was
considered a specialized sub-field of software design, thus
did not have to be addressed in this KA description. The
third one, Database Design, can aso be considered a rele-
vant (specialized) knowledge area of a related discipline
(Computer Science). Note that issues related with user-
interfaces and databases still have to be dealt with during
the software design process, which is why they are
mentioned in the “Key Issues in Software Design” section.
However, the specific tasks of designing the details of the
user interface or database structure are not considered part
of Software Design per se. Note also that Ul Design is not
really part of design for an additional reason: Ul Design

3-8

deals with specifying the external view of the system, not
itsinternal structure and organization, thus should really be
considered part of requirements specification.

As for the last two topics — Participatory and Collaborative
Design —, they are more appropriately related with the
Requirements Engineering KA, rather than Software
Design. In the terminology of DeMarco (DeM99), these
latter two topics belong more appropriately to tDesign
(invention design, done by system analysts) rather than D-
design (decomposition design, done by designers and
coders) or FP-design (family pattern design, done by
architecture groups). It is mainly D-design and FP-design,
with a major emphasis on D-design, that can be considered
as generally accepted knowedge related with Software
Design.

Finally, concerning standards, there seems to be few
standards that directly pertain to the design task or work
product per se. However, standards having some indirect
relationships with various issues of Software Design do
exist, e.g., OMG standards for UML or CORBA. Since the
need for the explicit inclusion of standards in the KA
breakdown has been put aside (“Proposed changes to the
[...] specifications [...]", Dec. 1999), a few standards
having a direct connection with the Software Design KA
were included in the Recommended references section. A
number of standards related with design in a slightly more
indirect fashion were also added to the list of further
readings. Finally, additional standards having only an
indirect yet not empty connection with design were simply
mentioned in the general References section. As for topics
related with tools, they are now part of the Software
Development Methods and Tools KA.

5. MATRIX OF TOPICSVS. REFERENCE MATERIAL

The figure below presents amatrix showing the coverage of
the topics of the Software Design KA by the various
recommended references described in more detail in the
following section. A number in an entry indicates a specific
section or chapter number. A “*” indicates a reference to
the whole document, generally either a journal paper or a
standard. An interval of the form “nl-n2“ indicates a
specific range of pages, whereas an interval of the form
“nl:n2" indicates arange of sections. For Mar94, the letters
refer to one of the encyclopedia's entry: “D” = Design;
“DR” = Design Representation; “DD” = Design of
Distributed systems”.

Note: Only the top two levels of the breakdown have been
indicated in the matrix. Otherwise, especialy in the

“Software Design Notations” subsections, this would have
lead to very sparse lines (in an already quite sparse matrix).

© |EEE — Stoneman (Version 0.9) — February 2001

B B B B B D F I I J L M M P P S
C M o] R u T w E S a G a e f r B
K R S J d 9 8 E (0] | 0 r y | e 9
9 + 0 9 9 7 3 9 9 9 1 9 9 9 9 3
8 9 0 9 4 8 5 7 4 7 8 7
6 b
|. Software Design
Basic Concepts
General design 1 *
concepts
The context of * 111| D 22 | 22:
software design 27
The software design 2.1, 2 266- | 2-22 * * 13.1 D 13.8
process 24 276 13.2
Enabling techniques 61 | 63 | 103 * 51, | 11, 5.2, | 134,
52, | 12, 55 [135,
6.2 | 313 23.2
3,
77-
85,
5.8,
125-
1289
1:9.3
I1. Key issuesin
softwar e design
Concurrency 541 DD | 30 21.3
Control and events 52 324, 53
32.5
Distribution 83, | 23 | 541 DD 30 28.1
84
Exception handling 434. 12 | 55
5
Interactive systems 6.2 24 | 541 13.3 322
Persistence 54.1 31
I11. Software
structureand
architecture
Architectural structures| 25 | 6.1 31 | 52 *
and viewpoints
Architectural styles 51, | 1.1: [631 28 53
and patterns (macro- 52, | 13,
arch)) 54 6.2
Design patterns 133 | 1.1 28
(micro-arch.) 13
Familiesof programs | 151, 62 | 7.1, | 28 26.4
and frameworks 153 7.2,
10.2:
10.4,
11.2,
11.4

© |IEEE — Stoneman (Version 0.9) — February 2001

39

B B B B B D F I | J L M M P P S
C M o] R u T W E S a G a e f r B
K R S J d 9 8 E (0] | 0 r y | e 9
9 + 0 9 9 7 3 9 9 9 1 9 9 9 9 3
8 9 0 9 4 8 5 7 4 7 8 7
6 b
1V. Software design
quality analysisand
evaluation
Quality attributes 41 | 64 | 523 41 D 3 | 55
43
Quality analysisand 9.1, 521 44 | 266- | 542- 55, | 141 5.6,
evaluation 9.2, 5.2.2 276 | 576 73 5.7,
10.2, 5.3, 10.5
10.3 54
Measures 5.6, 18.4,
6.5, 234,
74 23.5
V. Software design
notations
Structural descriptions | 8.4, p. 4,8, | 6.3, 5.3, DR 12.3,
(static) 121, | 42 11, | 64, 6.3 12.4
12.2 12, 6.6
14,
30,
31
Behaviora 18, 6.2, | 181- | 485- 5.3, DR 11 1411
descriptions (dynamic) 19, 6.7: | 192 | 490, 72 12.5
24 6.9, 506-
1422 513
14.3.2
VI. Softwar e design
strategiesand
methods
Generd strategies 5.1 7.1, 304- 514] 1313 | D 25
54 7.2, 320,
8 533-
539
Function-oriented 170- | 328- 54 13.5,
design 180 | 352 13.6,
14.3:
14.5
OO design 148- | 420- 6.4 D 19.2,
159, | 436 19.3,
160- 21.1:
169 21.3
Data-centered design 201- D
2105
14-
532
Other methods 14 181- | 395- 11 22 | 25.1:
192 | 407 25.3

6. RECOMMENDED REFERENCES FOR SOFTWARE

DESIGN

In this section, we give a brief presentation of each of the
recommended references. Note that few references to
existing standards have been included in this list, for the
reasons explained in Section 4; instead, references to
interesting standards have been included in the list of
further readings. Also note that, because of the constraints
on the size of the recommended references list, few specific
and detailed references have been given for the various

3-10

design methods; instead, general software engineering
textbook references have been given. See the list of further
readings in section 7 for more precise and detailed
references on such methods, especialy for references to
various OO design methods.

Finally, also note that, both in this section and the follo-
wing, only the author(s) and title of the recommended
reference are given, together with an appropriate key that
then refers to an entry in the general and detailed
References section at the end of the chapter.

[BCK98] L. Bass, P. Clements, and R. Kazman. Software
Architecturein Practice.

© |EEE — Stoneman (Version 0.9) — February 2001

A recent and major work on software architecture. It covers
all the major topics associated with software architecture:
what software architecture is, quality attributes,
architectural styles, enabling concepts and techniques
(called unit operations), architecture description languages,
development of product lines, etc. Furthermore, it presents
a number of case studies illustrating major architectural
concepts, including a chapter on CORBA and one on the
WWW. Some sections also address the issue of product
lines design.

[BMR+96] F. Buschmann, R. Meunier, H. Rohnert, P.

Sommerlad, and M. Stal. Pattern-oriented Software
Architecture — A System of Patterns.

Probably one of the best and clearest introduction to the
notions of software architecture and patterns (both
architectural and lower-level ones). Distinct chapters are
dedicated to architectural patterns, design patterns and
lower-level idioms. Another chapter discusses the
relationships between patterns, software architecture,
methods, frameworks, etc. This chapter also includes an
brief presentation of “enabling techniques for software
architecture”, e.g., abstraction, encapsulation, information
hiding, coupling and cohesion, etc.

[Bos0Q] J. Bosch. Design & Use of Software Architecture —
Adopting and Evolving a Product-line Approach.

The first part of this book is about the design of software
architectures and proposes a functionality-based approach
coupled with subsequent phases of evaluation and
transformation of the resulting architecture. These
transformations are expressed in terms of different levels of
patterns (architectural styles, architectural patterns and
design patterns) and the impact they have on a number of
key quality factors (performance, maintainability, reliability
and security). The second part of the book is more
specifically about the design of software product lines,
including awhole chapter on OO frameworks.

[BRJ99] G. Booch, J. Rumbauch, and I. Jacobson. The
Unified Modeling Language User Guide.

A comprehensive and thorough presentation of the various
elements of UML, which incorporates many of the
notations mentioned in the “Software Design Notations’
section.

[Bud94] D. Budgen. Software Design.

One of the few books discussing software design known to
the author of the SD KA description — maybe the only one
— which is neither a general software engineering textbook
nor a book describing a specific software design method.
This is probably the book that comes closest to the spirit of
the present Software Design KA description, as it discusses
topics such as the followings. the nature of design; the
software design process, design qualities; design
viewpoints, design representations; design strategies and
methods (including brief presentations of a number of such
methods, eg., JSP, SSASD, JSD, OOD, etc.). Worth

© |IEEE — Stoneman (Version 0.9) — February 2001

reading to find, in a single book, many notions, views and
approaches to/about software design.

[DT97] M. Dorfman and R.H. Thayer (eds.). Software
Engineering.

This book contains a collection of papers on software
engineering in general. Two chapters deal more specificaly
with software design. One of them contains a genera
introduction to software design, briefly presenting the
software design process and the notions of software design
methods and design viewpoints. The other chapter contains
an introduction to object-oriented design and a comparison

of some existing OO methods. The following articles are
particularly interesting for Software Design:

+ D. Budgen, Software Design: An Introduction, pp. 104-
115.

+ L.M. Northrop, Object-Oriented Development, pp. 148-
150.

+ A.G. Sutcliffe, Object-Oriented Systems Development:
A Survey of Structured Methods, pp.160-1609.

¢ C. Ashworth, Structured Systems Analysis and Design
Method (SSADM), pp. 170-180.

+ R. Vienneau, A Review of Forma Methods, pp. 181-
192.

+ J.D. Pamer, Traceability, pp. 266-276.

[FW83] P. Freeman and A.l. Wasserman. Tutorial on
Softwar e Design Techniques, fourth edition.

Although this is an old book, it is an interesting one
because it allows to better understand the evolution of the
software design field. This book is a collection of papers
where each paper presents a software design technique. The
techniques range from basic strategies like stepwise
refinement to, at the time, more refined methods such as
structured design & la Yourdon and Constantine. An
historically important reference. The following articles are
particularly interesting:

+ P. Freeman, Fundamentals of Design, pp. 2-22.

¢ D.L. Parnas, On the Criteriato be Used in Decomposing
Systems into Modules, pp. 304-309.

+ D.L. Parnas, Designing Software for Ease of Extension
and Contraction, pp. 310-320.

¢+ W.P. Stevens, G.J. Myers and L.L. Constantine,
Structured Design, pp. 328-352.

+ G. Booch, Object-Oriented Design, pp. 420-436.

¢+ SH. Cane and EK. Gordon, PDL — A Tool for
Software Design, pp. 485-490.

¢ CM. Yoder and M.L. Schrag, Nass-Schneiderman

Charts: An Alternative to Flowcharts for Design, pp.
506-513.

¢ M.A. Jackson, Constructive Methods of Program
Design, pp. 514-532.

311

¢ N. Wirth, Program Development
Refinement, pp. 533-539.

¢+ P. Freeman, Toward Improved Review of Software
Design, pp. 542-547.

+ M.E. Fagan, Design and Code Inspections to Reduce
Errorsin Program Development, pp. 548-576.

[IEE98] IEEE Std 1016-1998. |EEE Recommended
Practice for Software Design Descriptions.

This document describes the information content and
recommended organization that should be used for software
design descriptions. The attributes describing design
entities are briefly described: identification, type, purpose,
function, subordinates, dependencies, interfaces, resources,
processing and data. How these different elements should
be organized is then presented.

[ISO95b] ISO/IEC Std 12207. Information technology —
Software life cycle processes.

A detailed description of the ISO/IEC-12207 life cycle
model. Clearly shows where Software Design fits in the
whol e software development life cycle.

[Jal97] P. Jalote. An integrated approach to software
engineering, 2nd ed.

by Stepwise

A general software engineering textbook with a good
coverage of software design, as three chapters discuss this
topic: one on function-oriented design, one on object-
oriented design, and the other on detailed design. Another
interesting point is that all these chapters have a section on
measures and metrics.

[LGO1] B. Liskov and J. Guttag. Program Development in
Java — Abstraction, Specification, and Object-Oriented
Design.

A Java version of a classic book on the use of abstraction
and specification in software development [LG86]. This
new book still discusses, in a clear and insightful way, the
notions of procedural vs. data vs. control (iteration)
abstractions. It also stresses the importance of appropriate
specifications of these abstractions, although this is now
done rather informally (with stylized pre/post-conditionsin
the style of Clu [LG86]). The book also contains a chapter
on design patterns. A very good introduction to some of the
basic notions of design.

[Mar94] JJ.
Engineering.

Marciniak. Encyclopedia of Software

A general software engineering encyclopedia that contains
(at least) three interesting articles discussing software
design. The first one, “Design” (K. Shurrete), is a general
overview of design discussing alternative development
processes (e.g., waterfal, spiral, prototyping), design
methods (structured, data-centered, modular, object-
oriented). Some issues related with concurrency are also
mentioned. The second one discusses the “Design of
distributed systems” (R.M. Adler): communication models,
client-server and services models. The third one, “Design

3-12

representation” (J. Ebert), presents a number of approaches
to the representation of design. It is clearly not a detailed
presentation of any method; however, it is interesting in
that it tries to explicitly identify, for each such method, the
kinds of components and connectors used within the
representation.

[Mey97] B. Meyer. Object-Oriented Software Construction
(Second Edition).

A detailed presentation of the Eiffel OO language and its
associated Design-By-Contract approach, which is based on
the use of formal assertions (pre/post-conditions, invariants,
etc). It introduces the basic concepts of OO design, along
with a discussion of many of the key issues associated with
software design, e.g., user interface, exceptions,
concurrency, persistence.

[Pfl98] S.L. Pfleeger. Software Engineering — Theory and
Practice.

A general software engineering book with one chapter
devoted to design. Briefly presents and discusses some of
the major architectural styles and strategies and some of the
concepts associated with the issue of concurrency. Another
section presents the notions of coupling and cohesion and
also deals with the issue of exception handling. Techniques
to improve and to evaluate a design are also presented:

design by contract, prototyping, reviews. Although this
chapter does not delve into any topic, it can be an
interesting starting point for a number of issues not
discussed in some of the other general software engineering
textbooks.

[Pre97] R.S. Pressman. Software Engineering — A
Practitioner's Approach (Fourth Edition).

A classic general software engineering textbook (4th
edition!). It contains over 10 chapters that deal with notions
associated with software design in one way or another. The
basic concepts and the design methods are presented in two
distinct chapters. Furthermore, the topics pertaining to the
function-based (structured) approach are separated (part I11)
from those pertaining to the object-oriented approach (part
V). Independent chapters are also devoted to measures
applicable to each of those approaches, a specific section
addressing the measures specific to design. A chapter
discusses formal methods and another presents the Clean-

room approach. Finally, another chapter discusses client-
server systems and distribution issues.

[SB93] G. Smith and G. Browne. Conceptual foundations
of design problem-solving.

A paper that discusses what is design in general. More
specificaly, it presents the five basic concepts of design:
goals, constraints, alternatives, representations, and

solutions. The bibliography is a good starting point for
obtaining additional references on designin general.

© |IEEE — Stoneman (Version 0.9) — February 2001

APPENDIX A — LIST OF FURTHER READINGS

The following section suggests a list of additional reading

material related with Software Design. A number of

standards are mentioned; additional standards that may be

pertinent or applicable to Software Design, although in a
somewhat less direct way, are also mentioned, although not

further described, in the general References section at the

end of the document.

[Boo94] G. Booch. Object Oriented Analysis and Design
with Applications, 2nd ed.

A classic in the field of OOD. The book introduces a
number of notations that were to become part of UML
(although sometimes with some slight modifications): class
VS. objects diagrams, interaction diagrams, statecharts-like
diagrams, module and deployment, process structure dia-
grams, €c. It also introduces a process to be used for OOA
and OOD, both a higher-level (life cycle) process and a
lower-level (micro-) process. (Note that a third edition of
thisbook is expected.)

[Cro84] N. Cross (ed.).
Methodol ogy.

Developments in Design
This book consists in a series of papers related to design in
general, that is, design in other contexts than software. Still,
many notions and principles discussed in some of these

papers do apply to Software Design, e.g., the idea of design
as wicked-problemsolving.

[CY91] P. Coad and E. Y ourdon. Object-Oriented Design.

This is yet another classic in the field of OOD — note that
the second author isone of the father of classical Structured
Design. An OOD model developed with their approach
consists of the following four components that attempt to
separate how some of the key issues should be handled:
problem domain, human interaction, task management and
data management.

[DW99] D.F. D'Souza and A.C. Wills. Objects,
Components, and Frameworks with UML — The Catalysis
Approach.

A thorough presentation of a specific OO approach with an
emphasis on component design. The development of static,
dynamic and interaction models is discussed. The notions
of components and connectors are presented and illustrated
with various approaches (Java Beans, COM, Corba); how
to use such components in the development of frameworks
is also discussed. Another chapter discusses various aspects
of software architecture. The last chapter introduces a
pattern system for dealing with both high-level and detailed
design, the latter level touching on many key issues of
design such as concurrency, distribution, middleware,
dialogue independence, etc.

[Fow99] M. Fowler. Refactoring — Improving the Design of
Existing Code.

© |IEEE — Stoneman (Version 0.9) — February 2001

A book about how to improve the design of some existing
(object-oriented) code. The first chapter is a simple and
illustrative example of the approach. Subsequent chapter
present various categories of strategies, e.g., composing
methods, moving features between objects, organizing data,
simplifying conditional expressions, making methods calls
simpler.

[FP97] N.E. Fenton and S.L. Pfleeger. Software Metrics —
A Rigorous & Practical Approach (Second Edition).

This book contains a detailed presentation of numerous
software measures and metrics. Although the measures are
not necessarily presented based on the software
development life cycle, many of those measures, especially
those in chapters 7 and 8, are applicable to software design.

[GHJIV95] E. Gamma et al. Design Patterns — Elements of
Reusabl e Object-Oriented Software.

The seminal work on design patterns. A detailed catalogue
of patterns related mostly with the micro -architecture level.

[Hutod] A.T.F. Hutt. Object Analysis and Design —
Description of Methods. Object Analysis and Design —
Comparison of Methods.

These two books describe (first book) and compare (second
book), in an outlined manner, a large number of OO
analysis and design methods. Useful as a starting point for
obtaining additional pointers and references to OOD
methods, not so much as a detailed presentation of those
methods.

[IEEQQ] IEEE Std 610.12-1990. |EEE Standard Glossary of
Software Engineering Terminology.

This standard is not specifically targeted to Software
Design, which is why it has not been included in the
recommended references. It describes and briefly explains
many of the common terms used in the Software
Engineering field, including many terms from Software
Design.

[I1SO91] ISO/IEC Std 9126. Information technology —
Software product evaluation — Quality characteristics and
guidelinesfor their use.

This standard describes six high-level characteristics that
describe software quality: functionality, reliability,
usahility, efficiency, maintainability, portability.

[JBP+91] J. Rumbaugh et al. Object-Oriented Modeling
and Design.

This book is another classic in the field of OOA and OOD.
It was one of the first to introduce the distinctions between
object, dynamic and funcional modeling. However,
contrary to [Boo94] whose emphasis is mostly on design,
the emphasis here is slightly more on analysis, although a
number of elements do apply to design too.

[JBR99] I. Jacobson, G. Booch, and J. Rumbaugh. The
Unified Software Development Process.

A detailed and thorough presentation of the Unified
Software Development Process proposed by the Rational

3-13

Software Corporation. The notion of architecture plays a
central role in this development process, the process being
said to be architecture-centric. However, the associated
notion of architecture seems to be dlightly different from
the traditional purely design-based one: an architecture
description is supposed to contain views not only from the
design model but also from the use-case, deployment and
implementation models. A whole chapter is devoted to the
presentation of the iterative and incremental approach to
software development. Another chapter is devoted to
design per se, whose goal is to produce both the design
model, which includes the logical (e.g., class diagrams,
collaborations, etc.) and process (active objects) views, and
the deployment model (physical view).

[Kru9s] P.B. Kruchten. The 4+1 view mode of
architecture.

A paper that explains in a clear and insightful way the
importance of having multiple views to describe an
architecture. Here, architecture is understood in the sense
mentioned earlier in reference [JBR99], not in its strictly
design-related way. The first four views discussed in the
paper are the logical, process, development and physical
views, whereas the fifth one (the “+1”) is the use case view,
which binds together the previous views. The views more
intimately related with Software Design are the logical and
process ones.

[Lar98] C. Larman. Applying UML and Patterns — An
introduction to Object-Oriented Analysis and Design.

An introductory book that covers object-oriented analysis
and design, doing so through a case study used throughout
the book. Part IV and VI are dedicated to the design phase.
They introduce a number of patterns to guide the
assignment of responsibilities to classes and objects.
Various issues regarding design are also addressed, e.g.,
multi-tiers architecture, model-view separation. The
patterns of [GHJIV95] are also examined in the context of
the case study.

[McC93] S. McConnell. Code Complete.

Although this book is probably more closely related with
Software Construction, it does contain a section on
Software Design with a number of interesting chapters,
e.g., “Characteristics of a High-Quality Routines’, “Three
out of Four Programmers Surveyed Prefer Modules’,
“High-Level Design in Construction”. One of these
chapters (“Characteristics [...]”) contains an interesting
discussion on the use of assertions in the spirit of Meyer’'s
Design-by-Contract; another chapter (“Three [...]")
discusses cohesion and coupling as well as information
hiding; the other chapter (“High-Level [...]") gives a brief
introduction to some design methodologies (structured
design, OOD).

[otSESC98] Draft recommended practice for information
technology — System design — Architectural description.
Technical Report IEEE P1471/D4.1.

3-14

“This recommended practice establishes a conceptual
framework for architectural description. This framework
covers the activities involved in the creation, analysis, and
sustainment of architectures of software-intensive systems,
and the recording of such architecturesin terms of architec-
tural descriptions” (from the Abstract)

[Pet92] H. Petroski. To Engineer is Human — The role of
failurein successful design.

Thisbook isnot about software design per se. The author, a
civil engineer, discusses how a designer, an engineer can
and should learn from previous failures and how a design
should be seen as a kind of hypothesis to be tested.
Interestingly, considering that Software Design is only one
out of the 10 knowledge areas for software engineering, the
author “take[s] design and engineering to be virtualy
synonymous’.

[PJOO] M. Page-Jones. Fundamentals of Object-Oriented
Designin UML.

Part 111 of this book (“Principles of object-oriented design”)
addresses a number of the enabling techniques in the
specific context of OO design. This part of the book
contains chapters such as the followings: Encapsulation and
connascence; Domains, encumbrance, and cohesion; Type
conformance and dosed behavior; The perils of inheritance

and polymorphism. The book also contains a chapter on the
design of software components.

[Pre95] W. Pree. Design Patterns for Object-Oriented
Software Devel opment.

This book is particularly interesting for its discussion of
framework design using what is called the “hot-spot
driven” approach to the design of frameworks. The more
specific topic of design patterns is better addressed in
[BMR+96].

[Rie96] A.J. Riel. Object-Oriented Design Heuristics.

This book, targeted mainly towards OO design, presents a
large number of heuristics that can be used in software
design. Those heuristics address a wide range of issues,

both at the architectural level and at the detailed design
level.

[SG96] M. Shaw, D. Garlan. Software architecture:
Per spectives on an emerging discipline.

One of the early book on software architecture that
addresses many facets of the topic: architectural styles
(including a chapter with a number of small case studies),

shared information systems, user-interface architectures,
formal specifications, linguistic issues, tools and education.

[Som95] |. Sommerville. Software Engineering (fifth
edition). Addison-Wesley, 1995.

Part Three is dedicated to software design, giving an
overview of a number of topics through the following
chapters: the design process, architectural design, OO

design, functional design. (Note: a sixth edition may
aready be available.)

© |IEEE — Stoneman (Version 0.9) — February 2001

[WBWW90] R. Wirfs-Brock, B. Wilkerson, and L. Wiener.
Designing Object-Oriented Software.

A book that introduced the notion of responsibility-driven
design to OOD. Until then, OOD was often considered
synonymous with data abstraction-based design. Although
it is true that an object does encapsulate data and associated
behavior, focusing strictly on this aspect may not lead,
according to the responsibility-driven design approach, to
the best design.

[Wie98] R. Wieringa. A Survey of Structured and Object-
Oriented Software Specification Methods and Techniques.

An interesting survey article that presents a wide range of
notations and methods for specifying software systems and
components. It also introduces an interesting framework for
comparison based on the kinds of system properties to be
specified: functions, behavior, communication or
decomposition.

© |IEEE — Stoneman (Version 0.9) — February 2001

3-15

APPENDIX B — REFERENCES USED TO WRITE AND
JUSTIFY THE KNOWLEDGE AREA DESCRIPTION

[BCK98] L. Bass, P. Clements, and R. Kazman. Software
Architecture in Practice. SElI Series in Software
Engineering. Addison-Wesley, 1998.

[BDA+98] P. Bourque, R. Dupuis, A. Abran, JW. Moore,
L. Tripp, J. Shyne, B. Pflug, M. Maya, and G. Tremblay.
Guide to the software engineering body of knowledge —a
straw man version. Technical report, Dépt. d'Informatique,
UQAM, Sept. 1998.

[BMR+96] F. Buschmann, R. Meunier, H. Rohnert, P.
Sommerlad, and M. Stal. Pattern-oriented Software

Architecture — A System of Patterns John Wiley & Sons,
1996.

[Boo94] G. Booch. Object Oriented Analysis and Design
with Applications, 2nd ed. The Benjamin/Cummings
Publishing Company, Inc., 1994,

[Bos0Q] J. Bosch. Design & Use of Software Architecture —

Adopting and Evolving a Product-line Approach. ACM
Press, 2000.

[BRJ99] G. Booch, J. Rumbauch, and |. Jacobson. The
Unified Modeling Language User Guide. Addison-Wesley,
1990.

[Bud94] D. Budgen. Software Design. Addison-Wesley,
1994.

[Cro84] N. Cross (ed.). Developments in Design
Methodol ogy. John Wiley & Sons, 1984.

[CY91] P. Coad and E. Yourdon. Object-Oriented Design.
Y ourdon Press, 1991.

[DeM99] T. DeMarco. The Paradox of Software
Architecture and Design. Stevens Prize Lecture, August
1990.

[DT97] M. Dorfman and R.H. Thayer. Software
Engineering. IEEE Computer Society Press, 1997.

[DW99] D.F. D'Souza and A.C. Wills. Objects,
Components, and Frameworks with UML — The Catalysis
Approach. Addison-Wesley, 1999.

[Fow99] M. Fowler. Refactoring — Improving the Design of
Existing Code. Addison-Wesley, 1999.

[FP97] N.E. Fenton and S.L. Pfleeger. Software Metrics —
A Rigorous & Practical Approach (Second Edition).
International Thomson Computer Press, 1997.

[FW83] P. Freeman and A.l. Wasserman. Tutorial on
Software Design Techniques, fourth edition. IEEE
Computer Society Press, 1983.

[GHJVY95] E. Gamma, R. Helm, R. Johnson, and J.
Vlissides. Design Patterns — Elements of Reusable Object-

Oriented Software. Professional Computing Series.
Addison-Wesley, 1995.

3-16

[Hutod] A.T.F. Hutt. Object Analysis and Design —
Comparison of Methods. Object Analysis and Design —
Description of Methods. John Wiley & Sons, 1994.

[I[EE88] |EEE. IEEE Standard Dictionary of Measures to
Produce Reliable Software. |IEEE Std 982.1-1988, |EEE,
1988.

[IEE88b] IEEE. IEEE Guide for the Use of Standard

Dictionary of Measures to Produce Reliable Software.
|EEE Std 982.2-1988, |EEE, 1988.

[[EE9Q] IEEE. IEEE Standard Glossary of Software

Engineering Terminology. IEEE Std 610.12-1990, |EEE,
1990.

[IEE98] IEEE. IEEE Recommended Practice for Software
Design Descriptions. IEEE Std 1016-1998, |EEE, 1998.

[ISO91] ISO/IEC. Information technology — Software
product evaluation — Quality characteristics and guidelines
for their use. ISO/IEC Std 9126: 1991, ISO/IEC, 1991.

[1SO95] ISO/IEC. Open distributed processing — Reference
model. ISO/IEC Std 10746: 1995, | SO/IEC, 1995.

[ISO95b] ISO/IEC. Information technology — Software life
cycle processes. ISO/IEC Std 12207: 1995, ISO/IEC, 1995.

[Jal97] P. Jalote. An Integrated Approach to Software
Engineering, 2nd ed. Springer, 1997.

[JBP+91] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy,

and W. Lorensen. Object-Oriented Modeling and Design.
Prentice-Hall, 1991.

[JBR99] I. Jacobson, G. Booch, and J. Rumbaugh. The

Unified Software Development Process. Addison-Wesley,
1990.

[JCJO92] I. Jacobson, M. Christerson, P. Jonsson, and G.
Overgaard. Object-Oriented Software Engineering — A Use
Case Driven Approach. Addison-Wesley, 1992.

[KLM+97] G. Kiczales, J. Lamping, A. Mendhekar, C.
Maeda, C. Lopes, J.-M. Loingtier, and J. Irwin. Aspect-
oriented programming. In ECOOP '97 — Object-Oriented
Programming, pages 220-242. LNCS-1241, Springer-
Verlag, 1997.

[Kru95] P.B. Kruchten. The 4+1 view model of
architecture. |EEE Software, 12(6):42-50, 1995.

[Lar98] C. Larman. Applying UML and Patterns — An
introduction to Object-Oriented Analysis and Design.
Prentice-Hall, 1998.

[LG86] B. Liskov and J. Guttag. Abstraction and
Specification in Program Development. The MIT Press,
1986.

[LGO1] B. Liskov and J. Guttag. Program Development in
Java — Abstraction, Specification, and Object-Oriented
Design. Addison-Wesley, 2001.

[Mar94] JJ. Marciniak. Encyclopedia of Software
Engineering. John Wiley & Sons, Inc., 1994.

[McCr93] S. McConnell. Code Complete. Microsoft Press,
1993.

© |IEEE — Stoneman (Version 0.9) — February 2001

[Mey97] B. Meyer. Object-Oriented Software Construction
(Second Edition). Prentice-Hall, 1997.

[OMG98] OMG. The common object request broker:

Architecture and specification. Technical Report Revision
2.2, Object Management Group, February 1998.

[OMG99] UML Revision Task Force. OMG Unified
Modeling Language specification, v. 1.3. document ad/99-
06-08, Object Management Group, June 1999.

[otSESC98] Architecture Working Group of the Software
Engineering Standards Committee. Draft recommended
practice for information technology — System design —
Architectural description. Technical Report |EEE
P1471/D4.1, |IEEE, December 1998.

[Pet92] H. Petroski. To Engineer is Human — The role of
failure in successful design. Vintage Books, 1992.

[Pfl98] S.L. Pfleeger. Software Engineering — Theory and
Practice. Prentice-Hall, Inc., 1998.

[PJOO] M. Page-Jones. Fundamentals of Object-Oriented
Design in UML. Addison-Wesley, 2000.

[Pre95] W. Pree. Design Patterns for Object-Oriented

Software Development. Addison-Wesley and ACM Press,
1995.

[Pre97] R.S. Pressman. Software Engineering — A
Practitioner's Approach (Fourth Edition). McGraw-Hill,
Inc., 1997.

[Rie96] A.J. Riel. Object-Oriented Design Heuristics.
Addison-Wesley, 1996.

[SB93] G. Smith and G. Browne. Conceptual foundations
of design problem-solving. IEEE Trans. on Systems, Man,
and Cybernetics, 23(5):1209-1219, 1993.

[SG96] M. Shaw, D. Garlan. Software architecture:
Perspectives on an emerging discipline. Prentice-Hal,
1996.

[Som95] |I. Sommerville. Software Engineering (fifth
edition). Addison-Wesley, 1995.

[WBWW90] R. Wirfs-Brock, B. Wilkerson, and L. Wiener.
Designing Object-Oriented Software. Prentice-Hall, 1990.

[Wie98] R. Wieringa. A Survey of Structured and Object-

Oriented Software Specification Methods and Techniques.
ACM Computing Surveys, 30(4): 459-527, 1998.

© |IEEE — Stoneman (Version 0.9) — February 2001

317

CHAPTER 4
SOFTWARE CONSTRUCTION

Terry Bollinger
The MITRE Corporation
1820 Dolley Madison Blvd.,
W534 McLean, VA, 22102, USA
terry@mitre.org

Table of Contents
R 10 1 (0o 18 Tox (o] 1 1

2. Definition of the Software Construction Knowledge

Breakdown of Topics for Software Construction......... 5

4. Matrix of Topicsvs. Reference Material..................... 12
5. Recommended References for Software

CONSEIUCHION ...ttt 13
Appendix A — List of Further Readings..........ccccevvereerrnnenne 14

1. INTRODUCTION

Techniques of software construction are largely craft-based.
As we come to understand the techniques better, we can
explain them in terms of principles that can be explained as
part of engineering knowledge. This description will
therefore describe the underlying engineering principles in
some detail and treat the specific craft-based techniques
more briefly, usually just by naming them.

1.1. Annotated table of contents

This chapter islaid out asfollows:

1. Introduction - This provides the road map to explain
the overall structure of the chapter.

2. Definition - This defines Software Construction and
provideslinksto other Knowledge Areas.

3. Principles of Organization - This explains the first
and most important method chosen to break the
subject matter into smaller sections, using four
principles of software construction. The subject matter
proper appearsin section 5.

4. Styles of Construction - This explains a second and
less important method chosen to break down the
subject matter in each of section 5 into even smaller

© |IEEE — Stoneman (Version 0.9) — February 2001

Philippe Gabrini, Louis Martin
Department of Computer Science
Université du Québec a Montréal
C.P. 8888, Succ. Centre-Ville
Montréal, Québec, H3C 3P8, Canada
{ gabrini.philippe, martin.louis} @ugam.ca

subsections, using three styles’methods of software
construction.

5. Synthesis — This section contains 4 sub-sections, one
for each of the four principles (the major dissection);
each section contains 3 sub-sub-sections, one for each
of the three styles of construction (the minor
dissection).

6. Selected References

7. Additional References

8. Standards

9. Referencesto Justify this Knowledge Area

10. Matrix of Reference Material versus Topics

2. DEFINITION OF THE SOFTWARE CONSTRUCTION
KNOWLEDGE AREA

The SWEBOK places the chapter on Construction after the
one on Design and before the one on Testing. This does not
imply either that the design stage must be complete before
construction starts or that the construction stage must be
complete before testing starts. In some development styles
— such as the classic waterfall - design, construction, and
testing are meant to proceed in that order. In others — such
as the spiral method - development proceeds in successive
steps, where each step consists of a predefined quantity of
design, construction, and testing.

An important part of software engineering is to make a
rational choice of development style for a given software
project.

Software construction is linked to all other KAs, perhaps
most strongly to Design, and Testing. This is because the
construction process consumes the output of the Design
process (KA3) and itself provides one of the inputs to the
Testing process (KA5).

Software construction is a fundamental act of software
engineering: the construction of working, meaningful
software through a combination of coding, validation, and
testing (unit testing) by a programmer. Far from being a

4-1

simple mechanistic “translation” of good design into
working software, software construction burrows deeply
into difficult issues of software engineering. It requires the
establishment of a meaningful dialog® between a person
and a computer — a “communication of intent” that must
reach from the slow and fallible human to a fast and
unforgivingly literal computer. Such a dialog requires that
the computer perform activities for which it is poorly
suited, such as understanding implicit meanings and
recognizing the presence of nonsensical or incomplete
statements. On the human side, software construction
requires that developers belogical, precise, and thorough so
that their intentions can be accurately captured and
understood by the computer. The relationship works only
because each side possesses certain capabilities that the
other lacks. In the symbiosis that is software construction,
the computer provides astonishing reliability, retention, and
(once the need has been explained) speed of performance.
Meanwhile, the human being provides creativity and
insight into how to solve new, difficult problems, plus the
ability to express those solutions with sufficient precision
to be meaningful to the computer.

2.1. Software Construction and Software Design

Software construction is closely related to software design
(see Knowledge Area Description for Software Design).
Software design analyzes software requirements in order to
produce a description of the internal structure and
organization of a system that will serve as a basis for its
construction. Software design methods are used to express
a global solution as a set of smaller solutions and can be
applied repeatedly until the resulting parts of the solution
are small enough to be handled with confidence by asingle
developer. It is at this point — that is, when the design
process has broken the larger problem up into easier-to-
handle chunks — that software construction is generally
understood to begin. This definition also recognizes the
distinction that while software construction necessarily
produces executable software, software design does not
necessarily produce any executable products at all.

In practice, however, the boundary between design and
construction is seldom so clearly defined. Firstly, software
construction is influenced by the scale or size of the
software product being constructed. Very small projects in
which the design problems are aready “construction size”
may neither require nor need an explicit design phase, and
very large projects may require a much more interactive
relationship between design and construction as different
prototyping alternatives are proposed, tested, and discarded
or used. Secondly, many of the techniques of software

Some reviewers have commented that it is improper even to suggest
that computers"understand programs' or "speak languages'. However
we prefer to retain the language of metaphor to illuminate the
material; the reader will understand that such language is
metaphorical as opposed to literal.

4-2

design also apply to software construction, since dividing
problems into smaller parts is just as much a part of
construction as it is design. Thirdly, effective design
techniques always contain some degree of guessing or
approximation in how they define their sub-problems. A
few of the resulting approximations will turn out to be
wrong, and will require corrective actions during software
construction. (While another seemingly obvious solution
would be to remove guessing and approximation altogether
from design methods, that would contradict the premise
that the original problem was too large and complex to be
solved in one step. Effective design techniques instead
acknowledge risk, work to reduce it, and help make sure
that effective aternatives will be available when some
choices eventually prove wrong.)

Design and construction both require sophisticated problem
solving skills, although the two activities have somewhat
different emphases. In design the emphasis is on how to
partition a complex problem effectively, while in
construction the emphasis is on finding a complete and
executable solution to a problem. When software
construction techniques do become so well-defined that
they can be applied mechanistically, the proper route for
the software engineer is to automate those techniques and
move on to new problems, ones whose answers are not so
well defined. This trend toward automation of well-defined
tasks began with the first assemblers and compilers, and it
has continued unabated as new generations d tools and
computers have made increasingly powerful levels of
construction automation possible. Projects that do contain
highly repetitive, mechanistic software construction steps
should examine their designs, processes, and tools sets
more closely for ways to automate such needlessly
repetitive steps out of existence.

2.2. TheRole of Toolsin Construction

In software engineering, atool is a hardware or software
device that is used to support performing a process. An
effective tool is one that provides significant improvements
in productivity and/or quality. This is a very inclusive
definition, however, since it encompasses general-purpose
hardware devices such as computers and peripherals that
are part of an overall software-engineering environment.
Software construction tools are a more specific category of
tools that are both software-based and used primarily
within the construction process. Common examples of
software construction tools include compilers, version
control systems, debuggers, code generators, specialized
editors, tools for path and coverage analysis, test
scaffolding and documentation tools.

The best software construction tools bridge the gap
between methodical computer efficiency and forgetful
human creativity. Such tools alow creative minds to
express their thoughts easily, but aso enforce an
appropriate level of rigor. Good tools also improve

software quality by allowing people to avoid repetitive or
precise work for which acomputer is better suited.

© IEEE — Stoneman (Version 0.9) — February 2001

2.3. TheRoleof Integrated Evaluation in Construction

Another important theme of software engineering is the
evaluation of software products. This includes such diverse
activities as peer review of code and est plan, testing,
software quality assurance, and metrics® (see Knowledge
Area Description for Testing and Knowledge Area
Description for Software Quality Analysis). Integrated
evaluation means that a process (in this case a development
process) includes explicit continuous or periodic internal
checks to ensure that it is still working correctly. These
checks usually consist of evaluations of intermediate work
products such as documents, designs, source code, or
compiled modules, but they may also look at characteristics
of the development process itself. Examples of product
evaluations include design reviews, module compilations,
and unit tests. An example of process-level evaluation
would be periodic re-assessment of a code library to ensure
its accuracy, completeness, and self-consistency.

Integrated evaluation in software engineering has yet to
reach the stage achieved in hardware engineering where the
evaluation is built into the components themselves, e.g.
integrated self-test logic and built-in error recovery in
complex integrated circuits. Such features were first added
to integrated circuits when it was realized the circuits had
become so complex that the assumption of perfect start-to-
finish reliability was no longer tenable. As with integrated
circuits, the purpose of integrated checking in software
processes is to ensure that they can operate for long periods
without generating nonsensical or hazardously misleading
answers.

Historically, software construction has tended to be one of
the software engineering steps in which developers were
particularly prone to omitting checks on the process. While
nearly al developers practice some degree of informal

evaluation when constructing software, it is all too common
for them to skip needed evaluation steps because they are
too confident about the reliability and quality of their own
software constructions. Nonetheless, a wide range of
automated, semi-automated, and manual evaluation
methods have been developed for use in the software
construction phase.

The simplest and best-known form of software construction
evaluation is the use of unit testing after completion of each
well-defined software unit. Automated techniques such as
compile-time checks and run-time checks help verify the
basic integrity of software units, and manual techniques
such as code reviews can be used to search for more
abstract classes of errors. Tools for extracting
measurements of code quality and structure can aso be
used during construction, although such measurement tools
are more commonly applied during integration of large
suites of software units. When collecting measurements, it

2 Theword metricsis commonly used by software developersto denote

the activity that practitionersin other branches of engineering refer to
as measurement.

© |IEEE — Stoneman (Version 0.9) — February 2001

is important that the measurements collected be relevant to
the goal s of the development process.

2.4. TheRoleof Standardsin Construction

All forms of successful communication require a common
language. Standards are in many ways best understood as
agreements by which both concepts and technologies can
become part of the shared “language” of a broader
community of users (see Software Evolution and
Management). In many cases, standards are selected by a
customer or by an organization. Project managers should
consider the use of additional standards selected to be
suitable to the specific characteristics of the project.

Software construction is particularly sensitive to the
selection of standards, which directly affects such
construction-critical issues as programming languages,
databases, communication methods, platforms, and tools.
Although such choices are often made before construction
begins, it is important that the overal software
development process take the needs of construction into
account when standards are sel ected.

2.5 Manual and Automated Construction/The
Spectrum of Construction Techniques

Manual Construction

Manual construction means solving complex problemsin a
language that a computer can execute. Practitioners of
manual construction need a rich mix of skills that includes
the ability to break complex problems down into smaller
parts, a disciplined formal-proof-like approach to problem
analysis, and the ability to “forecast” how constructions
will change over time. Expert manua constructors
sometimes use the skills of advanced logicians; they always
need to apply the skills they have within a complex,
changing environment such as a computer or network.

It would be easy to directly equate manual construction to
coding in a programming language, but it would also be an
incomplete definition. An effective manual construction
process should result in code that fully and correctly
processes data for its entire problem space, anticipates and
handles all plausible (and some implausible) classes of
errors, runs efficiently, and is structured to be resilient and
easy-to-change over time. An inadequate manual
construction process will in contrast result in code like an
amateurish painting, with critical details missing and the
entire construction stitched together poorly.

Automated Construction

While no form of software construction can be fully
automated, much or al of the overall coordination of the
software construction process can be moved from people to
the computer — that is, overall control of the construction
process can be largely automated. Automated construction
thus refers to software construction in which an automated
tool or environment is primarily responsible for overall
coordination of the software construction process. This

4-3

removal of overall process control can have a large impact
on the complexity of the software construction process,
since it allows human contributions to be divided up into
much smaller, less complex “chunks’ that require different
problem solving skills to solve. Automated construction is
also reuse-intensive construction, since by limiting human
options it allows the controlling software to make more
effective use of its existing store of effective software
problem solutions. Of course, automated construction is not
necessarily low cost; sometimes the cost of setting up the
machinery is higher than the cost saved inits use.

In its most extreme form, automated construction consists
of two related but distinct activities: (1) configuring a
baseline system, which means configuring a predefined set
of options that provide a workable solution in a typical
business context and (2) implementing exceptions in the
context of the product’s usage. This may include resetting
parameters, constructing additional software chunks,
building interfaces, and moving data from existing legacy
systems and other data sources to the new system. For
example, an accounting application for small businesses
might lead users through a series of questions that will
result in a customized installation of the application. When
compared to using manual construction for the same type of
problem, this form of automated construction “swallows’
huge chunks of the overall software engineering process
and replaces them with automated selections that are
controlled by the computer. Toolkits provide a less extreme
example in which developers still have a great dea of
control over the construction process, but that process has
been greatly constrained and simplified by the use of
predefined components with well-defined relationships to
each other.

Automated construction is necessarily tool-intensive
construction, since the objective is to move as much of the
overall software development process as possible away
from the human developer and into automated processes.
Automated construction tools tend to take the form of
program generators and fully integrated environments that
can more easily provide automated control of the
construction process. To be effective in coordinating
activities, automated construction tools aso need to have
easy, intuitive interfaces.

Moving Towards Automation

An important goal of software engineering is to move
construction continually towards higher levels of
automation. That is, when selection from a simple set of
options is al that is realy required to make software work
for a business or system, then the goal of software
engineers should continually be to make their systems
come as close to that level of simplicity as possible. This
not only makes software more accessible, but also makes it
safer and more reliable by removing opportunitiesfor error.

The concept of moving towards higher levels of
construction automation permeates nearly every aspect of
software construction. When simple selections from a list

of options will not suffice, software engineers often can
still develop application specific tool kits (that is, sets of
reusable parts designed to work with each other easily) to
provide a somewhat lesser level of control. Even fully
manual construction reflects the theme of automation, since
many coding techniques and good programming practices
are intended to make code modification easier and more
automated. For example, even a concept as simple as
defining a constant at the beginning of a software module
reflects the automation theme, since such constants
“automate” the appropriate insertion of new values for the
constant in the event that changes to the program are
necessary. Similarly, the concept of class inheritance in
object-oriented programming helps automate and enforce
the conveyance of appropriate sets of methods into new,
closely related or derived classes of objects.

2.6. Construction Languages

Construction languages include al forms of
communication by which a human can specify an
executable problem solution to a computer. The simplest
type of construction language is a configuration language,
in which devel opers choose from alimited set of predefined
options to create new or custom installations of software.
The text-based configuration files used in both Windows
and Unix operating systems are examples, and the menu-
style selection lists of some program generators are another.
Toolkit languages are used to build applications out of
toolkits (integrated sets of application-specific reusable
parts), and are more complex than configuration languages.
Toolkit languages may be explicitly defined as application
programming languages (e.g., scripts), or may simply be
implied by the collected set of interfaces of a toolkit. As
described below, programming languages are the most
flexible type of construction languages, but they also
contain the least information about both application areas
and development processes, and so require the most
training and skill to use effectively.

2.7. Programming L anguages

Since the fundamental task of software construction is to
communicate intent unambiguously between two very
different types of entities (people and computers), the
interface between the two is most commonly expressed as
languages. Programming languages are more literal than
natural languages, since no computer yet built has sufficient
context and understanding of the natural world to recognize
invalid language statements and constructions that would
be caught immediately in a natural language. As will be
discussed below, programming languages can also borrow
from other non-linguistic human skills such as spatial
visualization. The particular requirements of an application
domain can give rise to the development or use of a
specialized, domain-specific language such as lex, yacc,
PHP, TCL, or TK.

© IEEE — Stoneman (Version 0.9) — February 2001

Programming languages are often created in response to the
needs of particular application fields, but the quest for more
universal or encompassing programming language is
ongoing. As in many relatively young disciplines, such
quests for universality are as likely to lead to short-lived
fads asthey are to genuineinsightsinto the fundamental s of
software construction. For this very reason, it is important
that software construction not be tied too greatly on any
programming language or programming methodology.
Adherence to suitable programming language standards,
and avoiding proprietary feature sets helps avoid language
obsolescence.

3. BREAKDOWN OF TOPICS FOR SOFTWARE

CONSTRUCTION

3.1. Principlesof Organization

The first and most important method of breaking the
subject of software construction into smaller units is to
recognize the four principles that most strongly affect the
way in which software is constructed, namely

+ Reduction of Complexity

+ Anticipation of Diversity

¢ Structuring for Validation

+ Useof External Standards

These are discussed below.

3.1.1. Reduction of Complexity

This principle of organization reflects the relatively limited
ability of people to work with complex systems that have
many parts or interactions. A major factor in how people
convey intent to computers is the severely limited ability of
people to “hold” complex structures and information in
their working memory, especially over long periods of
time. This need for simplicity in the human-to-computer
interface leads to one of the strongest drivers in software
construction: reduction of complexity. The need to reduce
complexity applies to essentially every aspect of the
software construction, and is particularly critical to the
process of self-verification and testing of software
constructions.

There are three main techniques for reducing complexity
during software construction:

3.1.1.1 Removal of Complexity

Although trivial in concept, one obvious way to reduce
complexity during software construction is to remove
features or capabilities that are not absolutely required. This
may or may not be the right way to handle a given
situation, but certainly the general principle of parsimony —
that is, of not adding capabilities that clearly will never be
needed when constructing software—is valid.

3.1.1.2 Automation of Complexity

A much more powerful technique for remova of
complexity is to automate the handling of it. That is, a new
construction language is created in which features that were

© |IEEE — Stoneman (Version 0.9) — February 2001

previously time-consuming or error-prone for a human to
perform are migrated over to the computer in the form of
new software capabilities. The history of software is replete
with examples of powerful software tools that raised the
overal level of development capability of people by
allowing them to address a new set of problems. Operating
systems are one example of this principle, since they
provide a rich construction language by which efficient use
of underlying hardware resources can be greatly simplified.
Visual construction languages similarly provide automation
of the construction of software that otherwise could be very
laborious to build.

3.1.1.3 Localization of Complexity

If complexity can neither be removed nor automated, the
only remaining option is to localize complexity into small
“units” or “modules’ that are small enough for a person to
understand in their entirety, and (perhaps more importantly)
sufficiently isolated that meaningful assertions can be made
about them. This might even lead to components that can
be re-used. However, one must be careful, as arbitrarily
dividing avery long sequence of code into small “modules’
does not help, because the relationships between the
modules become extremely complex and difficult to
predict. Localization of complexity has a powerful impact
on the design of programming languages, as demonstrated
by the growth in popularity of object-oriented methods that
seek to strictly limit the number of ways to interface to a
software module, even though that might end up making
components more dependent. Localization is also a key
aspect of good design of the broader category of
construction languages, since new feature that are too hard
to find and use are unlikely to be effective as tools for
construction. Classical design admonitions such as the goal
of having “cohesion” within modules and to minimize
“coupling” are aso fundamentaly localization of
complexity techniques, since they strive to make the
number and interaction of parts within a module easy for a
person to understand.

3.1.2. Anticipation of Diversity

This principle has more to do with how people use software
than with differences between computers and people. Its
motive is simple: There is no such thing as an unchanging
software construction. Any useful software construction
will change in various ways over time, and the anticipation
of change drives nearly every aspect of software
construction. Useful software constructions are
unavoidably part of a changing external environment in
which they perform useful tasks, and changes in that
outside environment trickle in to impact the software
constructions in diverse (and often unexpected) ways. In
contrast, formal mathematical constructions and formulas
can in some sense be stable or unchanging over time, since
they represent abstract quantities and relationships that do
not require direct “attachment” to a working, physical
computational machine. For example, even the software
implementations of “universal” mathematical functions

4-5

must change over time due to external factors such as the
need to port them to new machines, and the unavoidable
issue of physical limitations on the accuracy of the software
on agiven machine.

Anticipation of the diversity of ways in which software will
change over time is one of the more subtle principles of
software construction, yet it is important for the creation of
software that can endure over time and add value to future
endeavors. Since it includes the ability to anticipate
changes due to design errors in software, it also helps to
make software robust and error-free. Indeed, one handy
definition of “aging” software is that it is software that no
longer has the flexibility to accommodate bug fixes without
breaking.

There are three main techniques for anticipating change
during software construction:

3.1.2.1 Generalization

It is very common for software construction to focus first
on highly specific problems with limited, rather specific
solutions. This is common because the more general cases
often simply are not obvious in the early stages of analysis.
Generalization is the process of recognizing how a few
specific problem cases fit together as part of some broader
framework of problems, and thus can be solved by a single
overarching software construction in place of severa
isolated ones. Generalization of functionality is a distinctly
mathematical concept, and not too surprisingly the best
generalizations that ae developed are often expressed in
the language of mathematics. Good design is equally an
aspect of generalization, however. For example, software
constructions that use stacks to store data are almost always
more generalized than similar solutions using arrays
behaving as stacks, since fixed sizes immediately place
artificial (and usually unnecessary) constraints on the range
of problem sizes that the construction can solve.

Generalization anticipates diversity because it creates
solutions to entire classes of problems that may not have
even been recognized as existing before. Thus just as
Newton’s general theory of gravity made a small number of
formulas applicable to a much broader range of physics
problems, a good generalization to a number of discrete
software problems often can lead to the easy solution of
many other development problems. For example,
developing an easily customizable graphics user interface
could solve a very broad range of development problems
that otherwise would have required individual, labor-
intensive development of independent solutions.

Anticipating diversity by using generalization is effective
only when the developer finds generalizations that actually
correspond to the eventual uses of the software. Developers
may have no particular interest (or time) to develop the
necessary generalizations under the schedule pressures of
typical commercia projects. Even when the time needed is
available, it is easy to develop the wrong set of
generalizations — that is, to create generalizations that make

4-6

the software easier to change, but only in ways that prove
not to correspond to what is really needed.

For these reasons, generalization is both safer and easier if
it can be combined with the next technique of
experimentation. Change experimentation makes
generalization safer by capturing realistic data on which
generalizations will be needed, and makes generalization
easier by providing schedule-conscious projects with
specific data on how generalizations can improve their
products.

3.1.2.2 Experimentation

Experimentation means using early (sometimes very early)
software constructions in as many different user contexts as
possible, and as early in the development process as
possible, for the explicit purpose of collecting data on how
to generalize the construction. To experiment is to
recognize how difficult it is to anticipate all the ways in
which software constructions can change.

Obviously, experimentation is a process-level technigue
rather than a code-level technique, since its goa is to
collect data to help guide code-level processes such as
generalization. This means that it is constrained by whether
the overall development process allows it to be used at the
construction level. Construction-level experimentation is
most likely to be found in projects that have incorporated
experimentation into their overall development process.
The Internet-based open source development process that
Linus Torvalds used to create the Linux operating system is
an example of a process that both allowed and encouraged
construction-level use of experimentation. In Torvalds
approach, individual code constructions were very quickly
incorporated into an overall product and then redistributed
via the Internet, sometimes on the same day. This
encouraged further use, experimentation, and updates to the
individual constructions. Development environments and
languages that support the rapid prototyping style of
development aso encourage construction-level
experimentation.

3.1.2.3 Localization

Localization means keeping anticipated changes as
localized in a software construction as possible. It is
actually a special case of the earlier principle of
localization of complexity, since change is a particularly
difficult class of complexity. A software construction that
can be changed in a common way by making only one
change at one location within the construction thus
demonstrates good locality for that particular class of
modifications.

Localization is very common in software construction, and
often is used intuitively as the “right way” to construct
software. Objects are one example of a localization
technique, since good object designs localize
implementation changes to within the object. An even
simpler example is using compile-time constants to reduce
the number of locations in a program that must be changed
manually should the constant change. Layered architectures

© IEEE — Stoneman (Version 0.9) — February 2001

such as those used in communication protocols are yet
another example of localization, since good layer designs
keep changes from crossing layers.

3.1.3. Structuring for Validation

No matter how carefully a person designs and implements
software, the creative nature of non-trivial software
construction (that is, of software that is not simply a re-
implementation of previously solved problems) means that
mistakes and omissions will occur. Sructuring for
validation means building software in such a fashion that
such errors and omissions can be ferreted out more easily
during unit testing and subsequent testing activities. One
important implication of structuring for validation is that
software must generally be modular in at least one of its
major representation spaces, such asin the overall layout of
the displayed or printed text of a program. This modularity
allows both improved anaysis and thorough unit-level
testing of such components before they are integrated into
higher levels in which their errors may be more difficult to
identify. As a principle of construction, structuring for
validation generally goes hand-in-hand with anticipation of
diversity, since any errors found as a result of validation
represent an important type of “diversity” that will require
software changes (bug fixes). It is not particularly difficult
to write software that cannot really be validated no matter
how much it is tested. This is because even moderately
large “ useful” software components frequently cover such a
large range of outputs that exhaustive testing of all possible
outputs would take eons with even the fastest computers.
Structuring for validation thus becomes one important
constraint for producing software that can be shown to be
acceptably reliable within a reasonable time frame. The
concept of unit testing parallels structuring for validation,
and is used in parallel with the construction process to help
ensure that validation occurs before the overall structure
gets “out of hand” and can no longer be readily validated.

3.1.4. Useof External Standards

A natural language that is spoken by one person would be
of little value in communicating with the rest of the world.
Similarly, a construction language that has meaning only
within the software for which it was constructed can be a
serious roadblock in the long-term use of that software.
Such construction languages therefore should either
conform to external standards such as those used for
programming languages, or provide a sufficiently detailed
internal “grammar” (e.g., documentation) by which the
construction language can later be understood by others.
The interplay between reusing externa standards and
creating new ones is a complex one, as it depends not only
on the availability of such standards, but also on realistic
assessments of the long-term viability of such external
standards. With the advent of the Internet as a major force
in software development and interaction, the importance of
selecting and using appropriate external standards for how
to construct software is more apparent than ever before.
Software that must share data and even working modules

© |IEEE — Stoneman (Version 0.9) — February 2001

with other software anywhere in the world obviously must
“share” many of the same languages and methods as that
other software. The result is that selection and use of
external standards —that is, of standards such as language
specifications and data formats that were not originated
within a software effort— is becoming more important. This
is a complex issue, however, because the selection of an
external standard may need to take account of such
difficult-to-predict issues as the long-term economic
viability of a particular software company or organization
that promotes that standard. Stability of the standard is
especially important. Also, selecting one level of
standardization often opens up an entire new set of
standardization issues. An example of this is the data
description language XML (eXtensible Markup Language).
Selecting XML as an external standard answers many
questions about how to describe data in an application, but
it also raises the issue of whether one of the severa
customizations of XML to specific problem domains
should also be used.

Other examples of external standardsinclude API standards
such as mathematics libraries, POSIX and SQL. In addition
there are standards such as ISO/IEC 9126 , IEEE Std 1061,

and |IEEE Std 982, which are used in both Design and
Construction.

3.2. Stylesof Construction

Section 3.1 explained four principles of organization. A
second and less important method of breaking the subject

of software construction into smaller units is to recognize
three styles/methods of software construction, namely

+ Linguistic
. Formal
. Visual

The traditional hierarchical taxonomy places the itemsin a
tree; each item appearsin one place only. Such an approach
is not suitable for the items used in software construction
because some of the items naturally belong in more than
one place. In the classification that follows, an individual
construction method may appear in many different places,
rather than in just one. The number of repetitions indicates
its breadth of application, and hence its importance in
software construction as a whole. Modularity is one
example of a construction method that has such broad
impacts.

A good construction language moves detailed, repetitive, or
memory -intensive construction tasks away from people and
into the computer, where such tasks can be performed
faster and more reliably. To accomplish this, construction
languages must present and receive information in ways
that are readily understandable to human senses and
capabilities. This need to rely on human capabilities leads
to three major styles of software construction interfaces
discussed in the subsections below.

Of course, construction languages seldom rely solely on a
single style of construction. Linguistic and formal style in

4-7

particular are both heavily used in most traditional
computer languages, and visua styles and models are a
major part of how to make software constructions
manageabl e and understandabl e in programming |anguages.
Relatively new “visual” construction languages such as
Visual Basic and Visual Java provide examples that
combine all three styles, with complex visua interfaces
often constructed entirely through non-textual interactions
with the software constructor. Data processing functionality
behind the interfaces can then be constructed using more
traditional linguistic and formal styles within the same
construction language.

3.2.1. Linguistic

Linguistic construction languages make statements of intent
in the form of sentences that resemble natural languages
such as English or French. In terms of human senses,
linguistic constructions are generally conveyed visually as
text, although they can (and are) also sometimes conveyed
by sound. A maor advantage of linguistic construction
interfaces is that they are nearly universal among people. A
disadvantage is the imprecision of ordinary languages such
a English, which makes it hard for people to express needs
clearly with sufficient precision when using linguistic
interfaces to computers. An example of this problem is the
difficulty that most early students of computer science have
learning the syntax of even fairly readable languages such
as Pascal or Ada.

Linguistic construction methods are distinguished in
particular by the use of word-like strings of text to
represent complex software constructions, and the
combination of such word-like strings into patterns that
have a sentence-like syntax. Properly used, each such string
should have a strong semantic connotation that provides an
immediate intuitive understanding of what will happen
when the underlying software construction is executed. For
example, the term “search” has an immediate, readily
understandable semantic meaning in English, yet the
underlying software implementation of such a term in
software can be very complex indeed. The most powerful
linguistic construction methods allow users to focus almost
entirely on the language-like meanings of such term, as
opposed (for example) to frittering away mental efforts on
examining minor variations of what “search” means in a
particular context.

Linguistic construction methods are further characterized
by similar use of other “natural” language skills such as
using patterns of words to build sentences, paragraphs, or
even entire chapters to express software design “thoughts.”
For example, a pattern such as “search table for out-of-
range values’ uses word-like text strings to imitate natural
language verbs, nouns, prepositions, and adjectives. Just as
having an underlying software structure that allows a more
natural use of words reduces the number of issues that a
user must address to create new software, an underlying
software structure that also allows use of familiar higher-

4-8

level patterns such as sentence further simplifies the
EXression process.

Finaly, it should be noted that as the complexity of a
software expression increases, linguistic construction
methods begin to overlap unavoidably with visual methods
that make it easier to locate and understand large sequences
of statements. Thus just as most written versions of natural
languages use visual clues such as spaces between words,
paragraphs, and section headings to make text easier to
“parse” visualy, linguistic construction methods rely on
methods such as precise indentation to convey structural
information visually.

The use of linguistic construction methods is also limited
by our inability to program computers to understand the
levels of ambiguity typically found in natural languages,
where many subtle issues of context and background can
drastically influence interpretation. As a result, the
linguistic model of construction usually begins to weaken
at the more complex levels of construction that correspond
to entire paragraphs and chapters of text.

3.2.2. Formal

The precision and rigor of formal and logical reasoning

make this style of human thought especially appropriate for
conveying human intent accurately into computers, as well
as for verifying the completeness and accuracy of a
construction. Unfortunately, formal reasoning is not nearly
as universal a skill as natural language, since it requires
both innate skills that are not as universal as language
skills, and also many years of training and practice to use
efficiently and accurately. It can also be argued that certain
aspects of good formal reasoning, such as the ability to
realize al the implications of a new assertion on all parts of
a system, cannot be learned by some people no matter how
much training they receive. On the other hand, formal

reasoning styles are often notorious for focusing on a
problem so intently that all “complications’ are discarded
and only a very small, very pristine subset of the overall

problem is actually addressed. This kind of excessively
narrow focus at the expense of any complicating issues can
be disastrous in software construction, since it can lead to
software that is incapable of dealing with the unavoidable
complexities of nearly any usable system.

Formal construction methods rely less on intuitive,
everyday meanings of words and text strings, and more on
definitions that are backed up by precise, unambiguous, and
fully formal (or mathematical) definitions. Formal
construction methods are at the heart of most forms of

system programming, where precision, speed, and
verifiability are more important than ease of mapping into
ordinary language. Formal constructions also use precisely
defined ways of combining symbols that avoid the
ambiguity of many natural language constructions.
Functions are an obvious example of formal constructions,

with their direct parallel to mathematical functions in both
form and meaning.

© IEEE — Stoneman (Version 0.9) — February 2001

Formal construction techniques also include the wide range
of precisely defined methods for representing and
implementing “unique” computer problems such as
concurrent and multi-threaded programming, which are in
effect classes of mathematical problems that have special
meaning and utility within computers.

The importance of the formal style of programming cannot
be overstated. Just as the precision of mathematics is
fundamental to disciplines such as physics and the hard
science, the formal style of programming is fundamental to
building up areliable framework of software “results’ that
will endure over time. While the linguistic and visual styles
work well for interfacing with people, these less precise
styles can be unsuitable for building the interior of a
software system for the same reason that stained glass
should not be used to build the supporting arches of a
cathedral. Formal construction provides a foundation that
can eliminate entire classes of errors or omissions from
ever occurring, whereas linguistic and visual construction
methods are much more likely to focus on isolated
instances of errors or omissions. Indeed, one very rea
danger in software quality assurance is to focus too much
on capturing isolated errors occurring in the linguistic or
visual modes of construction, while overlooking the much
more grievous (but harder to identify and understand)
errorsthat occur in the formal style of construction.

3.2.3. Visua

Another very powerful and much more universa
construction interface style is visual, in the sense of the
ability to use the same very sophisticated and necessarily
natural ability to “navigate” a complex three-dimensional
world of images, as perceived primarily through the eye
(but aso through tactile senses). The visual interface is
powerful not only as a way of organizing information for
presentation to a human, but also as a way of conceiving
and navigating the overall design of a complex software
system. Visua methods are particularly important for
systems that require many people to work on them —that is,
for organizing a software design process — since they allow
a natural way for people to “understand” how and where
they must communicate with each other. Visual methods
are also important for single-person software construction
methods, since they provide ways both to present options to
people and to make key details of a large body of
information “pop out” to the visual system.

Visual construction methods rely much less on the text-
oriented constructions of both linguistic and formal
construction, and instead rely on direct visual interpretation
and placement of visua entities (e.g., “widgets’) that
represent the underlying software. Visual construction
tends to be somewhat limited by the difficulty of making
“complex” statements using only movement of visual
entities on a display. However, it can aso be a very
powerful tool in cases where the primary programming task
is simply to build and “ adjust” a visual interface to a
program whose detailed behavior was defined earlier.

© |IEEE — Stoneman (Version 0.9) — February 2001

Some argue that object-oriented languages belong in this
section because the style of reasoning that they encourage
is highly visual. For example, experienced object-oriented
programmers tend to view their designs literally as objects
interacting in spaces of two or more dimensions, and a
plethora of object-oriented design tools and techniques
(e.g., Unified Modeling Language, or UML) actively
encourage this highly visual style of reasoning. Others
argue that object-oriented languages are no more inherently
visual than procedural ones. They remark that SA/SD is a
popular visual notation for procedural systems.

However, object-oriented methods can also suffer from the
lack of precision that is part of the more intuitive visual

approach. For example, it is common for new — and
sometimes not-so-new — programmers in object-oriented
languages to define object classes that lack the formal
precision that will allow them to work reliably over user-
time (that is, long-term system support) and user-space
(e.g., relocation to new environments). The visual intuitions
that object-oriented languages provide in such cases can be
somewhat misleading, because they can make the real

problem of how to define a class to be efficient and stable
over user-time and user-space seem to be simpler than it
really is. A complete object-oriented construction model

therefore must explicitly identify the need for formal
construction methods throughout the object design process.
The alternative can be an object-based system design that,
like a complex stained glass window, looks impressive but
is too fragile to be used in any but the most carefully
designed circumstances.

More explicitly visual programming methods such as those
found in Visual C++ and Visua Basic reduce the problem
of how to make precise visua statements by
“instrumenting” screen objects with complex (and formally
precise) objects that lie behind the screen representations.

However, this is done at a substantial loss of generality
when compared to using C++ with explicit training in both
visual and formal construction, since the screen objects are
much more tightly constrained in properties.

3.3. Synthesis

The figure that follows combines the four principles of
organization with the three styles of construction. Read the

diagram by columns to see the principles, by rows to see
the styles.

3.3.1. Reduction in Complexity
3.3.1.1 Linguistic Construction Methods

The main technique for reducing complexity in linguistic
construction is to make short, semantically “intuitive” text
strings and patterns of text stand in for the much more
complex underlying software that “implement” the intuitive
meanings. Techniques that reduce complexity in linguistic
construction include:

+ Design patterns

+ Softwaretemplates

4-9

Softwar e Construction

| Reductionin Anticipation of
Complexity Diversity
Linguistic Linguistic

> Construction > Construction
Methods Methods

Forma Forma

- Construction - Construction

M ethods M ethods
Visual Construction Visua Construction

Methods Methods

+ Functions, procedures, and code blocks

+ Objectsand datastructures

+ Encapsulation and abstract datatypes

+ Objects

+ Component libraries and frameworks

+ Higher-level and domain-specific languages
+ Physical organization of source code

+ Filesandlibraries

+ Formal inspections

3.3.1.2 Formal Construction Methods

Asis the case with linguistic construction methods, formal
construction methods reduce complexity by representing
complex software constructions as simple text strings. The
main difference is that in this case the text strings follow
the more precisely defined rules and syntax of formal
notations, rather than the “fuzzier” rules of natura
language. The reading, writing, and construction of such
expressions requires generally more training, but once
mastered, the use of formal constructions tends to keep the
ambiguity of what is being specified to an absolute
minimum. However, as with linguistic construction, the
quality of a formal construction is only as good as its
underlying implementation. The advantage is that the
precision of the formal definitions usually translates into a
more precise specification for the software beneath it.

+ Traditional functions and procedures

+ Functional programming

+ Logic programming

+ Concurrent and real-time programming techniques

+ Spreadsheets

. Program generators

+ Mathematical libraries of functions

4-10

| Structuring for | Useof External
Validation Standards
Linguistic Linguistic

> Construction - Construction
Methods Methods

Forma Formad

- Construction - Construction

M ethods M ethods
Visua Construction Visual Construction

Methods Methods

3.3.1.3 Visual Construction Methods

Especialy when compared to the steps needed to build a

graphical interface to a program using text-oriented

linguistic or formal construction, visual construction can

provide drastic reductions in the total effort required. It can

also reduce complexity by providing a simple way to select

between the elements of asmall set of choices.

+ Object-oriented programming

+ Visual creation and customization of user interfaces

+ Visual programming (e.g., visual C++)

¢ “Style” (visual formatting) aspects of structured
programming

+ Integrated development environments supporting
source browsing

3.3.2. Anticipation of Diversity
3.3.2.1 Linguistic Construction Methods

Linguistic construction anticipates diversity both by

permitting extensible definitions of “words,” and also by

supporting flexible “sentence structures’ that allow many

different types of intuitively understandable statements to

be made with the available vocabulary. An excellent

example of using linguistic construction to anticipate

diversity is the use of human-readable configuration files to

specify software or system settings. Techniques and

methods that help anticipate diversity include:

+ Information hiding

Embedded documentation (commenting)

+ “Complete and sufficient” method sets

+ Object-oriented methods

+ Creation of “glue languages’ for linking legacy
components

+ Table-driven software

*

© IEEE — Stoneman (Version 0.9) — February 2001

+ Configuration files, internationalization
+ Naming and coding styles
+ Reuseandrepositories

+ Sdf-describing software and hardware (e.g., plug and
play)

3.3.2.2 Formal Construction Methods

Diversity in formal construction is handled in terms of
precisely defined sets that can vary greatly in size. While
mathematical formalizations are capable of very flexible
representations of diversity, they require explicit
anticipation and preparation for the full range of values that
may be needed. A common problem in software
construction is to use a formal technique — eg., a fixed-
length vector or array — when what is really needed to
accommodate future diversity is a more generic solution
that anticipates future growth — e.g., an indefinite variable-
length vector. Since more generic solutions are often harder
to implement and harder to make efficient, it is important
when using formal construction techniques to try to
anticipate the full range of future versions.

+ Functional parameterization

+ Macro parameterization

+ Generics

+ Objects

+ Error handling

+ Extensible mathematical frameworks

3.3.2.3 Visual Construction Methods

Provided that the total sets of choices are not overly large,
visual construction methods can provide a good way to
configure or select options for software or a system. Visual
construction methods are analogous to linguistic
configuration files in this usage, since both provide easy
ways to specify and interpret configuration information.

+ Object classes

+ Visual configuration specification

+ Separation of GUI design and

implementation (part of design)

3.3.3. Structuring for Validation
3.3.3.1 Linguistic Construction Methods

Because natural language in general is too ambiguous to
alow safe interpretation of completely free-form
statements, structuring for validation shows up primarily as
rules that at least partially constrain the free use of natural
expressions in software. The objective is to make such
constructions as “natural” sounding as possible, while not
losing the structure and precision needed to ensure
consistent interpretations of the source code by both human
users and computers.

¢+ Modular design

+ Structured programming

+ Styleguides

+ Stepwise refinement

functionality

© |IEEE — Stoneman (Version 0.9) — February 2001

3.3.3.2 Formal Construction Methods

Since mathematics in general is oriented towards proof of

hypothesis from a set of axioms, formal construction

techniques provide a broad range of techniques to help

validate the acceptability of a software unit. Such methods

can also be used to “instrument” programs to look for

failures based on sets of preconditions.

+ Assertion-based programming (static and dynamic)

+ Statemachinelogic

+ Redundant systems, self-diagnosis, and fail-safe
methods

+ Hot-spot analysis and performance tuning

+ Numerica analysis

3.3.3.3 Visual Condgruction Methods

Visual construction can provide immediate, active
validation of requests and attempted configurations when
the visual constructs are “instrumented” to look for invalid
feature combinations and warn users immediately of what
the problem is.

+ “Complete and sufficient” design of object-oriented
class methods

+ Dynamic validation of visual requests in visual
languages

3.3.4. External Standards
3.3.4.1 Linguistic Construction Methods

Traditionally, standardization of programming languages

was one of the first areas in which external standards

appeared. The goa was (and is) to provide standard

meanings and ways of using “words’ in each standardized

programming language, which makes it possible both for

users to understand each other’s software, and for the

software to be interpreted consistently in diverse

environments.

+ Standardized programming languages (e.g., Ada 95,
C++, etc.)

+ Standardized data description languages (e.g., XML,
SQL)

+ Standardized alphabet representations (e.g., Unicode)

+ Standardized documentation (e.g., JavaDoc)

+ Inter-process communication standards (e.g., COM,
CORBA)

+ Component-based software

+ Foundation classes (e.g., MFC, JFC)

3.3.4.2 Formal Construction Methods

For formal construction techniques, external standards
generally address ways to define precise interfaces and

communication methods between software systems and the
machines they reside on.

POSIX standards
Data communication standards
Hardware interface standards

*

*

*

4-11

+ Standardized mathematical representation languages .
(e.g., MathML) R

. Mathematical libraries of functions .
3.3.4.3 Visual Construction Methods

Standards for visual interfaces greatly ease the total burden

on users by providing familiar, easily understood “look and
feel” interfaces for those users.

4. MATRIX OF TOPICSVS. REFERENCE MATERIAL

Object-oriented |anguage standards
Standardized screen widgets
Visual Markup Languages

Topics

Proposed reference material

Softwar e Construction and Software Design

[GLAO5] Part 111, IV
[MAZ96] Part IV
[McCO93] Chap. 1, 2, 3

The Role of Toolsin Construction

[HUNOO] Chap. 3
[MAGO3] Chap. 4
[MAZ96] Part IV
[McCO93] Chap. 20

The Role of Integrated Evaluation in Construction

[HUMO7]
[MAG93] Chap. 8
[McCO93] Chap. 31, 32, 33

The Role of Standardsin Construction

[IEEE]

Manual and Automated Construction / The Spectrum of Construction
Techniques

[HUNOO] Chap. 3

Construction Languages

[HUNOO] Chap. 3
[SET96]

Programming Languages

[SET96]

A. Reduction in Complexity

1. Reduction in Complexity (Linguistic)

[BENOO] Chap. 2, 3
[KER99] Chap. 2, 3
[McCO93] Chap. 4to 19

2. Reduction in Complexity (Formal)

[BOO94] Part I and V
[MAGO3] Chap. 6
[MEY97] Chap. 6, 10

3. Reduction in Complexity (Visual)

[HOR99] Part I
[WAR99] Chap. 1, 2, 3, 4, 5, 10

B. Anticipation of Diversity

1. Anticipation of Diversity (Linguistic)

[BOOY4] Part VI
[McCO93] Chap. 30

2. Anticipation of Diversity (Formal)

[BENOO] Chap. 11, 13, 14
[KER99] Chap. 2, 9

3. Anticipation of Diversity (Visual)

[WAR99] Chap. 1, 2, 3, 4, 5, 10

C. Structuring for Validation

1. Structuring for Validation (Linguistic)

[BENOO] Chap. 4

[KERQ9] Chap. 1, 5, 6
[MAGO3] Chap. 2, 5, 7
[McCO93] Chap. 23, 24, 25, 26

2. Structuring for Validation (Formal)

[MAG93] Chap. 3
[MEY97] Chap. 6, 11

3. Structuring for Validation (Visual)

[HOR99] Part [V
[MEY97] Chap. 11

4-12

© IEEE — Stoneman (Version 0.9) — February 2001

Topics

Proposed refer ence material

D. Use of External Standards

1. Use of External Standards (Linguistic)

http://www.xml.org/
http://www.omg.org/corba/beginners.html

2. Use of External Standards (Formal)

Object Constraint Language:
http://www.omg.org/uml/

3. Use of Externa Standards (Visual)

http://www.omg.org/uml/

5. RECOMMENDED REFERENCES FOR SOFTWARE
CONSTRUCTION

[BENOO] Bentley, Jon, Programming Pearls (Second
Edition). Addison-Wesley, 2000. (Chapters 2, 3, 4, 11, 13
14)[BENOO] Bentley, Jon, Programming Pearls (Second
Edition). Addison-Wesley, 2000. (Chapters 2, 3, 4, 11, 13
14)

[BOO94] Booch, Grady, and Bryan, Doug, Software
Engineering with Ada (Third edition).
Benjamin/Cummings, 1994. (Parts I, IV, V)[HOR99]
[KER99] Kernighan, Brian W., and Pike, Rob, The Practice
of Programming. Addison-Wesley, 1999. (Chapters 1, 2, 3,
5,6,9)

[MAG93] Maguire, Steve, Writing Solid Code. Microsoft
Press, 1993.

[McCO93] McConnell, Steve, Code Complete. Microsoft
Press, 1993.

[MEY97] Meyer, Bertrand, Object-Oriented Software
Construction (Second Edition). Prentice-Hall, 1997.
(Chapters 6, 10, 11)

[SET96] Sethi, Ravi, Programming Languages — Concepts
& Constructs (Second Edition). Addison-Wesley, 1996.
(Partsll, 111, 1V, V)

[WAR99] Warren, Nigel, and Bishop, Philip, Java in
Practice — Design Styles and Idioms for Effective Java.
Addison-Wesley, 1999. (Chapters 1, 2, 3, 4, 5, 10)

© |IEEE — Stoneman (Version 0.9) — February 2001

4-13

APPENDIX A — LIST OF FURTHER READINGS

[BAR98] Barker, Thomas T., Writing Software
Documentation — A Task-Oriented Approach. Allyn &
Bacon, 1998.

[FOW99] Fowler, Martin, Refactoring — Improving the
Design of Existing Code. Addison-Wesley, 1999.

[GLA95] Glass, Robert L., Software Creativity. Prentice-
Hall, 1995.

[HEN97] Henricson, Mats, and Nyquist, Erik, Industrial
Strength C++. Prentice-Hall, 1997.

[HOR99] Horrocks, lan, Constructing the User Interface
with Statecharts. Addison-Wesley, 1999.

[HUM97] Humphrey, Watts S., Introduction to the
Personal Software Process. Addison-Wesley, 1997.

[HUNOO] Hunt, Andrew, and Thomas, David, The
Pragmatic Programmer. Addison-Wesley, 2000.

[MAZ96] Mazza, C., et al., Software Engineering Guides.
Prentice-Hall, 1996. (Part 1V)
Standards

IEEE Std 829-1983 (Reaff 1991), IEEE Standard for
Software Test Documentation (ANSI)

IEEE Std 1008-1987 (Reaff 1993), |IEEE Standard for
Software Unit Testing (ANSI)

IEEE Std 1028-1988 (Reaff 1993), |IEEE Standard for
Software Reviews and Audits (ANSI)

IEEE Std 1063-1987 (Reaff 1993), IEEE Standard for
Software User Documentation (ANSI)

ISO/IEC 12207: 1995 Information technology — Software
Life Cycle Processes and |IEEE/EIA 12207.0, 12207.1 and
12207.2 I1SO/EC 14674:1999 Information Technology —
Software Maintenance

ISO/IEC 14674:1999 Information Technology — Software
Maintenance

4-14

© IEEE — Stoneman (Version 0.9) — February 2001

CHAPTER S

SOFTWARE TESTING

Antonia Bertolino
Istituto di Elaborazione della Informazione
Consiglio Nazionale delle Ricerche
Research Areaof S. Cataldo
56100 PISA (Italy)
bertolino@iei.pi.cnr.it

Table of Contents

1 INErOAUCTION...eoererceceeeerse e 1
2 Definition of the Software Testing Knowledge Area.. 1
3 Breakdown of Topicsfor the Software Testing

Knowledge Area.............
4 Breakdown Rationae
5 Matrix of Topicsvs. Reference Materidl..................... 14

6 Recommended Referencesfor Software Testing....... 16
Appendix A — List of Further Readings...........cocccovevernernenn. 17

1 INTRODUCTION

Testing is an important, mandatory part of software
development; it is a technique for evaluating product
quality and also for indirectly improving it, by identifying
defects and problems.

As more extensively discussed in the Software Quality
chapter of the Guide to the SWEBOK, the right attitude
towards quality is one of prevention: it is obviously much
better to avoid problems, rather than repairing them.
Testing must be seen as a means primarily for checking
whether the prevention has been effective, but also for
identifying anomalies in those cases in which, for some
reason, it has been not. It is perhaps obvious, but worth
recognizing, that even after successfully completing an
extensive testing campaign, the software could still contain
faults; nor is defect free code a synonymous for quality
product. The remedy to system failures that are experienced
after delivery is provided by (corrective) maintenance
actions. Maintenance topics are covered into the Software
Maintenance chapter of the Guide to the SWEBOK.

In the years, the view of Software Testing has evolved
towards a more constructive attitude. Testing is no longer
seen as an activity that starts only after the coding phase is
complete, with the limited purpose of detecting failures.
Software testing is nowadays seen as an activity that should
encompass the whole development process, and is an
important part itself of the actual product construction.

© |IEEE — Stoneman (Version 0.9) — February 2001

Indeed, planning for testing should start since the early
stages of requirement anaysis, and test plans and
procedures must be systematically and continuously refined
as the development proceeds. These activities of planning
and designing tests constitute themselves a useful input to
designers for highlighting potential weaknesses (like, e.g.,
design oversights or contradictions, and omissions or
ambiguitiesin the documentation).

In the already referred Software Quality (SQ) chapter of the
Guide to the SWEBOK, activities and techniques for
quality analysis are categorized into: static techniques (no
code execution), and dynamic techniques (code execution).
Both categories are useful. Although this chapter focuses
on testing, that is dynamic (see Sect. 2), static techniques
are as important for the purposes of evaluating product
quality and finding defects. Static techniques are covered
into the SQ Knowledge Area description.

2 DEFINITION OF THE
KNOWLEDGE AREA

SOFTWARE TESTING

Software testing consists of the dynamic verification of the
behavior of a program on a finite set of test cases, suitably

selected from the usually infinite executions domain,
against the specified expected behavior.

In the above definition, and in the following as well,

underlined words correspond to key issues in identifying
the Knowledge Area of Software Testing. In particular:

+ dynamic: this term means testing always implies
executing the program on (valued) inputs. To be
precise, the input value alone is not always sufficient
to determine a test, as a complex, non deterministic
system might react with different behaviors to a same
input, depending on the system state. In the following,
though, the term “input” will be maintained, with the
implied convention that it also includes a specified
input state, in those cases in which it is needed.
Different from testing, and complementary with it, are
static analysis techniques, such as peer review and
inspection (that sometimes are improperly referred to
as "static testing"); these are not considered as part of

51

this Knowledge Area (nor is program execution on
symbolic inputs, or symbolic evaluation);

+ finite: for even simple programs, so many test cases
are theoretically possible that exhaustive testing could
require even years to execute. Thisis why in practice
the whole test set can generally be considered infinite.
But, the number of executions which can realistically
be observed in testing must obviously be finite.
Clearly, "enough" testing should be performed to
provide reasonable assurance. Indeed, testing always
implies a trade-off between limited resources and
schedules, and inherently unlimited test requirements:
this conflict points to well known problems of testing,
both technical in nature (criteria for deciding test
adequacy) and managerial in nature (estimating the
effort to put in testing);

+ sdected: the many proposed test techniques
essentialy differ in how they select the (finite) test
set, and testers must be aware that different selection
criteria may yield largely different effectiveness. How
to identify the most suitable selection criterion under
given conditions is a very complex problem; in
practice risk analysis techniques and test engineering
expertise are applied;

¢+ expected: it must be possible (although not aways
easy) to decide whether the observed outcomes of
program execution are acceptable or not, otherwise
the testing effort would be useless. The observed
behavior may be checked against user's expectations
(commonly referred to as testing for validation) or
against a specification (testing for verification). The
test pass/fail decision is commonly referred in the
testing literature to as the oracle problem, which can
be addressed with different approaches, for instance
by human inspection of results or by comparison with
an existing reference system. In some situations, the
expected behavior may only be partially specified,
i.e., only some parts of the actual behavior need to be
checked against some stated assertion.

2.1 Conceptual Structure of the Breakdown

Software testing is usually performed at different levels
along the development process. That is to say, the target of

the test can vary: a whole system, parts of it (related by
purpose, use, behavior, or structure), a single module.

The testing is conducted in view of a specific purpose (test
objective), which is stated more or less explicitly, and with
varying degrees of precision. Stating the objective in
precise, quantitative terms allows for establishing control
over the test process.

One of testing aims is to expose failures (as many as
possible), and many popular test techniques have been
developed for this objective. These techniques variously
attempt to "break" the program, by running one [or more]
test[s] drawn from identified classes of (deemed equivalent)
executions. The leading principle underlying such

5-2

techniques is being as much systematic as possible in
identifying a representative set of program behaviors
(generaly in the form of subclasses of the input domain).
However, a comprehensive view of the Knowledge Area of
Software Testing as ameans for quality must include other
as important objectives for testing, e.g., reliability
measurement, usability evaluation, contractor’s acceptance,
for which different approaches would be taken. Note that
the test objective varies with the test target, i.e., in general
different purposes are addressed at the different levels of
testing.

The test target and test objective together determine how
the test set is identified; both with regard to its consistency
-how much testing is enough for achieving the stated
objective?- and its composition -which test cases should be
selected for achieving the stated objective?- (although
usually the "for achieving the stated objective" part is left
implicit and only the first part of the two italicized
guestions above is posed). Criteria for addressing the first
question are referred to as test adequacy criteria, while for
the second astest selection criteria.

Sometimes, it can happen that confusion is made between
test objectives and techniques. Test techniques are to be
viewed as aids that help to ensure the achievement of test
objectives. For instance, branch coverage is a popular test
technique. Achieving a specified branch coverage measure
should not be considered per se as the objective of testing:
it is a means to improve the chances of finding failures (by
systematically exercising every program branch out of a
decision point). To avoid such misunderstandings, a clear
distinction should be made between test measures which
evaluate the thoroughness of the test set, like measures of
coverage, and those which instead provide an evaluation of
the program under test, based on the observed test outputs,
like reliability.

Testing concepts, strategies, techniques and metrics need to
be integrated into a defined and controlled process, which
is run by people. The test process supports testing
activities and provide guidance to testing teams, from test
planning to test outputs evaluation, in such a way as to
provide justified assurance that the test objectives are met
cog-effectively.

Software testing is a very expensive and labor-intensive
part of development. For this reason, tools are instrumental
for automated test execution, test results logging and
evauation, and in general to support test activities.
Moreover, in order to enhance cost-effectiveness ratio, a
key issue has always been pushing test automation as much
aspossible.

2.2 Overview

Following the above-presented conceptual scheme, the

Software Testing Knowledge Area description is organized
asfollows.

Part A deals with Testing Basic Concepts and Definitions
It covers the basic definitions within the Software Testing

© |EEE — Stoneman (Version 0.9) — February 2001

field, as well as an introduction to the terminology. In the
same part, the scope of the Knowledge Area is laid down,
alsoinrelation with other activities.

Part B deals with Test Levels. It consists of two
(orthogonal) subsections: B.1 lists the levels in which the
testing of large software systems is traditionaly
subdivided. In B.2 testing for specific conditions or
properties is instead considered, and is referred to as
"Objectives of testing". Clearly not al types of testing

apply to every system, nor has every possible type been
listed, but those most generally applied.

As said, several Test Techniques have been developed in
the last two decades according to various criteria, and new

ones are still proposed. "Generally accepted" techniques are
covered in Part C.

Test-related Measures are dedlt in Part D.

Finally, issues relative to Managing the Test Process are
covered in Part E.

Existing tools and concepts related to supporting and
automating the activities into the test process are not
addressed here. They are covered within the Knowledge
Area description of Software Engineering Tools and
Methodsin this Guide.

3 BREAKDOWN OF TOPICS FOR THE SOFTWARE
TESTING KNOWLEDGE AREA

This section gives the list of topics identified for the
Software Testing Knowledge Area, with succinct
descriptions and references. Two levels of references are
provided with topics: the recommended references within
brackets, and additional references within parentheses. In
particular, the recommended references for Software
Testing have been identified into selected book chapters
(for instance, Chapter 1 of reference Be is denoted as
Be:cl), or, in some cases, sections (for instance, Section 1.4
of Chapter 1 of Be is denoted as Be:clsl.4). The Further
Readings list includes several refereed journa and
conference papers and some relevant standards, for a
deeper study of the pointed arguments.

A chart in Figure 1 gives a graphical presentation of the
top-level decomposition of the breakdown for the Software
Testing Knowledge Area. The finer decomposition of the
five level 1 topics into the lowest level entries is then
summarised by the following five tables (note that two
alternative decompositions are proposed for the level 1
topic of Testing Techniques)

Software Testing

of Testing to
Other Activities

© |IEEE — Stoneman (Version 0.9) — February 2001

l» C1.4 Fault-Based

C1.5 Usage-
Based

C1.6 Based 0n

- Nature of
Application

C2.1 Black-Box
Techniques

C2.1 White-Box
Techniques

~

C3. Selecting and
Combining
Techniques

Ly

A. Testing Basic C.Test D. Test Related E. Managing the
— Conceptsand | | B.Test Levels | . — —
A Techniques M easur es Test Process
Definitions
Al Testing- B1. The Target of Cl.1Basedon D1. Evaluation of |, E1. Management
H>- Related the Test |, Tester'sintuition = the Program Concerns
Terminology and experience Under Test
. B2. Objectives of) E2. Tedt
|, A2 Theoretical > Testing C12 [, D2. Evaluation of Activities
Foundations - Specification- the Tests
based Performed
A3. Relationships
Ly - C1.3 Code-Based

5-3

Table 1-A: Decomposition for Testing Basic Concepts and Definitions

A. Testing Basic Concepts

and Definitions

Al. Testing-related terminology

Definitions of testing and related terminology

Faults vs. Failures

A2. Theoretical foundations

Test selection criteria/Test adequacy criteria (or
stopping rules)

Testing effectiveness/Objectives for testing

Testing for defect removal

The oracle problem

Theoretical and practical limitations of testing

The problem of infeasible paths

Testability

A3. Relationships of testing to other
activities

Testing vs. Static Analysis Techniques

Testing vs. Correctness Proofs and Formal
Verification

Testing vs. Debugging

Testing vs. Programming

Testing within SQA

Testing within Cleanroom

Testing and Certification

Table 1-B: Decomposition for Test Levels

B. Test Levels

B1. Thetarget of the test

Unit testing

Integration testing

System testing

B2. Objectives of testing

Acceptance/qualification testing

Installation testing

Alphaand Betatesting

Conformance testing/ Functional testing/
Correctnesstesting

Reliability achievement and evaluation by
testing

Regression testing

Performance testing

Stress testing

Back-to-back testing

Recovery testing

Configuration testing

Usability testing

© |EEE — Stoneman (Version 0.9) — February 2001

Table 1-C: Decomposition for Test Technigues

C1.: (criterion “base
onwhich tests are
generated”)

C.Test
Techniques

C1.1 Based on tester's
intuition and experience

Ad hoc

C1.2 Specification-based

Equivalence partitioning

Boundary-value analysis

Decision table

Finite-state machine-based

Testing from formal specifications

Random testing

C1.3 Code-based

Reference models for code-based testing (flow
graph, call graph)

Control flowbased criteria

Data flow-based criteria

C1.4 Fault-based

Error guessing

Mutation testing

C1.5 Usage-based

Operational profile

SRET

C1.6 Based on nature of
application

Object-oriented testing

Component-based testing

Web-based testing

GUI testing

Testing of concurrent programs

Protocol conformance testing

Testing of distributed systems

Testing of real-time systems

Testing of scientific software

C2: (criterion

“ignorance or

knowledge of
implementation”)

C2.1 Black-box techniques

Equivalence partitioning

Boundary-value analysis

Decision table

Finite-state machine-based

Testing from formal specifications

Error guessing

Random testing

Operational profile

SRET

C2.2 White-box techniques

Reference models for code-based testing (flow
graph, call graph)

Control flowbased criteria

Data flow-based criteria

M utation testing

C3 Selecting and combining techniques

Functional and structural

Coverage and operational/Saturation effect

© |IEEE — Stoneman (Version 0.9) — February 2001

55

Table 1-D: Decomposition for Test Related Measures

D. Test Related M easures

D.1 Evaluation of the program under test

Program measurements to aid in planning and
designing testing

Types, classification and statistics of faults

Remai ning number of defects/Fault density

Lifetest, reliability evaluation

Reliability growth models

Coverage/thoroughness measures

Fault seeding

D.2 Evaluation of the tests performed M utation score

Comparison and relative effectiveness of
different techniques

Table 1-E: Decomposition for Managing the Test Process

Attitudes/Egoless programming

Test process

Test documentation and workproducts

E.1 Management concerns Internal vs. independent test team

Cost/effort estimation and other process metrics

Termination

Test reuse and test patterns

E. Managing the Test
Process

E.2 Test activities

Planning

Test case generation

Test environment devel opment

Execution

Test results evaluation

Problem reporting/Test log

Defect tracking

A. Testing Basic Concepts and Definitions
Al. Testing-related terminology

+ Definitions of testing and related terminology [Be:cl;
Jo:c1,2,3,4; Ly:c2s2.2] (610)

A comprehensive introduction to the Knowledge Area of
Software Testing is provided by the core references.
Moreover, the |EEE Standard Glossary of Software
Engineering Terminology (610) defines terms for the whole

field of software engineering, including testing-related
terms.

¢+ Faults vs. Failures [Ly:c2s2.2; Jo:cl; Percl; Pf:c7]
(FH+; Mo; ZH+:s35; 610; 982.2:fig3.1.1-1;
982.2:fig6.1-1)
Many terms are used in the software literature to speak of
malfunctioning, notably fault, failure, error, and several
others. Often these terms are used interchangeably.
However, in some cases they are given a more precise
meaning (unfortunately, not in consistent ways between
different sources), in order to identify the subsequent steps
of the cause-effect chain that originates somewhere, e.g., in

5-6

the head of a designer, and eventually leads to the system's
user observing an undesired effect. This terminology is
precisely defined in the IEEE Standard 610.12-1990,
Standard Glossary of Software Engineering Terminology
(610) and is also discussed in more depth in the Software
Quality Knowledge Area (Chapter 11, Sect. 7). What is
essential to discuss Software Testing, as a minimum, is to
clearly distinguish between the cause for a malfunctioning,
for which either of the terms fault or defect will be used
here, and an undesired effect observed in the system
delivered service, that will be caled a failure. It is
important to clarify that testing can reveal failures, but then
it isthe faults that can and must be removed.

However, it should also be recognized that not always the
cause of a failure can be uneguivocally identified, i.e., no
theoretical criteria exists to uniquely say what the fault was
that caused a failure. One may choose to say the fault was
what had to be modified to remove the problem, but other
modifications could have worked just as well. To avoid
ambiguities, some authors instead of faults prefer to speak
in terms of failure-causing inputs (FH+), i.e., those sets of
inputs that when executed cause afailure.

© |EEE — Stoneman (Version 0.9) — February 2001

A2. Theoretical foundations

+ Test selection criteria/Test adequacy criteria (or
stopping rules) [Pf:c7s7.3; ZH+:s1.1] (We-b; WW+;
ZH+)

A test criterion is a means of deciding which a suitable set
of test cases should be. A criterion can be used for selecting
the test cases, or for checking if a selected test suite is
adequate, i.e., to decide if the testing can be stopped. In
mathematical terminology it would be a decision predicate
defined on triples (P, S, T), where P is a program, Sis the
specification (intended here to mean in general sense any
relevant source of information for testing) and T is a test
set. Some generally used criteria are mentioned in Part C.

+ Testing effectiveness/Objectives for testing
[Be:clsl.4; Pec21] (FH+)

Testing amounts at observing a sample of program
executions. The selection of the sample can be guided by
different objectives: it is only in light of the objective
pursued that the effectiveness of the test set can be
evaluated. This important issue is discussed at some length
in the references provided.

+ Testing for defect identification [Be:cl; KF+:cl]

In testing for defect identification a successful test is one
that causes the system to fail. This is quite different from
testing to demonstrate that the software meets its
specification, or other desired properties, whereby testing is
successful if no (important) failures are observed.

¢+ Theoracle problem [Be:cl] (We-a BS)

An oracle is any (human or mechanical) agent that decides
whether aprogram behaved correctly on a given test, and
produces accordingly a verdict of "pass' or "fail". There
exist many different kinds of oracles; oracle automation can
be very difficult and expensive.

+ Theoretical and practical limitations of testing
[KF+:¢c2] (Ho)

Testing theory warns against putting a not justified level of
confidence on series of passed tests. Unfortunately, most
established results of testing theory are negative ones, i.e.,
they state what testing can never achieve (as opposed to
what it actually achieved). The most famous quotation in
this regard is Dijkstra aphorism that "program testing can
be used to show the presence of bugs, but never to show
their absence". The obvious reason is that complete testing
is not feasible in real systems. Because of this, testing must
be driven based on risk, i.e., testing can also be seen as a
risk management strategy.

+ Theproblem of infeasible paths [Be:c3]

Infeasible paths, i.e., control flow paths which cannot be
exercised by any input data, are a significant problem in
path-oriented testing, and particularly in the automated
derivation of test inputs for code-based testing techniques.

+ Testability [Be:c3,c13] (BM; BS; VM)

© |IEEE — Stoneman (Version 0.9) — February 2001

The term of software testability has been recently
introduced in the literature with two related, but different
meanings: on the one hand as the degree to which it is easy
for a system to fulfill a given test coverage criterion, asin
(BM); on the other hand, as the likelihood (possibly
measured statistically) that the system exposes a failure
under testing, if it is faulty, asin (VM, BS). Both meanings
are important.

A3. Relationships of testing to other activities

Here the relation between the Software Testing and other
related activities of software engineering is considered.
Software Testing is related to, but different from, static
analysis techniques, proofs of correctness, debugging and
programming. On the other side, it is informative to
consider testing from the point of view of software quality

analysts, users of CMM and Cleanroom processes, and of
certifiers.

+ Testing vs. Static Anaysis Techniques [Be:cl;
Pe:c17p359-360] (1008:p19)

+ Testing vs. Correctness Proofs
Verification [Be:c1s5; Pf.c7]

+ Testing vs. Debugging [Be:c1s2.1] (1008:p19)
+ Testing vs. Programming [Be:c1s2.3]

+ Testing within SQA (see the SQ Chapter in this
Guide)

+ Testing within CMM (Po:p117-123)
+ Testing within Cleanroom [Pf:c8s8.9]
+ Testing and Certification (WK+)

B. Test Levels

B1l. Thetarget of thetest

Testing of large software systems usually involves more
steps [Be:cl; Jo:c12; Pf:c7].

Three big test stages can be conceptually distinguished,
namely Unit, Integration and System. No process model is
implied in this Guide, nor any of those three stages is
assumed to have a higher importance than the other two.
Depending on the development model followed, these three
stages will be adopted and combined in different

paradigms, and quite often more than one iteration between
them is necessary.

+ Unittesting [Be:cl; Pe:c17; Pf.c7s7.3] (1008)

Unit testing verifies the functioning in isolation of software
pieces that are separately testable. Depending on the
context, these could be the individual subprograms or a
larger component made of tightly related units. A test unit
is defined more precisely in the IEEE Standard for
Software Unit Testing [1008], that also describes an
integrated approach to systematic and documented unit
testing. Typically, unit testing occurs with access to the
code being tested and with the support of debugging tools,
and might involve the same programmers. Clearly, unit

and Formal

57

testing starts after coding is quite mature, for instance after
aclean compile.

+ Integration testing [Jo:c12,13; Pf:c7s7.4]

Integration testing is the process of verifying the interaction
between system components (possibly, and hopefully,
already tested in isolation). Classical integration testing
strategies, such as top-down or bottomup, are used with
traditional, hierarchically structured systems. Modern
systematic integration strategies are rather architecture
driven, which implies integrating the software components
or subsystems based on identified functional threads:
integration testing is a continuous activity, at each stage of
which testers must abstract away lower level perspectives
and concentrate on the perspectives of the level they are
integrating. Except for small, simple systems, systematic,
incremental integration testing strategies are to be preferred
to putting al components together at once, that is
pictorially said "big-bang" testing.

s+ Systemtesting [Jo:c14; Pf:c8]

System testing is concerned with the behavior of a whole
system. The magjority of functional failures should have
been already identified during unit and integration testing.
System testing should compare the system to the non-
functional system reguirements, such as security, speed,
accuracy, and reliability. External interfaces to other
applications, utilities, hardware devices, or the operating
environment are also evaluated at thislevel.

B2. Objectives of Testing [Pe:c8; Pf:c8s8.3]

Testing of a software system (or subsystem) can be aimed
at verifying different properties. Test cases can be designed
to check that the functional specifications are correctly
implemented, which is variously referred to in the literature
as conformance testing, "correctness' testing, functional
testing. However several other non-functional properties
need to be tested as well, including conformance, reliability
and usability among many others.

References cited above give essentially a collection of the
potential different purposes. The topics separately listed
below (with the same or additional references) are those
most often cited in the literature. Note that some kinds of
testing are more appropriate for custom made packages
(e.g., installation testing), while others for generic products
(e.g., betatesting).

+ Acceptance/qualification testing [Pe:ic10; Pf:c8s8.5]

(12207:s5.3.9)

Acceptance testing checks the system behavior against the
customer's requirements (the "contract"); the customers
undertake (or specify) typical tasks to check their

requirements. This testing activity may or may not involve
the developers of the system.

+ Installation testing [Pe:c9; Pf:c8s8.6]

After completion of system and acceptance testing, the
system is verified upon installation in the target

5-8

environment, i.e., system testing is conducted according to
the hardware configuration requirements. Installation
procedures are also verified.

+ Alphaand Betatesting [KF+:¢c13]

Before releasing the system, sometimesi it is given in use to
asmall representative set of potential users, in-house (alpha
testing) or external (beta testing), who report potential
experienced problems with use of the product. Alpha and
beta use is often uncontrolled, i.e., the testing does not refer
to atest plan.

+ Conformance testing/Functional testing/Correctness
testing [KF+:¢7; Pe:c8] (WK+)

Conformance testing is aimed at verifying whether the
observed behavior of the tested system conforms to its
specification.

+ Reliability achievement and evaluation by testing
[Pf:c8s.8.4; Ly:c7] (Ha; Musa and Ackermann in
Po:p146-154)

By testing failures can be detected, and afterwards, if the

faults that are the cause of the identified failures are

efficaciously removed, the software will be more reliable.

In this sense, testing is a means to improve reliability. On

the other hand, by randomly generating test cases

accordingly to the operational profile, statistical measures
of reliability can be derived. Using reliability growth

models, both objectives can be pursued together (see also
part D.1).

+ Regression testing [KF+:c7; Pe:cll,cl2; Pf:c8s8.1]
(RH)
According to (610), regression testing is the "selective
retesting of a system or component to verify that
modifications have not caused unintended effects [...]". In
practice, the idea is to show that previously passed tests,
still do. [Be] defines it as any repetition of tests intended to
show that the software's behavior is unchanged except
insofar as required. Obviously a tradeoff must be found
between the assurance given by regression testing every
time a change is made and the resources required to do that.

Regression testing can be conducted at each of the test

levels in B.1, and may apply to functiona and non-
functional testing.

+ Performancetesting [Pe:c17; Pf:c8s8.3] (WK+)

Thisis specifically aimed at verifying that the system meets
the specified performance requirements, e.g., capacity and
response time. A specific kind of performance testing is

volume testing (Pe:pl185, p487; Pf:p349), in which internal
program or system limitations are tried.

+ Stresstesting [Pe:cl17; Pf:c8s8.3]

Stress testing exercises a system at the maximum design
load aswell asbeyond it.

+ Back-to-back testing

© |EEE — Stoneman (Version 0.9) — February 2001

A sametest set is presented to two implemented versions of
asystem, and the results are compared with each other.

+ Recovery testing [Pe:c17; Pf:c8s8.3]

It is aimed at verifying system restart capabilities after a
"disaster”.

+ Configuration testing [KF+:c8; Pf:c8s8.3]

In those cases in which a system is built to serve different
users, configuration testing analyzes the system under the
various specified configurations.

+ Usability testing [Pe:c8; Pf:c8s8.3]

It evaluates the ease of using and learning the system (and
system user documentation) by the end users, as well as the
effectiveness of system functioning in supporting user
tasks, and finally the ability of recovering from user's
errors.

C. Test Techniques

In this section, two alternative classifications of test
techniques are proposed. It is arduous to find a

homogeneous criterion for classifying all techniques, as
there exist many and very disparate.

The first classification, from C1.1 to C1.6, is based on how
tests are generated, i.e., respectively from: tester's intuition
and expertise, the specifications, the code structure, the
(real or artificial) faults to be discovered, the field usage or
finally the nature of application, which in some case can
require knowledge of specific test problems and of specific
test techniques.

The second classification is the classical distinction of test
techniques between black-box and white-box (pictorial
terms derived from the world of integrated circuit testing).
Test techniques are here classified according to whether the
tests rely on information about how the software has been
designed and coded (white-box, somewhere also said glass-
box), or instead only rely on the input/output behavior,

without no assumption about what happens in between the
“pins’ (precisely, the entry/exit points) of the system (black
box). Clearly this second classification is more coarse than
the first one, and it does not allow us to categorize the
techniques specialized on the nature of application (section
C1.6) nor ad hoc approaches, because these can be either

black-box or white-box. Also note that as new technologies
such as Object Oriented or Component-based become more
and more widespread, this split becomes more of a

theoretical than apractical scope, asinformation about code
and design is hidden or simply not available.

A fina section, C3, deals with combined use of more
techniques.

C1: CLASSIFICATION “based on how testsare
generated”

C1.1 Based ontester'sintuition and experience [KF+:.cl]

Perhaps the most widely practiced technique remains ad
hoc testing: tests are derived relying on the tester skill and

© |IEEE — Stoneman (Version 0.9) — February 2001

intuition (“exploratory” testing), and on his/her experience
with similar programs. While a more systematic approach
is advised, ad hoc testing might be useful (but only if the
tester is really expert!) to identify special tests, not easily
"captured" by formalized techniques. Moreover it must be
reminded that this technique may yield largely varying
degrees of effectiveness.

C1.2 Specification-based
+ Equivalence partitioning [Jo:c6; KF+:c7]

The input domain is subdivided into a collection of subsets,
or "equivalent classes', which are deemed equivalent

according to a specified relation, and a representative set of
tests (sometimes even one) istaken from within each class.

+ Boundary-value analysis [Jo:c5; KF+:c7]

Test cases are chosen on and near the boundaries of the
input domain d variables, with the underlying rationale
that many defects tend to concentrate near the extreme
values of inputs. A simple, and often worth, extension of
this technique is Robustness Testing, whereby test cases are
also chosen outside the domain, in fact to test program
robustness to unexpected, erroneous inputs.

+ Decision table [Be:c10s3] (Jo:c7)

Decision tables represent logical relationships between
conditions (roughly, inputs) and actions (roughly, outputs).
Test cases are systematically derived by considering every

possible combination of conditions and actions. A related
techniques is Cause-effect graphing [Pf:c8].

+ Finite-state machine-based [Be:c11; Jo:c4s4.3.2]

By modeling a program as a finite state machine, tests can
be selected in order to cover states and transitions on it,

applying different techniques. This technique is suitable for
transaction-processing, eactive, embedded and real-time
systems.

+ Testing from formal specifications [ZH+:52.2] (BG+;
DF; HP)

Giving the specifications in a formal language (i.e., one
with precisely defined syntax and semantics) alows for
automatic derivation of functional test cases from the
specifications, and at the same time provides a reference
output, an oracle, for checking test results. Methods for
deriving test cases from model-based (DF, HP) or algebraic
specifications (BG+) are distinguished.

+ Random testing [Be:c13; KF+:¢7]

Tests are generated purely random (not to be confused with
statistical testing from the operational profile, where the
random generation is biased towards reproducing field
usage, see CL1.5). Actually, therefore, it is difficult to
categorize this technique under the scheme of "base on
which tests are generated”. It is put under the Specification-
based entry, as at least which is the input domain must be
known, to be able to pick random points within it.

59

C1.3 Code-based

+ Reference models for mde-based testing (flowgraph,
call graph) [Be:c3; Jo:c4].

In code-based testing techniques, the control structure of a
program is graphically represented using a flowgraph, i.e.,
a directed graph whose nodes and arcs correspond to
program elements. For instance, nodes may represent
statements or uninterrupted sequences of statements, and
arcsthetransfer of control between nodes.

. Control flow-based
(ZH+:s2.1.1)

Control flow-based coverage criteriaaim at covering al the
statements or the blocks in a program, or specified
combinations of them. Several coverage criteria have been
proposed (like Decision/Condition Coverage), in the
attempt to get good approximations for the exhaustive
coverage of all control flow paths, that is unfeasible for all
but trivial programs.

+ Dataflow-based criteria[Be:c5] (Jo:c10; ZH+:s2.1.2)

In data flow-based testing, the control flowgraph is
annotated with information about how the program
variables are defined and used. Different criteria exercise
with varying degrees of precision how a value assigned to a
variable is used along different control flow paths. A
reference notion is a definition-use pair, which is a triple
(d,u,V) such that: V isavariable, d isanode in which V is
defined, and u is a node in which V is used; and such that
there exists a path between d and u in which the definition
of Vindisusedinu.

Cl1.4 Fault-based (M0)

With different degrees of formalization, fault based testing

techniques devise test cases specifically aimed at revealing
categories of likely or pre-defined faults.

criteria [Beic3; Jo:c9]

+ Error guessing [KF+:c7]

In error guessing, test cases are specifically designed by
testers trying to figure out those, which could be the most
plausible faults in the given program. A good source of
information is the history of faults discovered in earlier
projects, as well astester's expertise.

+ Mutation testing [Pe:c17; ZH+:53.2-s3.3]

A mutant is a dlightly modified version of the program
under test, differing from it by a small, syntactic change.
Every test case exercises both the original and all generated
mutants. If a test case is successful in identifying the
difference between the program and a mutant, the latter is
said to be killed. Originally conceived as a technique to
evaluate atest set (see D.2.2), mutation testing is also a
testing criterion in itself: either tests are randomly
generated until enough mutants are killed or tests are
specifically designed to kill (survived) mutants. In the latter
case, mutation testing can also be categorized as a code-
based technique. The underlying assumption of mutation
testing, the coupling effect, is that by looking for simple

5-10

syntactic faults, also more complex, (i.e., real) faultswill be
found. For the technique to be effective, a high number of
mutants must be automatically derived in systematic way.

C15 Usage-based
+ Operational profile [Jo:c14s14.7.2; Ly:c5; Pf:c8]

In testing for reliability evaluation, the test environment
must reproduce as closely as possible the product use in
operation. In fact, from the observed test results one wants
to infer the future reliability in operation. To do this, inputs
are assigned a probability distribution, or profile, according
to their occurrencein actual operation.

¢+ (Musas) SRET [Ly:c6]

Software Reliability Engineered Testing (SRET) is atesting
methodology encompassing the whole development
process, whereby testing is "designed and guided by

reliability objectives and expected relative usage and
criticality of different functionsin thefield".

C1.6 Based on nature of application

The above techniques apply to all types of software, and
their classification is based on how test cases are derived.
However, for some kinds of applications some additional
know-how is required for test derivation. Here below alist
of few "specialized" testing fields is provided, based on the
nature of the application under test.

+ Object-oriented testing [Jo:c15; Pf:c7s7.5] (Bi)
+ Component-based testing

+ Web-based testing

+ GUI testing (OA+)

+ Testing of concurrent programs (CT)

+ Protocol conformance testing (Sidhu and Leung in
Po:p102-115; BP)

+ Testing of distributed systems
+ Testing of real-time systems (Sc)
+ Testing of scientific software

C2: CLASSIFICATION “ignorance or knowledge of
implementation”

As explained at the beginning of Section C, here below an
alternative classification of the same test techniques cited
so far is proposed (just the headings are mentioned), based
on whether knowledge of implementation is exploited to
derive thetest cases (white-box), or not (black-box).

C2.1 Black-box techniques

+ Equivalence partitioning [Jo:c6; KF+:c7]

+ Boundary-value analysis [Jo:c5; KF+:c7]

+ Decision table [Be:c10s3] (Jo:c7)

+ Finite-state machine-based [Be:c11; Jo:c4s4.3.2]

+ Testing from formal specifications [ZH+:52.2] (BG+;
DF; HP)

© |EEE — Stoneman (Version 0.9) — February 2001

¢ Error guessing [KF+:c7]

+ Randomtesting [Be:c13; KF+:c7]

+ Operational profile [Jo:c14s14.7.2; Ly:c5; Pf:c8]
¢+ (Musas) SRET [Ly:c6]

C2.2 Whnite-box techniques

+ Reference models for code-based testing (flowgraph,
call graph) [Be:c3; Jo:c4].

. Control flow-based
(ZH+:s2.1.1)

+ Dataflow-based criteria[Be:c5] (Jo:c10; ZH+:s2.1.2)
+ Mutation testing [Pe:c17; ZH+:s3.2-s3.3]

criteria [Beic3; Jo:c9]

C3 Selecting and combining techniques

. Functional and structural [Be:cl1s.2.2; Jo:cl, c11s11.3;
Pe:c17] (Po:p3-4; Po:Appendix 2)

Specification-based and code-based test techniques are
often contrasted as functional vs. structural testing. These
two approaches to test selection are not to be seen as
alternative, but rather as complementary: in fact, they use
different sources of information, and have proved to
highlight different kinds of problems. They should be used
in combination, compatibly with budget availahility.

+ Coverage and operational/Saturation effect (Ha;
Ly:p541-547; Ze)

Test cases can be selected in deterministic way, according
to one of the various listed techniques, or randomly drawn
from some distribution of inputs, such asit is usually done
in reliability testing. There are interesting considerations
one should be aware of, about the different implications of
each approach.

D. Test related measures

Measurement is instrumental to quality analysis. Indeed,
product evaluation is effective only when based on
quantitative measures. Measurement is instrumental also to
the optimal planning and execution of tests, and several
process metrics can be used by the test manager to monitor
progress. Measures relative to the test process for
management purposes are considered in part E.

A wider coverage of the topic of quality measurement,
including fundamentals, metrics and techniques for
measurement, is provided in the SQ chapter of the Guide to
the SWEBOK. A comprehensive reference is provided by
the |IEEE Standard. 982.2 "Guide for the Use of IEEE
Standard Dictionary of Measures to Produce Reliable
Software”, which was originally conceived as a guide to
using the companion standard 982.1, that is the Dictionary.
However, theguideisalso avalid and very useful reference
by itself, for selection and application of measures in a
project.

Test related measures can be divided into two classes: those
relative to evaluating the program under test, and those
relative to evaluating the test set. The first class, for

© |IEEE — Stoneman (Version 0.9) — February 2001

instance, includes measures that count and predict either
faults (e.g., fault density) or failures (e.g., reliability). The
second class instead evaluates the test suites against
selected test criteria; notably, thisiswhat is usually done by
measuring the code coverage achieved by the executed
tests.

D1. Evaluation of the program under test (982.2)

+ Program measurements to aid in planning and
designing testing. [Be:c7s4.2; Jo:c9] (982.2:sA16,
BMa)

Measures based on program size (e.g., Source Lines of

Code, function points) or on program structure (e.g.,

complexity) is useful information to guide the testing.

Structural measures can also include measurements among

program modules, in terms of the frequency with which
modules call each other.

+ Types, classification and statistics of faults [Be:c2;
Jo:cl; Pf:c7] (1044, 1044.1; Be:Appendix; Ly:c9;
KF+:c4, Appendix A)

The testing literature is rich of classifications and

taxonomies of faults. Testing alows for discovering

defects. To make testing more effective it is important to
know which types of faults could be found in the
application under test, and the relative frequency with
which these faults have occurred in the past. This
information can be very useful to make quality predictions
as well as for process improvement. The topic "Defect

Characterization" is aso covered more deeply in the SQA

Knowledge Area. An IEEE standard on how to classify

software "anomalies’ (1044) exists, with a relative guide

(1044.1) to implement it. An important property for fault

classification is orthogonality, i.e., ensuring that each fault

can be univocally identified as belonging to one class.

+ Fault density [Pe:c20] (982.2:sA1; Ly:c9)

In common industrial practice a product under test is
assessed by counting and classifying the discovered faults
by their types (see also Al). For each fault class, fault

density is measured by the ratio between the number of
faults found and the size of the program.

+ Life test, reliability evaluation [Pf:c8] (Musa and
Ackermann in Po:pl46-154)

A statistical estimate of software reliability, that can be

obtained by operational testing (see in B.2), can be used to
evaluate a product and decide if testing can be stopped.

+ Reliability growth models[Ly:c7; Pf:c8] (Ly:c3, c4)

Reliability growth models provide a prediction of reliability
based on the failures observed under operational testing.
They assume in general that the faults that caused the
observed failures are fixed (although some models aso
accept imperfect fixes) and thus, on average, the product
reliability exhibits an increasing trend. There exist now tens
of published models, laid down on some common
assumptions as well as on differing ones. Notably, the

5-11

models are divided into failures-count and time-between-
failures models.

D2. Evaluation of the tests performed

+ Coverage/thoroughness measures
(982.2:sA5-sA6)

Several test adequacy criteria require the test cases to
systematically exercise a set of elements identified in the
program or in the specification (see Part C). To evaluate the
thoroughness of the executed tests, testers can monitor the
elements covered, so that they can dynamically measure the
ratio (often expressed as a fraction of 100%) between
covered elements and the total number. For example, one
can measure the percentage of covered branches in the
program flowgraph, or of exercised functional requirements
among those listed in the specification document. Code-
based adequacy criteria require appropriate instrumentation
of the program under test.

¢ Fault seeding [Pf:c7] (ZH+:53.1)

Some faults are artificially introduced into the program
before test. When the tests are executed, part of these
seeded faults will be revealed, as well as possibly genuine
faults. Depending on which and how many of the artificial
faults are hit, testing effectiveness can be evaluated; also,
one could estimate how many of the genuine faults should
remain.

+ Mutation score[ZH+:s3.2-s3.3]

Mutation testing has been described before (within C1.4).
The proportion between killed mutants and the total

number of generated mutants can be a measure of the
effectiveness of the executed test set.

[Jo:c9; Pf:c7]

+« Comparison and relative effectiveness of different
techniques [Jo:c8,cll; Pecl7; ZH+:s5] (FW;
Weyuker in Po p64-72; FH+)
Severa studies have been recently conducted to compare
the relative effectiveness of different test techniques. It is
important to be precise relative to the property against
which the techniques are being assessed, i.e, what
"effectiveness’ is exactly meant for. Possible
interpretations are how many tests are needed to find the
first failure, or the ratio of the number of faults found by
the testing to all the faults found during and after the
testing, or of how much reliability is improved. Analytical
and empirical comparisons between different techniques
have been conducted according to each of the above
specified notions of "effectiveness'.

E. Managing the Test Process
E1l. Management concerns

+ Attitudes/Egoless programming [Be:c13s3.2; Pf:c7]

A very important component of successful testing is a
positive and collaborative attitude towards testing activities.
Managers should revert a negative vision of testers as the
destroyers of developers work and as heavy budget

5-12

consumers. On the contrary, they should foster a common
culture towards software quality, by which early failure
discover is an objective for all involved people, and not
only of testers.

+ Test process [Be:cl3; Pe:cl,c2,c3,c4; Pf.c8] (Po:plG-
11; Po:Appendix 1; 12207:55.3.9;55.4.2;56.4;6.5)

A process is defined as "a set of interrelated activities,
which transform inputs into outputs'[12207]. Test activities
conducted at different levels (see B.1) must be organized,
together with people, tools, policies, measurements, into a
well defined process, which is integral part to the life cycle.
This test process needs control and continuous
improvement. In the IEEE/EIA Standard 12207.0 testing is
not described as a stand alone process, but principles for
testing activities are included along with the five primary
life cycle processes, as well as along with the supporting
process.

+ Test documentation and workproducts [Be:c13s5;
KF+:c12; Pe:c19; Pf:c8s8.8] (829)

Documentation is an integral part of the formalization of
the test process. The IEEE standard for Software Test
Documentation [829] provides a good description of test
documents and of their relationship with one another and
with the testing process. Test documents includes, among
others, Test Plan, Test Design Specification, Test
Procedure Specification, Test Case Specification, Test Log
and Test Incident or Problem Report. The program under
test, with specified version and identified hw/sw
requirements before testing can begin, is documented as the
Test Item. Test documentation should ke produced and
continually updated, at the same standards as other types of
documentation in development.

+ Internal vs. independent test team [Be:c13s2.2-2.3;
KF+:c15; Pe:c4; Pf:c8]

Formalization of the test process requires formalizing the
test team organization as well. The test team can be
composed of members internal to the project team (but not
directly involved in code development), or of external
members, in the latter case bringing in an unbiased,
independent perspective, or finally of both internal and
external members. The decision will be determined by
considerations of costs, schedule, maturity levels of the
involved organizations, and criticality of the application.

+ Cost/effort estimation and other process metrics
[Peic4, c21] (Pe:Appendix B; Po:pl39-145;
982.2:sA8-sA9)

In addition to those discussed in Part D, several metrics

relative to the resources spent on testing, as well as to the

relative effectiveness in fault finding of the different test
phases, are used by managers to control and improve the
test process. These test measures may cover such aspects
as. number of test cases specified, number of test cases

executed, number of test cases passed, number of test cases
failed, and similar.

© |EEE — Stoneman (Version 0.9) — February 2001

Evaluation of test phase reports is often combined with root
cause analysis to evaluate test process effectiveness in
finding faults as early as possible. Moreover, the resources
that are worth spending in testing should be commensurate
to the use/criticality of the application: the techniques listed
in part C have different costs, and yield different levels of
confidencein product reliability.

+ Termination [Be:c2s2.4; Pe:c2]

A critical task of the test manager is to decide how much
testing is enough and when a test stage can be terminated.
Thoroughness measures such as achieved code coverage or
functional completeness, as well as estimates of fault
density or of operational reliability, provide useful support,
but are not sufficient by themselves. The decision involves
also considerations about the @sts and risks incurred by
potentially remaining failures, as opposed to the costs
implied by further continuing to test.

+ Test reuse and test patterns [Be:c13s5]

To carry out testing or maintenance in an organized and
cost/effective way, the means used to test each part of the
system should be reused systematically. At al levels of
testing, test scripts, test cases, and expected results should
be carefully defined and documented so that they may be
reused. This repository of test materials must be
configuration controlled, so that changes to system
requirements or design can be reflected in changes to the
scope of the tests conducted.

The test solutions adopted for testing some application type
under certain circumstances, with the motivations behind
the decisions taken, form a test pattern, that can itself be
documented for later reusein similar projects.

E2. Test Activities

Here below a brief overview of test ativities is given; as
often implied by the following description, successful
management of test activities strongly depends from the
Software Configuration Managament process (see Chapter
7 in this Guide).

+« Planning [KF+:c12; Pecl9; Pf:c7s7.6]
1008:s1, s2, s3)

Like any other part of project management, testing
activities must be planned. Key aspects of test planning
include coordination of personnel needed, management of
available test facilities and equipment (which may include
magnetic media, test plans and procedures), and planning
for possible undesirable outcomes. If more than one
baseline of the system is being maintained, then a major
planning consideration is the time and effort needed to
ensure the test environment is set to the proper
configuration.

+ Test case generation [KF+:¢7] (Po:c2; 1008:s4, sb)

Generation of test cases is based on the level of testing to
be performed, and the particular testing techniques. Test

(829:<4;

© |IEEE — Stoneman (Version 0.9) — February 2001

cases should be configuration controlled and include the
expected results for each test.

+ Test environment development [KF+:c11]

The environment used for testing should be compatible
with the software development environment. It should
facilitate development and control of test cases, as well as
logging and recovery of expected results, scripts, and other
testing materials.

+ Execution[Be:cl3; KF+:c11] (1008:s6, s7;)

Execution of tests is generaly performed by testing
engineers with oversight by quality assurance personnel
and, in some cases, customer representatives. Execution of
tests should embody the basic principles of scientific
experimentation: everything done during testing should be
performed and documented clearly enough that another
person could replicate the same results. Hence testing
should be performed in accordance with documented
procedures using a clearly defined version of the system
under test.

¢ Test results evauation [Pe:c20,c21] (Po:pl8-20;
Po:p131-138)

The results of testing must be evaluated to determine if the
test was successful, and to derive specific test measures. In
most cases, 'successful' means that the system performed as
expected, and did not have any major unexpected
outcomes. On the other side, not all unexpected outcomes
are necessarily faults, but could be judged as just noise.
Before a failure can be removed, analysis and debugging
effort is needed to isolate, identify and describe it. When
test results are particularly important, a formal review
board may be convened to evaluate test results.

+ Problem reporting/Test log [KF+:¢5; Pe:c20] (829:59-
s10)

All testing activities should be entered into a test log to
identify when atest was conducted, who performed the test,
what system configuration was the basis for testing, and
other relevant identification information. Unexpected or
incorrect test results should be recorded in a problem
reporting system. The problem reporting system's data
forms the basis for later debugging and fixing the problems
which were observed as failures during testing. Also
anomalies not classified as faults could be documented, in
case they later turn out to be more serious than judged. Test
Reports are also an input to the Change Management
system (which is a part of the Configuration Management
system).

+ Defect tracking [KF+:¢6]

Failures observed during testing are often due to faults or
defects in the system. Such defects should be analyzed to
determine when they were introduced into the system, what
kind of error caused them to be created (e.g. poorly defined
requirements, incorrect variable declaration, memory leak,
programming syntax error, etc.), and when they could have
been first observed in the system. Defect tracking

5-13

information is used to determine what aspects of system
development need improvement and how effective have
been previous analyses and testing.

4 BREAKDOWN RATIONALE

The conceptual scheme followed in decomposing the
Software Testing Knowledge Area is described in Section
2.1. Level 1 topicsinclude five entries, labeled fromA to E,
that correspond to the fundamental and complementary
concerns forming the Software Testing knowledge: Basic
Concepts and Definitions, Levels, Techniques, Measures,
and Process. There is not a standard way to decompose the
Software Testing Knowledge Area, each book on Software
Testing would structure its table of contents in different
ways. However any thorough book on Software Testing
would cover these five topics. A sixth level 1 topic would
be Test Tools. These are not covered here, but in the
Software Engineering Tools and Methods chapter of the
Guideto the SWEBOK.

The breakdown is three levels deep. The second level is for
making the decomposition more understandable. The
selection of level 3 topics, that are the subjects of study, has
been quite difficult. Finding a breakdown of topics that is
"generally accepted” by al different communities of

5 MATRIX OF TOPICSVS. REFERENCE MATERIAL

potential users of the Guide to the SWEBOK is challenging
for Software Testing, because there still exists a wide gap
between the literature on Software Testing and current
industrial test practice. There are topics that have been
taking a relevant position in the academic literature for
many years now, but are not generally used in industry, for
example data-flow based or mutation testing. The position
taken in writing this document has been to include any
relevant topicsin the literature, even those that are likely not
considered so relevant by practitioners at the current time.
The proposed breakdown of topics for Software Testing is
thus considered as an inclusive list, from which each
stakeholder can pick according to his/her needs.

However, under the precise definition for "generally
accepted” adopted in the Guide to the SWEBOK (i.e,,
knowledge to be included in the study material of a software
engineering with four years of work experience), some of
the included topics (like the examples above) would be only
lightly (if at all) covered in a curriculum of a software
engineer with four years of experience. The recommended
references have been therefore selected accordingly, i.e.,
they provide reading material according to this meaning of
"generally accepted”, while the more advanced topics are
covered in the Further Reading list.

A. Testing Basic Conceptsand

Do Bl | [o] | [yl | [KF+] | [Pel | [P | [ZH4]
Definitions of testing and related terminology C1 C1,2,34 C2s2.2

Faultsvs. Failures C1l C282.2 C1 Cc7
Test selection criteria/ Test adequacy criteria (or

Stopping rieS) equacy (C7s7.3 S11
Testing effectiveness/Objectives for testing Cis14 c21

Testing for defect identification C1l C1

The oracle problem C1

Theoretical and practical limitations of testing C2

The problem of infeasible paths C3

Testability C313

Testing vs. Static Analysis Techniques Cl C17

Tesp ng vs. Correctness Proofs and Formal Cls c7
Verification

Testing vs. Debugging C1s2.1

Testing vs. Programming C1S2.3

Testing within SQA

Testing within CMM

Testing within Cleanroom C8s8.9
Testing and Certification

5-14

© |EEE — Stoneman (Version 0.9) — February 2001

B. Test Levels

(Be]

[Jo]

[Ly]

[KF+]

[Pe]

[Pf]

Unit testing

C1

C17

C7S7.3

Integration testing

C12,13

C7S7.4

System testing

Cl4

C8

Acceptance/qualification testing

C10

C8S8.5

Installation testing

C9

C8S8.6

Alphaand Betatesting

C13

Conformance testing/ Functional testing/ Correctness

testing

Cc7

Cc8

Reliahility achievement and evaluation by testing

(o74

C8S8.4

Regression testing

C7

C11,12

C8S8.1

Performancetesting

C17

C8S8.3

Stresstesting

C17

C8S8.3

Back-to-back testing

Recovery testing

C17

(C838.3

Configuration testing

C8

C838.3

Usahility testing

C8

C8S8.3

C. Test Techniques

[Be]

[Jo]

[Ly]

[KF+]

[Pe]

[Pf]

[ZH+]

Ad hoc

C1l

Equivalence partitioning

C6

(074

Boundary-vaue anaysis

C5

C7

Decision table

C10S3

Finite-state machine-based

C11

C434.3.2

Testing from formal specifications

Random testing

C13

(074

Reference models for code-based testing (flow
graph, call graph)

C3

Control flow-based criteria

C3

C9

C7

Data flow-based criteria

C5

Error guessing

C7

Mutation testing

C17

S3.2,3.3

Operational profile

C14S14.7.2

C5

C8

SRET

C6

Object-oriented testing

C15

C7S7.5

Component-based testing

Web-based testing

GUI testing

Testing of concurrent programs

Protocol conformance testing

Testing of distributed systems

Testing of real-time systems

Testing of scientific software

Functional and structural

C182.2

C1,11811.3

C17

Coverage and operational/Saturation effect

© |IEEE — Stoneman (Version 0.9) — February 2001

5-15

D. Test Related Measures [Be] [Jo] [Ly] [KF+] [Pe] [Pf] [ZH+]
Pro_gra_m measurements to aid in planning and c742 co

designing testing.

Types, classification and statistics of faults Cc2 C1l Cc7

Remaining number of defects/Fault density C20

Lifetest, reliability evaluation C8

Reliability growth models (074 Cc8
Coverage/thoroughness measures Cc9 c7

Fault seeding c7

Mutation score S3.2,33
Comparison and relative effectiveness of

differF:ant techniques cs1l c17 5
E. Managing the Test Process [Be] [JO] [Ly] [KF+] [Pe] [Pf]
Attitudes/Egol ess programming C13s3.2 Cc7
Test process C13 C1,2,34 C8
Test documentation and workproducts C13s5 C12 C19 (C838.8
Internal vs. independent test team C1352.2,2.3 C15 c4 C8
Cost/effort estimation and other process metrics C4,21

Termination C2s2.4 Cc2

Test reuse and test patterns C13

Planning C12 C19 C7S7.6
Test case generation Cc7

Test environment development c11

Execution C13 c11

Test results evaluation C20,21

Problem reporting/Test log C5 C20

Defect tracking C6

6 RECOMMENDED REFERENCES FOR SOFTWARE
TESTING

Be Beizer, B. Software Testing Techniques 2nd Edition.
Van Nostrand Reinhold, 1990. [Chapters 1, 2, 3, 5,
744, 10s3, 11, 13]

Jo Jorgensen, P.C., Software Testing A Craftsman's
Approach, CRC Press, 1995. [Chapters 1, 2, 3, 4, 5, 6,
7,8,11, 12,13, 14, 15]

KF+ Kaner, C., Fak, J, and Nguyen, H. Q., Testing
Computer Software, 2nd Edition, Wiley, 1999.
[Chapters 1, 2,5, 6, 7, 8, 11, 12, 13, 15]

Ly Lyu, M.R. (Ed.), Handbook of Software Reliability
Engineering, Mc-Graw-Hill/IEEE, 1996. [Chapters
252.2,5,6, 7]

Pe Perry, W. Effective Methods for Software Testing,
Wiley, 1995. [Chapters 1, 2, 3, 4, 9, 10, 11, 12, 17, 19,
20, 21]

Pf Pfleeger, S.L. Software Engineering Theory and
Practice, Prentice Hall, 1998. [Chapters 7, 8]

ZH+ Zhu, H., Hal, P.A.V., and May, JH.R. Software Unit
Test Coverage and Adequacy. ACM Computing

Surveys, 29, 4 (Dec. 1997) 366-427. [Sections 1, 2.2,
32,33,

5-16 © |EEE — Stoneman (Version 0.9) — February 2001

APPENDIX A — LIST OF FURTHER READINGS

Books

Be Beizer, B. Software Testing Techniques 2nd Edition.
Van Nostrand Reinhold, 1990.

Bi Binder, R. V., Testing Object-Oriented Systems
Models, Patterns, and Tools, Addison-Wesley, 2000.

Jo Jorgensen, P.C., Software Testing A Craftsman's
Approach, CRC Press, 1995.

KF+ Kaner, C., Fak, J, and Nguyen, H. Q., Testing
Computer Software, 2nd Edition, Wiley, 1999.

Ly Lyu, M.R. (Ed), Handbook of Software Reliability
Engineering, Mc-Graw-Hill/|EEE, 1996.

Pe Pery, W. Effective Methods for Software Testing,
Wiley, 1995.

Po Poston, RM. Automating
Software Testing, |EEE, 1996.

Survey Papers
ZH+ Zhu, H., Hal, P.A.V., and May, JH.R. Software Unit

Test Coverage and Adequacy. ACM Computing
Surveys, 29, 4 (Dec. 1997) 366-427.

Specific Papers
BG+ Bernot, G., Gaudel, M.C., and Marre, B. Software

Testing Based On Formal Specifications: a Theory

and a Tool. Software Engineering Journal (Nov.
1991) 387-405.

BM Bache, R., and Mdllerburg, M. Measures of

Testability as a Basis for Quality Assurance. Software
Engineering Journal, 5 (March 1990) 86-92.

BMaBertolino, A., Marre, M. “How many paths are needed
for branch testing?’, The Journal of Systems and
Software, Vol. 35, No. 2, 1996, pp.95-106.

BP Bochmann, G.V., and Petrenko, A. Protocol Testing:
Review of Methods and Relevance for Software
Testing. ACM Proc. Int. Symposium on Sw Testing
and Analysis (ISSTA’ 94), (Seattle, Washington, USA,
August 1994) 109-124.

BS Bertolino, A., and Strigini, L. On the Use of
Testability Measures for Dependability Assessment.

IEEE Transactions on Software Engineering, 22, 2
(Feb. 1996) 97-108.

CT Caver, RH., and Tai, K.C., Replay and testing for
concurrent programs. |EEE Software (March 1991)
66-74

DF Dick, J., and Faivre, A. Automating The Generation
and Sequencing of Test Cases From Model-Based

Specifications. FME'93: Industrial-Srenght Formal
Method, LNCS 670, Springer Verlag, 1993, 268-284.

FH+ Frankl, P., Hamlet, D., Littlewood B., and Strigini, L.
Evaluating testing methods by delivered reliability.

Specification-based

© |IEEE — Stoneman (Version 0.9) — February 2001

IEEE Transactions on Software Engineering, 24, 8,
(August 1998), 586-601.

FW Frankl, P., and Weyuker, E. A formal analysis of the
fault detecting ability of testing methods. IEEE
Transactions on Software Engineering, 19, 3, (March
1993), 202-

Ha Hamlet, D. Are we testing for true reliability? 1EEE
Software (July 1992) 21-27.

Ho Howden, W.E., Reliability of the Path Analysis
Testing Strategy. |IEEE Transactions on Software
Engineering, 2, 3, (Sept. 1976) 208-215

HP Horcher, H., and Peleska, J. Using Formal

Specifications to Support Software Testing. Software
Quality Journal, 4 (1995) 309-327.

Mo Morell, L.J. A Theory of Fault-Based Testing. |IEEE
Transactions on Software Engineering 16, 8 (August
1990), 844-857.

MZ Mitchell, B., and Zeil, SJ. A Reliability Model
Combining Representative and Directed Testing.
ACM/IEEE Proc. Int. Conf. Sw Engineering ICSE 18
(Berlin, Germany, March 1996) 506-514.

OA+OQstrand, T., Anodide, A., Foster, H., and Goradia, T.
A Visual Test Development Environment for GUI
Systems. ACM Proc. Int. Symposium on Sw Testing
and Analysis (ISSTA’ 98), (Clearwater Beach, Florida,
USA, March 1998) 82-92.

OB Ostrand, T.J, and Bacer, M. J. The Category-
Partition Method for Specifying and Generating

Functional Tests. Communications of ACM, 31, 3
(June 1988), 676-686.

RH Rothermel, G., and Harrold, M.J, Analyzing
Regression Test Selection Techniques. |EEE
Transactions on Software Engineering, 22, 8 (Aug.
1996) 529-

Sc Schitz, W. Fundamental Issues in Testing Distributed
Real-Time Systems. Real-Time Systems Journal. 7, 2,
(Sept. 1994) 129-157.

VM Voas, JM., and Miller, K.W. Software Testability:
The New Verification. |EEE Software, (May 1995)
17-28.

We-a Weyuker, E.J. On Testing Non-testable Programs.
The Computer Journal, 25, 4, (1982) 465-470

We-b Weyuker, E.J. Assessing Test Data Adequacy
through Program Inferencee. ACM Trans. on
Programming Languages and Systems, 5, 4, (October
1983) 641-655

WK+ Wakid, SA., Kuhn D.R.,, and Wallace, D.R.
Toward Credible IT Testing and Certification, 1EEE
Software, (August 1999) 39-47.

WW+ Weyuker, EJ, Weiss, SN, and Hamlet, D.
Comparison of Program Test Strategies in Proc.
Symposium on Testing, Analysis and Verification TAV

5-17

4 (Victoria, British Columbia, October 1991), ACM
Press, 1-10.

Standards

610 IEEE Std 610.12-1990, Standard Glossary of Software
Engineering Terminol ogy.

829 |EEE Std 8291998, Standard for Software Test
Documentation.

982.2 |EEE Std 982.2-1998, Guide for the Use of IEEE
Standard Dictionary of Measures to Produce Reliable
Software.

1008IEEE Std 1008-1987 (R 1993), Standard for Software
Unit Testing.

10441EEE Std 1044-1993, Standard Classification for
Software Anomalies.

1044.1 |EEE Std 1044.1-1995, Guide to Classification for
Software Anomalies.

12207 1EEE/EIA 12207.0-1996, Industry Implementation
of Int. Std. ISO/IEC 12207:1995, Standard for

Information Technology-Software Life cycle
processes.

5-18

© |EEE — Stoneman (Version 0.9) — February 2001

CHAPTER ©

SOFTWARE M AINTENANCE

Thomas M. Pigoski
Technica Software Services (TECHSOFT), Inc.
31 West Garden Street, Suite 100
Pensacola, Florida 32501 USA
+1 850 469 0086
tmpigoski @techsoft.com

Tableof Contents
IR 1 011 (oo 182 o) I 1

2. Déefinition of the Software Maintenance Knowledge

AT 1
3. Breakdown of Topicsfor the Software Maintenance

KNOWIEAQE ATEa.......coeeceeerecceeriresie st ssnees 2
4. Breakdown Rationale...........covevenierecnecinecnecneeeneeeens 9
5. Matrix of Topicsvs. Reference Materidl..........ccouune... 10
6. Recommended References for Software

MaINEENANCE........cveeeeeerietree e 1
Appendix A — List of Further Readings...........cccocvververrinenee 13
Appendix B — References Used to Write and Justify the

Software Maintenance Description..........c.cccevverveeennn. 15
Appendix C — Detailed Breakdown Rationale..........c.ccceuue.. 16
Acronyms

CASE Computer Aided Software Engineering

CM Configuration Management

CMM Capability Maturity Model

ICSM International Conference on Software Maintenance
PSM Practical Software and Systems Measurement
SCM Software Configuration Management

SW-CMM Capability Maturity Model for Software

SQA Software Quality Assurance

V&V Verification and Validation

WCRE Working Conference on Reverse Engineering

© |IEEE — Stoneman (Version 0.9) — February 2001

1. INTRODUCTION

Software engineering is the application of engineering to
software. The classic life cycle paradigm for software
includes: system engineering, analysis, design, code,
testing, and maintenance. This chapter addresses the
maintenance portion of software engineering and the
softwarelife cycle.

Software maintenance is an integral part of a software life
cycle. However, it has not historically received the same
degree of attention as the other phases. Historically,
development has had a much higher profile than
maintenance in most organizations. Thisis now changing as
organizations strive to obtain the most out of their
development investment by keeping software operating as
long as possible. Concerns about the Year 2000 (Y 2K)
rollover did bring significant attention to this important
phase. Further, the Open Source paradigm has brought
attention to the issue of maintaining code developed by
others. Maintenance is also expensive. For these reasons,
there is an opportunity to pursue further research to
enhance productivity of maintenance activities.

This chapter presents an overview of the Knowledge Area
of software maintenance. Brief descriptions of the topics are
provided so that the reader can select the appropriate
reference material according to hisher needs.

2. DEFINITION OF THE SOFTWARE MAINTENANCE
KNOWLEDGE AREA

This section provides a definition of the Software
Maintenance Knowledge Area.

Software development efforts result in delivery of a
software product that satisfies user requirements.
Accordingly, the software product must change or evolve.
Once in operation, anomalies are uncovered, operating

6-1

environments change, and new user requirements surface.
The maintenance phase of the life cycle commences upon
delivery but maintenance activities occur much earlier.

Software maintenance sustains the software product
throughout its life cycle. Modification requests are logged
and tracked, the impact of proposed changes is determined,
code is modified, testing is conducted, and a new version of
the software product is released. Training is provided to
users.

3. BREAKDOWN OF TOPICS FOR THE SOFTWARE
MAINTENANCE KNOWLEDGE AREA

The breakdown of topics for software maintenance is a
decomposition of software engineering topics that are
“generally accepted” in the software maintenance
community. They are general in nature and are not tied to
any particular domain, model, or business needs. The
presented topics can be used by small and medium sized
organizations, as well as by larger ones. Organizations
should use those topics that are appropriate for their unique
situations. The topics are consistent with what is found in
current software engineering literature and standards. The
common themes of quality, measurement, and standards are
included in the breakdown of topics.

The breakdown of topics, along with a brief description of
each, is provided in this section. Key references are
provided.

3.1. Basic Concepts

311 Definitions and Terminology [IEEE1219:53.1.12;
1S012207:53.1,55.5; 1S014764:56.1]

Software maintenance is defined in the |IEEE Standard for
Software Maintenance, |IEEE 1219 [IEEE 1219], as the
modification of a software product after delivery to correct
faults, to improve performance or other attributes, or to
adapt the product to a modified environment. The standard
also addresses maintenance activities prior to delivery of
the software product but only in an information annex of the
standard.

The ISO/IEC 12207 Standard for Life Cycle Processes
[ISO/IEC 12207], essentially depicts maintenance as one of
the primary life cycle processes and describes maintenance
as the process of a software product undergoing
“maodification to code and associated documentation due to
a problem or the need for improvement. The objective is to
modify existing software product while preserving its
integrity.” [ISO/IEC 12207] Of note is that ISO/IEC 12207
describes an activity called “Process Implementation.” That
activity establishes the maintenance plan and procedures
that are later used during the maintenance process.

ISO/EC 14764 [1SO14764], the International Standard for

6-2

Software Maintenance, defines software maintenance in the
same terms as | SO/IEC 12207 and places emphasis on the
predelivery aspects of maintenance, e.g., planning.

The SWEBOK definition, generally accepted by software
researchers and practitioners, is asfollows:

SOFTWARE MAINTENANCE: The totality of activities
required to provide cost-effective support to a software
system. Activities are performed during the predelivery
stage as well as the postdelivery stage. Predelivery
activities include planning for postdelivery operations,
supportability, and logistics determination. Postdelivery
activities include software modification, training, and
operating a help desk.

A maintainer is defined by 1SO/IEC 12207 as an organization
that performs maintenance activities [SO12207].

ISO/IEC 12207 identifies the primary activities of software
maintenance as. process implementation; problem and
modification analysis; modification implementation;
maintenance review/acceptance; migration; and retirement.
These activities are discussed in a later section. They are
further defined by the tasksin ISO/IEC 12207.

312 Mgority of Maintenance Costs [AH93:pp63-90;
Pre97.c27s27.1.2; Pig97.c3]

A common perception of maintenance is that it is merely
fixing bugs. However, studies and surveys over the years
have indicated that the majority, over 80%, of the
maintenance effort is used for non-corrective actions [AH
93] [Pre97] [Pig97]. This perception is perpetuated by users
submitting problem reports that in reality are major
enhancements to the system. This inclusion of
enhancement requests with problem reports contributes to
some of the misconceptions regarding maintenance.
Software evolves over its life cycle, as evidenced by the
fact that over 80% of the effort after initial delivery goes to
implement non-corrective actions. Thus, maintenance is
similar to software development, although some unique
processes are employed.

The focus of software development is to solve problems or
to obtain business advantage through producing code. The
generated code implements stated requirements and should
operate correctly. Maintainers look back at development
products and also the present by working with users and
operators. Maintainers also look forward to anticipate
problems and to consider functional changes.

3.1.3 TheNature of Maintenance[Pfl98:c10s10.2]

Pfleeger [Pf198] states that maintenance has a broader scope
than development, with more changes to track and control.
Thus, configuration management is an important aspect of
software evolution and maintenance.

© |EEE — Stoneman (Version 0.9) — February 2001

Softwar e M aintenance

. Maintenance Key Issuesin Techniquesfor
— Basic Concepts — Software — ;
Process . Maintenance
Maintenance
Definitionsand » ProcessModels i Technical Program
™ Terminology ™ Comprehension
o Maintenance > Management o
. Mgajority of > Activities @ Re-engineering
Maintenance Costs ™ Cost and Estimation
Reverse
N The Nature of Ly Software ™ Engineering
Maintenance Maintenance
_ Measurement » Impact Analysis
Evolution of
> Software
Need for
™ Maintenance
Categories of
* Maintenance

Figure 1 Summary of the Software Maintenance Breakdown

Maintenance, however, can learn from the development
effort. Contact with the developers and early involvement
by the maintainer helps the maintenance effort. However, it
is difficult sometimes when the developers are no longer
around. Maintenance must take the products of the
development, eg., code, documentation, and
evolve/maintain them over the life cycle. Chapter 10 of the
Guide to the SWEBOK discusses how tools can aid
maintenance.

314 Evolution of Software [Leh97:ppl08-124; P¥|98:
€10s10.1;Art88:¢1s1.0,s1.1,51.2,c11,51.1,51.2]

The area of software maintenance and evolution of systems
was first addressed by Lehman in 1969. His research led to
an investigation of the evolution of OS/360 [LB85] and
continues today on the Feedback, Evolution, and Software
Technology (FEAST) research at Imperial College, England.

Over a period of twenty years, that research led to the
formulation of eight Laws of Evolution [Leh97]. Simply put,
Lehman stated that maintenance is really evolutionary
developments and that maintenance decisions are aided by
understanding what happens to systems (and software)

© |IEEE — Stoneman (Version 0.9) — February 2001

over time. Others state that maintenance is really continued
development, except that there is an extra input (or
constraint) — the existing software system.

Key points from Lehman include that large systems are
never complete and continue to evolve. As they evolve,
they grow more mmplex unless some action is taken to
reduce the complexity. As systems demonstrate regular
behavior and trends, these can be measured and predicted.
Pfleeger [Pfl98] and Arthur [Art88] have excellent
discussions regarding software evolution.

3.15 Needfor Maintenance [Pfl198:¢10.s10.2; Pig97: c2s2.3;
TGO7:.cl]

Maintenance is heeded to ensure that the system continues
to satisfy user requirements. Maintenance is applicable to
systems developed using any software development model
(e.g., spiral). The system changes due to corrective and
non-corrective software actions. Maintenance must be
performed in order to:

Correct errors.

Correct requirements and design flaws.

6-3

Improve the design.
M ake enhancements.
Interface with other systems.

Convert programs so that different hardware, software,
system features, and telecommunications facilities can
be used.

Migrate legacy systems.
Retire systems.
The four major aspects that maintenance focuses on are
[PrIog]:
Maintaining control over the system’'s day-to-day
functions.
Maintaining control over system modification.
Perfecting existing acceptable functions.

Preventing system performance from degrading to
unacceptable levels.

Accordingly, software must evolve and be maintained.

316 Categories of Maintenance [Art88:clsl.2;
DT97:c8s5; IEEE1219:53.1.1,53.1.2,s3.1.7,A.1.7;
1S014764:54.1,54.3, 4.10,54.11,56.2; PfI98: c10s10.2;
Pig97:c2s2.3]

Lehman developed the concept of software evolution. E. B.
Swanson of UCLA was one of the first to examine what
really happens in evolution and maintenance, using
empirical data from industry maintainers. Swanson believed
that, by studying the maintenance phase of the life cycle, a
better understanding of the maintenance phase would
result. Swanson was able to create three different categories
of maintenance: corrective, adaptive, and perfective. [Art88]
[DT97]. There have been updated and a new category has
been defined by the International Organization of Standards
(1S0) in the Standard for Software Maintenance standard
ISO/NIEC 14764, [I1SO14764] and by the IEEE Computer
Society [IEEE 1219]. The categories of maintenance defined
by ISO/IEC are asfollows:

Corrective maintenance. Reactive modification of a
software product performed after delivery to correct
discovered problems.

Adaptive maintenance. Modification of a software
product performed after delivery to keep a software
product usable in a changed or changing environment.

Perfective maintenance. Modification of a software
product after delivery to improve performance or
maintai nability.

Preventive maintenance. Modification of a software
product after delivery to detect and correct latent
faults in the software product before they become
effective faults.

64

The 1SO Standard on Software Maintenance [1SO14764]
classifies Adaptive and Perfective maintenance as
enhancements. It also classifies Corrective and Preventive
maintenance as corrections. Preventive maintenance, the
newest category, is defined as maintenance performed for
the purpose of preventing problems before they occur.
Preventive maintenance is most often performed on
software products where safety is critical.

3.2. Maintenance Process

The need for software processes is well documented. The
Capability Maturity Model for Software (SW-CMM)
provides a means to measure levels of maturity. Of
importance, is that there is a direct correlation between
levels of maturity and cost savings. The higher the level of
maturity, the greater the cost savings. The SW-CMM
applies equally to maintenance and maintainers should have
a documented maintenance process

Process Models [IEEE1219:s4;
1S012207:5.5; Pig97:c5; TG97:.c2;

321 Maintenance
1S014764:s8;
Par86:c7s1]

Process models provide needed operations and detailed
inputs/outputs to those operations. Maintenance process
models are provided in the software maintenance standards,
IEEE 1219 [IEEE 1219] and ISO/IEC 14764 [1S014764).

The maintenance process model described in IEEE 1219
[I[EEE 1219], the Standard for Software Maintenance, starts
the software maintenance effort during the post-delivery
stage and discusses items such as planning for
maintenance and metrics outside the process model. That
process model with the IEEE maintenance phases is
depicted in Figure 2.

Madifieation
Ragusst

Figure 2 The |EEE Maintenance Process Activities

ISONIEC 14764 [ISO14764] is an eaboration of the
maintenance process of ISO/IEC 12207 [1SO12207]. The

© |EEE — Stoneman (Version 0.9) — February 2001

activities of the |SO/IEC maintenance process are similar to
those of IEEE athough they are aggregated a little
differently. The maintenance process activities developed
by I1SO/IEC are shown in Figure 3.

Process
Implementation

-l

Problem and
Modification
Anaysis

Maintenance
Review/
Acceptance

Modification
Implementation

AY

Migration

Retirement

Figure 3 ISO/IEC Maintenance Process Activities

Each of the ISO/IEC 14764 primary software maintenance
activitiesis further broken down into tasks as follows.

Process | mplementation tasks are:
Devel op maintenance plans and procedures.
Establish procedures for Modification Requests.
Implement the CM process.
Problem and Modification tasks are:
Performinitial analysis.
Verify the problem.
Develop options for implementing the modification.
Document the results.
Obtain approva for modification option.
M odification |mplementation tasks are:
Perform detailed analysis.
Develop, code, and test the modification.
Maintenance Review/A cceptance tasks are:
Conduct reviews.
Obtain approval for modification.
Migration tasks are:
Ensure that migration is in accordance with 1SO/IEC

© |IEEE — Stoneman (Version 0.9) — February 2001

12207.

Develop amigration plan.

Notify users of migration plans.

Conduct parallel operations.

Notify user that migration has started.

Conduct a post-operation review.

Ensure that old datais accessible.
Software Retirement tasks are:

Develop aretirement plan.

Notify users of retirement plans.

Conduct parallel operations.

Notify user that retirement has started.

Ensure that old datais accessible.

Takang and Grubb [TG97] provide a history of maintenance
process models leading up to the development of the IEEE
and I SO/IEC process models. A good overview of ageneric
maintenance processis given by Parikh [Par86]

3.22 Maintenance Activities

Maintenance activities are similar to those of software
development. Maintainers perform analysis, design, coding,
testing, and documenting. Maintainers must track
requirements just as they do in development. Maintainers
must update documentation as baselines change. However,
for software maintenance, the activities involve processes
unique to meintenance. Chapter 10 discusses how tools can
be used to help in the maintenance effort.

3.2.2.1 Unique Activities [Pfl98:c10s10.2; Art88:c3;
DT97: ¢8s9.1, |IEEE1219:54.1,54.2; 1S014764:
s8.2.2.1,58.3.2.1]

Maintainers must possess an intimate knowledge of te
code’s structure and content [Pfl98]. That knowledge is
used by maintainers to perform impact analysis. Impact
analysisidentifies all systems and system products affected
by a change request and develops an estimate of the
resources needed to accomplish the change [Art88].
Additionally, the risk of making the change is determined.
The change request, sometimes called a modification
request and often called a problem report, must first be
analyzed and translated into software terms [DT97]. The
maintainer then identifies the affected components. Several
potential solutions are provided and then arecommendation
is made asto the best course of action.

Problem solving skills are very important for maintenance.
Maintainers must also be concerned about the ‘fripple
effect” of any proposed changes.

6-5

3.2.22 Supporting Activities [IEEE1219:A.7,A.11;
Pig97: ¢10s10.2,c18; 15012207:¢6,c7]

Maintainers may also perform supporting activities such as
configuration management (CM), verification and
validation, quality assurance, reviews, audits, and
conducting user training. Often these supporting activities
are performed by separate entities. The IEEE Standard for
Software Maintenance, IEEE 1219 [IEEE 1219], describes
CM as a critical element of the maintenance process. CM
procedures should provide for the verification, validation,
and certification of each step required to identify, authorize,
implement, and release the software product. Training of
maintainers, a supporting process, is also a needed activity
[Fig97] [1S012207].

32221 Configuration management [1S012207:56.2;
I[EEE1219: A.11; Art88:c2,c10; Pfl98:c10s10.5;
TGO7.c7]

It is not sufficient to simply track modification requests or
problem reports. The software product and any changes
made to it must be controlled. This control is established by
implementing and enforcing an approved software
configuration management (SCM) process. SCM provides
support and makes the job of the maintainer easier. Chapter
7 of the Guide to the SWEBOK provides details of SCM and
discusses the process by which change requests are
submitted, evaluated, and approved. SCM for maintenance
is different than for development in that a change request
initiates the maintenance process. The SCM process is
implemented by developing and following a CM Plan and
operating procedures. Maintainers participate in
Configuration Control Boards to determine when
enhancements should stop and perhaps migration is
necessary. Problem severity is often used to decide how
and when a problem will be fixed.

32222 Qudity [1S012207:6.3; |IEEE1219:A.7; Art98:
c7]

It is not sufficient to simply hope that increased quality will
result from the maintenance of software. It must be planned
and processes implemented to support the maintenance
process. The activities and techniques for Software Quality
Assurance (SQA) and V&V must be selected in concert
with all other processes to achieve the level of quality
desired. This is implemented by developing and following
SQA and V&V plans and procedures. Details of software
quality are covered in chapter 11 of the Guide to the
SWEBOK.

32223 Maintenance Planning Activity [I[EEE1219:A.3;
1S014764:s7; Pig97.c7,c8]

An important activity for software maintenance is planning.
Whereas developments typically can last for 1-2 years, the
operation and maintenance phase typically lasts for many
years. Developing accurate estimates of resources is a key

6-6

element of maintenance planning. Those resources, which
include costs, should be included in project planning
budgets. Maintenance planning should begin with the
decision to develop a new system and should consider
quality objectives. A concept and then a maintenance plan
should be developed. The concept for maintenance should
address:

The scope of software maintenance.

Thetailoring of the postdelivery process.

The designation of who will provide maintenance.
An estimate of life cycle costs.

Once the maintenance concept is determined, the next step
is to develop the maintenance plan. The maintenance plan
should be prepared during software development and
should specify how users will request modifications or
report problems. Maintenance planning [Pig97] is addressed
in IEEE 1219 [IEEE 1219)and ISO/IEC 14764. [1SO14764]
ISO/IEC14764 [ISO14764] provides guiddines for a
maintenance plan.

3.3. Key Issuesin Software Maintenance

It is important to understand that software maintenance
provides unique technical and management problems for
software engineers. Trying to find a defect in a 500K line of
code system that the maintainer did not develop is a
challenge for the maintainer. Similarly, competing with
software developers for resources is a constant battle.
Planning for a future release, while coding the next release,
and sending out emergency patches for the current release,
is also a chalenge. The following discusses some of the
technical and management problems relating to software
evolution and maintenance.

331 Technical Problems

3.3.1.1 Limited understanding [Pfl98:¢c10s10.3; TG97:c3;
DT97: c8s11.4]

Practitioners and researchers indicate that some 40% to 60%
of the maintenance effort is devoted to understanding the
software to be modified. Thus, the topic of program
comprehension is one of interest to maintainers.
Comprehension is more difficult for text-based
representation. It is often difficult to trace the evolution of
the software through its versions, changes are not
documented, and the developers are usually not around to
explain the code. Thus, maintainers have a limited
understanding of the software and must learn the software
on their own.

3.3.1.2 Testing [Pfl98:c10s10.3; Art88:c9]

The cost of repeating full testing on a major piece of
software can be significant in terms of time and money.

© |EEE — Stoneman (Version 0.9) — February 2001

Regression testing, the selective retesting of a system or
component to verify the modifications have not caused
unintended effects, is important to maintenance. Research
efforts into areas such as “slicing” look at this topic.
Finding time to test is often difficult [PIf98]. Chapter 5 of the
Guide to the SWEBOK provides details of testing.

3.3.1.3 Impact analysis [DT97:¢8s10.1-3;
c10s10.5; Art88:c3]

Pf198:

The software and the organization must both undergo
impact analysis. Critical skills, documentation, and
processes are needed for this area. Impact analysis is
necessary for risk abatement. Software designed for
maintainability facilitates impact analysis.

3.3.1.4 Maintainability [1S014764:56.856.8.1; Pfl98:
€8s8.4;Pig97:c16]

The IEEE Computer Society [IEEE610.12] defines
maintainability as the ease with which software can be
maintained, enhanced, adapted, or corrected to satisfy
specified requirements. ISO/IEC defines maintainability as
one of the quality characteristics. Maintainability features
must be incorporated into the software development effort
to reduce life cycle costs. If this is done, the quality of
evolution and maintenance of the code can improve.
Maintainability is often a problem in maintenance because
maintainability is not incorporated into the software
development process, documentation is lacking, and
program comprehension is difficult. Maintainability can be
achieved by including it in requirements, design, and
construction. Chapters 2, 3, and 4 provide details of these
topics. Maintainability can be enhanced by defining coding
standards, documentation standards, and standard test
toolsin the software devel opment phase of the life cycle.

332 Management

3.3.21 Alignment with organizational issues [DT97:
€8s6; Pfl198:¢10s10.3]

Dorfman and Thayer [DT97] relate that return on investment
is not clear with maintenance. Thus, there is a constant
struggle to obtain resources.

3.3.22 Saffing [Pfl98:c10s10.3; Dek92:ppl0-17; Par86:
c4s8-s11; DT97:c8s6]

Maintenance personnel often are viewed as second class
citizens [Pfl98] and morale suffers [DT97]. Maintenance is
not viewed as glamorous work. Deklava provides a list of
staffing related problems based on survey data[Dek92].

3.3.2.3 Processissues[DT97:c8s3]

Maintenance requires several activitiesthat are not found in
software development, (e.g., help desk support). These
present challenges to management [DT97].

© |IEEE — Stoneman (Version 0.9) — February 2001

3.3.24 Organizational Aspectsof Maintenance

The team that develops the software is not always used to
maintain the system once it is operational. A maintainer
must be identified and there are several options as
discussed below.

33241 The Maintainer [Pfl98:c10s10.2; Pig97:c22.5;
Par86: c4s7; TG97:c8]

Often, a separate team (or maintainer) is employed to ensure
that the system runs properly and evolves to satisfy
changing needs of the users. There are many pros and cons
to having the original developer or a separate team maintain
the software [Pf198] [Pig97] [Par86]. That decision should be
made on a case-by-case basis.

33242 Outsourcing [DT97:c8s7;Pig97: 9s9.1,89.2]

Outsourcing of maintenance is becoming a major industry.
Large corporations are outsourcing entire operations,
including software maintenance. More often outsourcing is
done for peripheral software, as companies are unwilling to
release the software used in its core business. One of the
major challenges is for the outsource maintenance company
to determine the scope of the effort. Outsourcing companies
typically spend a number of months assessing the software
before it will accept a contract [DT97]. Another challengeis
the transition of the software to the outsourced company

[Pig97].
33243 Organizational Structure [Pig97:¢c12s12.1-s12.3]

Based on the fact there are almost as many organizational

structures as there are software maintenance organizations,
an organizational structure for maintenance is best
developed on a case-by-case basis. What isimportant is the
delegation or designation of maintenance responsibility to a
group [Pig97], regardless of the organizational structure. As
with other efforts, maintenance will only be successful with
full management support.

3.3.3 Maintenance Cost and Maintenance Cost Estimation

Software engineers must understand the different
categories of maintenance, previously discussed, in order to
address the cost of maintenance. For planning purposes,
estimating costs is an important aspect of software
maintenance.

3.3.3.1 Cost [Pfl98:c10s10.3; Art88:c3; Pig97:¢c3s3.1-3;
Pre97: c27s27.2.2]

Maintenance consumes a major share of life cycle costs.
Understanding the categories of maintenance helps to
understand why maintenance is so costly. Also
understanding the factors that influence the maintainability
of a system can help to contain costs. Pfleeger [Pfl98]

addresses some of the technical and non-technical factors
affecting maintenance.

6-7

Impact analysis identifies all systems and system products
affected by a change request and develops an estimate of
the resources needed to accomplish the change [Art88]. Itis
performed after a change request enters the CM process. It
is used in concert with the cost estimation techniques
discussed below.

3.3.32 Cost estimation [Boe81:c30;
Pig97:c8; Pfl198:¢10s10.3]

Jon98:¢c27;

Maintenance cost estimates are affected by many technical
and non-technical factors. Primary approaches to cost
estimating include use of parametric models and experience.
Most dten a combination of these is used to estimate
costs.

3.3.3.3 Parametric models [Boe81:c30; Jon98:c27;

Pfl198:¢c10s10.3]

One of the works in the area of parametric models for
estimating was performed by Boehm [Boe81]. COCOMO
(derived from COnstructive COst Model), puts the software
life cycle and the quantitative life cycle relationships into a
hierarchy of software cost-estimation models [Pfl98]. Of
significance is that data from past projects is needed in
order to use the models. Jones [Jon98] discusses all aspects
of estimating costs including function points, and provides
a detailed chapter on maintenance estimating. Chapter 8 of
the Guide to the SWEBOK provides additional details
regarding models.

3.3.3.4 Experience [Pig97.c8; 1S014764:s7,s7.2,57.2.1,
c7s7.2.4]

Experience should be used to augment data from parametric
models. Sound judgment, reason, a work breakdown
structure, educated guesses, and use of empirical/historical
data are several approaches. Clearly the best approach to
maintenance estimation is to use empirical data and
experience. That data should be provided as a result of a
metrics program. In practice, cost estimation relies much
more on experience than parametric models. The Software
Engineering Institute has conducted research into
performing cost estimation based on historical data.

334 Software Maintenance Measurement [GC87.c2;
TG97: c66.1-3; A198:A.2]

Software life cycle costs are growing and a strategy for
maintenance is needed. Software measurement need to be a
part of that strategy. Grady and Caswell [GC87] discuss
establishing a corporate-wide software measures program.
The Practical Software and Systems Measurement (PSM)
project describes an issue-driven measurement process
[http://www.psmsc.com] that is used by many organizations
and is quite practical. Software measures are vital for
software process improvement but the process must be
measurable. Additional discussion of measurement is
contained in chapters 8 and 11 of the Guide to the

6-8

SWEBOK.

3.34.1 Specific Measures [CG90:s2-3; SKV94:pp239-
249; |EEE1219:Table3; Pig97:cl14s14.6; TG97:
c6s6.4]

There are software measures that are common to all efforts
and the Software Engineering Institute (SEI) identified these
as. size; effort; schedule; and quality [Pig97]. Those are a
good starting point for amaintainer.

Takang and Grubb [TG97] group software measures into
areas of: size; complexity; quality; understandability;
maintainability; and cost estimation.

Documentation regarding specific software measures to use
in maintenance is not often published. Typically generic
software engineering metrics are used and the maintainer
determines which ones are appropriate for their
organization. IEEE 1219 [IEEE 1219] provides suggested
metrics for software programs. Stark, et al [SKV94] provide a
suggested list of software maintenance measures used at
NASA’s Mission Operations Directorate. That list includes:

Software size

Software staffing

M aintenance request number/status
Software enhancement numbers/status
Computer resource utilization

Fault density

Software voltility

Discrepancy report open duration
Break/fix ratio

Softwarereliability

Design complexity

Fault type distribution

3.4. Techniquesfor Maintenance

Effective software maintenance is performed using
techniques specific to maintenance. The following provides
some of the best practice techniques used by maintainers.

341 Program Comprehension [Arn92:c14; DT97:

c8s11.4; TG97:c3]

Programmers spend considerable time in reading and
comprehending programs in order to implement changes.
Code browsers are a key tool in program comprehension.
Clear and concise documentation can aid in program
comprehension. Based on the importance of this subtopic,
an annual |EEE Computer Society workshop is now held to
address program comprehension. The website
http://www.seg.iit.nrc.ca/projects/easse provides a number
of papers on comprehension and tools for assisting

© |EEE — Stoneman (Version 0.9) — February 2001

comprehension processes. Takang and Grubb [TG97]
provide adetailed chapter on comprehension.

342 Reengineering [Arn92:c1,c36, c8sll.4; IEEE1219:
B.2; DT97:c8s11.4]

Re-engineering is defined as the examination and alteration
of the subject system to reconstitute it in a new form, and
the subsequent implementation of the new form. Dorfman
and Thayer [DT97] state that re-engineering is the most
radical (and expensive) form of alteration. Others believe
that re-engineering can be used for minor changes. Re-
engineering is often not undertaken to improve
maintainability but is used to replace aging legacy systems.
Arnold [Arn92] provides a comprehensive compendium of
topics, e.g., concepts, tools and techniques, case studies,
and risks and benefits associated with re-engineering.
Refactoring, a program transformation that reorganizes a
program without changing its behavior, is now being used
in reverse engineering to improve the structure of object-
oriented programs.

343 Reverse engineering [Arn92:c12; DT97:c8s11.3,
IEEE1219:B.3; TG97:cA]

Reverse engineering is the process of analyzing a subject
system to identify the system’s components and their inter-
relationships and to create representations of the systemin
another form or at higher levels of abstraction. Reverse
engineering is passive, it does not change the system, or
result in a new one. A simple reverse engineering effort may
merely produce call graphs and control flow graphs from
source code. One type of reverse engineering is
redocumentation. Another type is design recovery [DT97].
Date Reverse Engineering has gained great importance over
the last few years. Reverse engineering topics are discussed
at the annual Working Conference on Reverse Engineering
(WCRE).

34.4 |Impact Analysis[PIf98:c10s10.5; Art88:c3]

Impact analysis identifies all systems and system products
affected by a change request and develops an estimate of
the resources needed to accomplish the change [Art88]. Itis
performed after a change request enters the configuration
management process. Arthur [Art88] states that the
objectives of impact analysis are:

Determine the scope of a change in order to plan and
implement work.

Develop accurate estimates of resources needed to
perform the work.

Analyze the cost/benefits of the requested change.

Communicate to others the complexity of a given
change.

© |IEEE — Stoneman (Version 0.9) — February 2001

Resour ces

Beside the references listed in this chapter, there are other
resources available to learn more about software
maintenance. The |EEE Computer Society sponsors the
annual International Conference on Software Maintenance
(ICSM). That conference, started in 1983, provides a
Proceedings, which incorporates numerous research and
practical industry papers concerning evolution and
maintenance topics. Other venues, which address these
topics, include:

4. BREAKDOWN RATIONALE

The breakdown of topics for software maintenance is a
decomposition of software engineering topics that are
“generally accepted” in the software maintenance
community. They are general in nature. There is agreement
in the literature and in the standards on the topics.

A detailed discussion of the rationale for the proposed
breakdown, keyed to the Guide to the SWEBOK
development criteria, is given in Appendix B. The following
isanarrative description of the rationale for the breakdown.

The Basic Concepts sub-area was selected as the initial
topic in order to introduce Software Maintenance. The
subtopics are needed to provide definitions and to
emphasize why there is a need for maintenance. Categories
are critical to understand the underlying meaning of
mai ntenance.

Maintenance Process is needed to provide the current
references and standards needed to implement the
mai ntenance process.

The Maintenance Activities sub-topic is needed to
differentiate maintenance from development and to show
the relationship to other software engineering activities.

The sub-area on the Key Issues of Software Maintenance
was chosen to ensure that the software engineers fully
comprehended these problems.

Every organization is concerned with who will perform
maintenance. The Management topic provides some
options regarding who can perform maintenance. Every
software maintenance reference discusses the fact that
maintenance consumes a large portion of the life cycle
costs. The topic on Cost and Cost Estimation was provided
to ensure that the readers select references to help with this
difficult task.

The Software Maintenance Measurement topic is one that
is not addressed very well in the literature. Most
mai ntenance books barely touch on the topic. Measurement
information is most often found in generalized measurement
books. This topic was chosen to highlight the need for
unique maintenance metrics and to provide specific
mai ntenance measurement references.

6-9

The Techniques topic was provided to introduce some of
the generally accepted techniques used in maintenance
operations.

5. MATRIX OFTOPICSVS. REFERENCE MATERIAL

Topics AH IEEE | Al Arn Art Boe CG Dek DT GC IEE 1SO 1SO Jo Leh Par Pfl Pig Pre KV TG
93 610.1 98 92 88 81 90 92 97 87 E 1220 1476 n 97 86 98 97 97 94 97
2 1219 7 4 98
1. Basic Concepts
1.1 Definitions and s3.1. s3.1, 6.1
Terminology 12 5.5
1.2 Mgjority of pp 3 c27
Maintenance Costs 63- s27.
90 1.2
1.3 Nature of cl10
Maintenance 5120-
1.4 Evolution of (1310 1%% cll(())
sl. - s10.
Software s1.1 124 1
s1.2
cl1
s1.1
s1.2
1.5 Need for c10 2 cl
Maintenance 5120- s2.3
1.6 Categories of ilz Zg §31 i é Cllg ;23
; sl. s3.1, . s10. S2.
Maintenance ey o P
1, 0
s3.1. s4.1
2, 1
s3.1. $6.2
7,
A.17
2. Maintenance
Process
2.1 Maintenance s4 s5.5 s8 c7.s S 2
Process Models 1
2.2 Maintenance
Activities
Unique Activities <] a8 s4.1, s8.2. c10
s9.1 s4.2 2.1, s10.
s8.3. 2
2.1
Supporting A7, c6,c7 c10
bporting A1l s10.
Activities 2
cl8
Configuration [A1l s6.2 c10, c7
Management c10 5150A
uali c7 A7 6.3
Quality a
Maintenance A.33 c7 c7.c
Planning 8
Activity
3.Key Issuesin
Software
M aintenance
3.1 Technical
Limited a8 cl10 c3
Understanding 5141' 513°~
Testing 9 cl
s10.
3
Impact Analysis a3 8 c10
s10. s10.
1 5
s10.
2
s10.
3
Maintainability s3 6.8, c8 c16
$6.8. s8.4
1
3.2 Management
Alignment with 8 c10
organizational s6 5130-
issues
Staffing pp a8 c4, c10, cl,
10- s6 s8- s10. sl1.8
17 11 3
Process issues c8,
s3
QOrgani zational
The Maintainer [c10 [8
s7 s10. s2.5
2

6-10 © |IEEE — Stoneman (Version 0.9) — February 2001

AH IEEE Al Arn Art Boe CG Dek DT

Topics 93 610.1 98 92 88 81 90 92 97

GC
87

SKV TG
94 97

1SO 1SO Jo Leh Par Pl Pig Pre
1220 1476 n 97 86 98 97 97
1219 7 4 98

IEE
E

Outsourcing 8
s7

s9.1

9.2

Organizational
Structure

3.3 Maintenance Cost
and Maintenance Cost
Estimation

Cost a3

cl0
s10. S

c27
1 s27.
2.2

Cost estimation €30

c27 c10

s10.

Parametric models €30

c27 c10

s10.

Experience

s7 8
s7.2,
s7.2.

s7.2.

3.4 Software
Maintenance
M easurement

Table cl4 pp 6
3 sl4. 239- $6.4
6 249

4. Techniques for
Maintenance

4.1 Program
Comprehension

4.2 Re-engineering

B.2

4.3 Reverse
Engineering

B.3 4

4.4 1mpact Analysis C

cl0
s10.

6. RECOMMENDED REFERENCES FOR SOFTWARE

MAINTENANCE

The following set of references provides a strong
foundation to acquire knowledge on specific topics
identified in the breakdown. They were chosen to provide
coverage of all aspects of software maintenance. Priority
was given to standards, maintenance specific publications,
and then general software engineering publications.

References

[AH93] A. Abran and H. Hguyenkim, “Measurement of the
Maintenance Process from a Demand-Based Perspective,”
Journal of Software Maintenance: Research and Practice,
Vol 5, no 2, 1993 [pp63-90].

[AI98] ANSI/IEEE STD 1061. |[EEE Standard for a Software
Quality Metrics Methodology. |IEEE Computer Society
Press, 1998. [s4,A.1, A.2]

[Arn92] R.S. Arnold. Software Reengineering.
Computer Society, 1992. [c1,c3-6,c12,c14]

[Art88] L.J. Arthur. Software Evolution: The Software
Maintenance Challenge. John Wiley & Sons, 1988.
[c1s1.0,81.1,51.2; c2, €3, c74, €9, ¢10,c11s1.1,51.2]

[Boe8l] B.W. Boehm. Software Engineering Economics.

IEEE

© |IEEE — Stoneman (Version 0.9) — February 2001

Prentice-Hall, 1981. [c30]

[CGO0] D.N. Card and R. L. Glass, Measuring Software
Design Quality, Prentice Hall, 1990. [s1.1,1.3,c2-3]

[Dek92] SM. Dekleva Delphi Study of Software
Maintenance Problems. Proceedings of the International
Conference on Software Maintenance, 1992. [pp10-17]

[DT97] M. Dorfman and R. H. Thayer. Software
Engineering. IEEE Computer Society Press, 1997. [c8s3,
€885, €836, c8s7, €8s9.1, ¢8s10.1-3, c8s11.3-4]

[GC87] R.B. Grady and D. L. Caswell. Software Metrics:
Establishing a Company-wide Program Prentice-Hall,
1987.[c2, c3]

[IEEE610.12] IEEE STD 610.2: |IEEE Standard Glossary of
Software Engineering Terminology, 1990. [s3]

[[EEE1219] IEEE STD 1219: Standard for Software
Maintenance, 1998. [s3.1.1,83.1.2,83.1.7,4,54.1,4.2,
A.17A3A.7A.11, Table3, B.2-3]

[1S012207] ISO/IEC 12207: Information Technology-
Software Life Cycle Processes, 1995. [s3.1, 5.5, c6,
$6.2,56.3, ¢7]

[1SO14764] I1SO/IEC 14764: Software Engineering-
Software Maintenance, 2000. [$4.1,54.3,54.10,54.11,56.1,
$6.2,56.8,6.8.1,57,57.2,57.2.1,57.2.4,58,58.2.2.1,58.3.2.1]

6-11

[Jon98] T. C. Jones. Estimating Software Costs. McGraw-
Hill, 1998. [c27]

[Leh97] M.M Lehman, Laws of Software Evolution
Revisited, EWSPT96, October 1996, LNCS 1149, Springer
Verlag, 1997. [pp108-124]

[Par86] G. Parikh. Handbook of Software Maintenance.
John Wiley & Sons, 1986. [c4s7-11, c7s]]

[Pfl98] S.L. Pfleeger. Software Engineering—Theory and
Practice. Prentice Hall, 1998. [c8s8.4,c10s10.1,510.2,
s10.3,510.5]

[Pig97] T.M. Pigoski. Practical Software Maintenance:
Best Practices for Managing your Software Investment.
Wiley, 1997. [c2s2.3,32.5, ¢3, ¢3s3.1-3, ¢5, c7, ¢8, €99.1-2,
€10s10.2, ¢12s12.1-3, c14s4-5, c14 s14.6, c16, c18]

[Pre97] RS, Pressman. Software Engineering: A

Practitioner’s Approach. McGraw-Hill, fourth edition, 1997.
[c27s27.2.1-2]

[SKVH] GE. Stark, L. C. Kern, and C. V. Vowell. A Software
Metric Set for Program Maintenance Management. Journal
of Systems and Software, 1994. [pp239-249]

[TG97] A. Takang and P. Grubb. Software Maintenance
Concepts and Practice. International Thomson Computer
Press, 1997. [cl, c1s1.8, c2, c3, ¢4, c6s6.1-4, c7, c8]

6-12

© |EEE — Stoneman (Version 0.9) — February 2001

APPENDIX A —LIST OF FURTHER READINGS

Beside the recommended references listed in this chapter,
there are other resources available to learn more about
software maintenance. The IEEE Computer Society
sponsors the annual International Conference on Software
Maintenance (ICSM). That conference, started in 1983,
provides a Proceedings, which incorporates numerous
research and practical industry papers concerning evolution
and maintenance topics. Other venues, which address
these topics, include:

The Workshop on Software Change and Evolution
(SCE). [HTTP://www.dur.ac.uk/~dcsOelb/ csm/sceQ9/]

Manny Lehman’s work on the FEAST project at the
Imperial College in England continues to provide
valuable research into software evolution.
[HTTP:.//lwww-dse.doc.ic.uk/~mml/]

The International Workshop on Empirical Studies of
Software Maintenance (WESS).
[HTTP://computer.org/conferences/calendar/html]

The Research Ingtitute for Software Evolution (RISE)
at the University of Durham, England, concentrates its
research on software maintenance and evolution.
[HTTP://www.dur.ac.uk/csm]

The Seventh Working Conference on Reverse
Engineering (WCRE-2000). [HTTP://computer.org/
conferences/calendar/htm]

The Conference on Software Maintenance and
Reengineering (CSMR). [HTTP://www.uni-koblenz.de/
~ist/SCSMR2000/]

The Journal of Software Maintenance, published by John
Wiley & Sons, also is an excellent resource for maintenance.

A list of additional readings is also provided to identify
additional reference material for the Knowledge Area of
Software Maintenance. These references also contain
generally accepted knowledge.

References

[AH93] A. Abran and H. Hguyenkim, “Measurement of the
Maintenance Process from a Demand-Based Perspective,”
Journal of Software Maintenance: Research and Practice,
Vol 5,no2, 1993.

[AI98] ANSI/IEEE STD 1061. |IEEE Standard for a Software
Quality Metrics Methodology. |IEEE Computer Society
Press, 1998.

[Arm92] R. S. Arnold. Software Reengineering. IEEE
Computer Society, 1992.

[Art88] L. J. Arthur. Software Evolution: The Software
Maintenance Challenge. John Wiley & Sons, 1988.

© |IEEE — Stoneman (Version 0.9) — February 2001

[Bas85] V. R. Basili, “Quantitative Evaluation of Software
Methodology,” Proceedings First Pan-Pacific Computer
Conference, September 1985.

[Boe8l] B. W. Boehm. Software Engineering Economics.
Prentice-Hall, 1981.

[BBHMMY] C. Boldyreff, E. Burd, R. Hather, R. Mortimer,
M. Munro, and E. Younger, “The AMES Approach to
Application Understanding: A Case Study,” Proceedings of
the International Conference on Software Maintenance-
1995, IEEE Computer Society Press, Los Alamitos, CA,
1995.

[CM94] M.A. Capretz and M. Munro, “Software
Configuration Management Issues in the Maintenance of
Existing Systems,” Journal of Software Maintenance, Val.
6, no.2, 1994.

[CGO0] D. N. Card and R. L. Glass, Measuring Software
Design Quality, Prentice Hall, 1990.

[Car92] J Cadow, “You Can't Teach Software
Maintenance!,” Proceedings of the Sixth Annual Meeting
and Conference of the Software Management Association,
1992,

[Dek92] S. M. Dekleva Delphi Study of Software
Maintenance Problems. Proceedings of the International
Conference on Software Maintenance, 1992.

[DT97] M. Dorfman and R. H. Thayer. Software
Engineering. |IEEE Computer Society Press, 1997.

[GC87] R. B. Grady and D. L. Caswell. Software Metrics:
Establishing a Company-wide Program Prentice-Hal,
1987.

[Gra92] R.B. Grady, Practical Software Metrics for Project
Management and Process |mprovement, Prentice-Hall, Inc.,
Englewood Cliffs, NJ, 1992.

[I[EEE610.12] IEEE STD 610.2: IEEE Standard Glossary of
Software Engineering Terminol ogy, 1990.

[[EEE1219] |EEE STD 1219: Sandard for Software
Maintenance, 1998.

[1SO12207] ISO/IEC 12207: Information Technology-
Softwar e Life Cycle Processes, 1995.

[1SO14764] 1SO/IEC 14764:
Softwar e Maintenance, 2000.

[1SO15271] ISO/NIEC TR 15271, Information Technology -
Guide for 1SO/IEC 12207, (Softwar e Life Cycle Process)

[Jon98] T.C. Jones. Estimating Software Costs. McGraw-
Hill, 1998.

[LB85] M.M. Lehman and L.A. Belady, Program Evolution
— Processes of Software Change, Academic Press Inc.
(London) Ltd., 1985.

[Len97] M.M. Lehman, Laws of Software Evolution
Revisited, EWSPT96, October 1996, LNCS 1149, Springer

Software Engineering-

6-13

Verlag, 1997.

[KSV95] T.M. Khoshgoftaar, R.M. Szabo, and JM. Voas,
“Detecting Program Module with Low Testability,”
Proceedings of the International Conference on Software
Maintenance-1995, IEEE Computer Society Press, Los
Alamitos, CA, 1995.

[OHA91] PW. Oman, J. Hagemeister, and D. Ash, A
Definition and Taxonomy for Software Maintainability,
University of ldaho, Software Engineering Test Lab,
Technical Report, 91-08 TR, November 1991.

[OH92] P. Oman and J. Hagemeister, “Metrics for Assessing
Software System Maintainability,” Proceedings of the
International Conference on Software Maintenance-1992,
|EEE Computer Society Press, Los Alamitos, CA, 1992,

[Par86] G. Parikh. Handbook of Software Maintenance.
John Wiley & Sons, 1986.

[Pfl98] S. L. Pfleeger. Software Engineering—Theory and
Practice. Prentice Hall, 1998.

[Pig93] T.M. Pigoski, “Maintainable Software: Why You
Want It and How to Get It,” Proceedings of the Third
Software Engineering Research Forum-November 1993,
University of West Florida Press, Pensacola, FL, 1993.

[Pig94] T.M. Pigoski. “Software Maintenance,”
Encyclopedia of Software Engineering, John Wiley &
Sons, New York, NY, 1994.

[Fig97] T.M. Pigoski. Practical Software Maintenance:
Best Practices for Managing your Software Investment.
Wiley, 1997.

[PM97] L.H. Putman and W. Myers. Industrial Strength

Software — Effective Management Using Measurement,
|EEE Computer Society Press, Los Alamitos, CA, 1997.

[Pre97] RS, Pressman. Software Engineering: A
Practitioner’s Approach. McGraw-Hill, fourth edition, 1997.

[Scha99] S.R. Schach, Classical and Object-Oriented
Software Engineering With UML and C++, McGraw-Hill,
1999

[Sch87] N.F. Schneidewind. The Sate of Software
Maintenance. Proceedings of the |EEE, 1987.

[Schn97] SL. Schneberger, Client/Server Software
Maintenance, McGraw-Hill, 1997.

[Som01] I. Sommerville. Software Engineering. Addison-
Wesley, sixth edition, 2001.

[SKV94] GE. Stark, L. C. Kern, and C. V. Vowell. A Software
Metric Set for Program Maintenance Management. Journal
of Systems and Software, 1994.

[TG97] A. Takang and P. Grubb. Software Maintenance
Concepts and Practice. International Thomson Computer
Press, 1997.

[VCBKB] JD. Vdllett, SE. Condon, L. Briand, Y.M. Kim and

6-14

V.R. Basili, “Building on Experience Factory for
Maintenance,” Proceedings of the Software Engineering
Wor kshop, Software Engineering Laboratory, 1994.

© |EEE — Stoneman (Version 0.9) — February 2001

APPENDIX B — REFERENCESUSED TO WRITE AND JUSTIFY
THE SOFTWARE MAINTENANCE DESCRIPTION

The following set of references was chosen to provide
coverage of all aspects of software evolution and
maintenance. Priority was given to standards, maintenance
specific publications, and then general software engineering
publications.

References

[AH93] A. Abran and H. Hguyenkim, “Measurement of the
Maintenance Process from a Demand-Based Perspective,”
Journal of Software Maintenance: Research and Practice,
Vol.5,no 2, 1993.

[AI98] ANSI/IEEE STD 1061. IEEE Standard for a Software
Quality Metrics Methodology. IEEE Computer Society
Press, 1998.

[Arm92] R.S. Arnold. Software Reengineering. IEEE
Computer Society, 1992.

[Art88] L.J. Arthur. Software Evolution: The Software
Maintenance Challenge. John Wiley & Sons, 1988.

[Bas85] V. R. Basili, “Quantitative Evaluation of Software
Methodology,” Proceedings First Pan-Pacific Computer
Conference, September 1985.

[BoeBl] B.W. Boehm. Software Engineering Economics.
Prentice-Hall, 1981.

[BBHMMY] C. Boldyreff, E. Burd, R. Hather, R. Mortimer,
M. Munro, and E. Younger, “The AMES Approach to
Application Understanding: A Case Study,” Proceedings of
the International Conference on Software Maintenance-
1995, IEEE Computer Society Press, Los Alamitos, CA,
1995.

[CGA0] D.N. Card and R.L. Glass, Measuring Software
Design Quality, Prentice Hall, 1990.

[Dek92] S. M. Dekleva. Delphi Study of Software
Maintenance Problems. Proceedings of the International
Conference on Software Maintenance, 1992.

[DT97] M. Dorfman and R. H. Thayer. Software
Engineering. |IEEE Computer Society Press, 1997.

[GC87] R. B. Grady and D. L. Caswell. Software Metrics:
Establishing a Company-wide Program Prentice-Hal,
1987.

[IEEE610.12] IEEE STD 610.2. IEEE Standard Glossary of
Softwar e Engineering Terminology, 1990.

[[EEE1219] |EEE STD 1219: Sandard for Software
Maintenance, 1998.

[1SO12207] I1SO/IEC 12207: Information Technology-
Softwar e Life Cycle Processes, 1995.

© |IEEE — Stoneman (Version 0.9) — February 2001

[1SO14764] |ISO/IEC 14764:
Softwar e Maintenance, 2000.

[Jon98] T. C Jones. Estimating Software Costs. McGraw-
Hill, 1998.

[Len97] M . M Lehman, Laws of Software Evolution
Revisited, EWSPT96, October 1996, LNCS 1149, Springer
Verlag, 1997.

[Par86] G. Parikh. Handbook of Software Maintenance.
John Wiley & Sons, 1986.

[Pfl98] S. L. Pfleeger. Software Engineering—Theory and
Practice. Prentice Hall, 1998.

[Pig93] T.M. Pigoski, “Maintainable Software: Why You
Want It and How to Get It,” Proceedings of the Third
Software Engineering Research Forum-November 1993,
University of West Florida Press, Pensacola, FL, 1993.

[Pig97] T. M. Pigoski. Practical Software Maintenance:
Best Practices for Managing your Software |nvestment.
Wiley, 1997.

[Pre97] R. S. Pressman. Software Engineering: A
Practitioner’s Approach. McGraw-Hill, fourth edition, 1997.

[SKV94] GE. Stark, L. C. Kern, and C. V. Vowell. A Software
Metric Set for Program Maintenance Management. Journal
of Systems and Software, 1994,

[TG97] A. Takang and P. Grubb. Software Maintenance
Concepts and Practice. International Thomson Computer
Press, 1997.

Software Engineering-

6-15

APPENDIX C — DETAILED BREAKDOWN RATIONALE

Criterion (a): Number of topic breakdowns
One breakdown is provided.
Criterion (b): Reasonableness

The breakdowns are reasonable in that they cover the areas
typically discussed in texts and standards, although thereis
less discussion regarding the pre-maintenance activities,
e.g., planning. Other topics such as metrics are also often
not addressed although they are getting more attention
now.

Criterion (c): Generally Accepted

The breakdowns are generally accepted in that they cover
the areastypically discussed in texts and standards.

Criterion (d): No specific Application Domains
No specific application domains are assumed.

Criterion (e): Compatibility with Various Schools of
Thought

Software maintenance concepts are stable and mature.

Criterion (f): Compatiblewith Industry, Literature, and
Standards

The breakdown was derived from the literature and key
standards reflecting consensus opinion. The extent to
which industry implements the software maintenance
conceptsin the literature and in standards varies by
company and project.

Criterion (g): AslInclusive asPossible

The primary topics are addressed within the page
constraints of the chapter.

Criterion (h): Themes of Quality, M easurement, and
Sandards

Quality, Measurement and standards are discussed.
Criterion (i): 2to 3levels, 5to9topicsat thefirst level
The proposed breakdown satisfies this criterion.

Criterion (j): Topic Names M eaningful Outside the Guide

Wording is meaningful. Version 0.7/0.8 reviews indicated
that the wording is meaningful.

Criterion (k) Vincenti Categorization
Topics were applied to the Vincenti Categorization.

Criterion (1): Topicsonly sufficiently described to allow
reader to select appropriate material

A tutorial on maintenance was not provided. Generally
accepted concepts were introduced with appropriate
references for additional reading were provided.

Criterion (m): Text on the Rationale Underlying the

6-16

Proposed Breakdowns

The Software Maintenance Theory and Practice was
selected asthe initial topic in order to introduce the topic.
The subtopics are needed to provide definitions and to
emphasis why there is a need for maintenance. Categories
are critical to understand the underlying meaning of
maintenance. All pertinent texts use asimilar introduction.

The Maintenance Activities subtopic is needed to
differentiate maintenance from development and to show
the relationship to other software engineering activities.
The subtopic on the Problems of Software M aintenance
was chosen to ensure that the software engineers fully
comprehended these problems.

Maintenance Process is needed to provide the current
references and standards needed to implement the
mai ntenance process.

Every organization is concerned with who will perform
maintenance. The Organizational Aspect of Maintenance
provides some options. Thereis always a discussion that
maintenance is hard. Every software maintenance reference
discusses the fact that maintenance consumes alarge
portion of the life cycle costs. The topic on Cost and Cost
Estimation was provided to ensure that the readers select
references to help with this difficult task.

The Software Maintenance Measurements topic is one that
is not addressed very well in the literature. Most
maintenance books barely touch on the topic. M easurement
information is most often found in generalized measurement
books. Thistopic was chosen to highlight the need for
unique maintenance metrics and to provide specify
maintenance measurement references.

The Techniques topic was provided to introduce some of
the generally accepted techniques used in maintenance
operations.

Finally, there are other resources besides textbooks and
periodicals that are useful to software engineers who wish
to learn more about software maintenance. Thistopicis
provided to list these additional resources.

© |EEE — Stoneman (Version 0.9) — February 2001

CHAPTER 7
SOFTWARE CONFIGURATION M ANAGEMENT

John A. Scott and David Nisse
Lawrence Livermore National Laboratory
7000 East Avenue
P.O. Box 808, L-632
Livermore, CA 94550, USA
(925) 423-7655
scott7@lInl.gov

Table of Contents

A 1014 oo [0 Tox 1 o o TR 1
2 Definition of the SCM Knowledge Area.........c.ccconueennne 1
3 Breakdown of TOpIiCSTOr SCMcocovvevneenecenecnneens 2
4 Breakdown Rationalecccoveennenieneneneenereeeeene 10
5 Matrix of Topicsvs. Reference Material..................... 10
6 Recommended Referencesfor SCMcccocevveneeee. 1
Appendix A — List of Further Readings..........cccocvvevvcvninenes 12
Appendix B — References Used to Write and Justify the
Knowledge Area DesCriptionccocveeeevenereeeenesenens 13
Appendix C — Rationale Detailscovevenereveeeresenseeninenns 15

1 INTRODUCTION

This paper presents an overview of the knowledge area of
software configuration management (SCM) for the Guide
to the Software Engineering Body of Knowledge
(SWEBOK) project. A breakdown of topicsis presented for
the knowledge area along with a succinct description of
each topic. References are given to materials that provide
more in-depth coverage of the key areas of software
configuration management. Important knowledge areas of
related disciplines are also identified.

Keywords

Software configuration management, software
configuration identification, software configuration control,
software configuration status accounting, software
configuration auditing, software release management.
Acronyms

CCB Configuration Control Board

CM Configuration Management

DBMS Database Management System

FCA Functiona Configuration Audit

PCA Physical Configuration Audit

SCI Software Configuration Item

SCR Software Change Request

© |IEEE — Stoneman (Version 0.9) — February 2001

SCM Software Configuration Management
SCMP Software Configuration Management Plan
SCSA Software Configuration Status Accounting
SDD Software Design Description

SQA Software Quality Assurance

SRS Software Requirements Specification

2 DEFINITIONOFTHE SCM KNOWLEDGE AREA

A system can be defined as a collection of components
organized to accomplish a specific function or set of
functions [IEEE 610]. The configuration of a system is the
function and/or physical characteristics of hardware,
firmware, software or a combination thereof as set forth in
technical documentation and achieved in a product
[Buckley]. It can also be thought of as a collection of
specific versions of hardware, firmware, or ftware items
combined according to specific build procedures to
accomplish a particular purpose. Configuration
management (CM), then, is the discipline of identifying the
configuration of a system at distinct points in time for the
purpose of systematically controlling changes to the
configuration and maintaining the integrity and traceability
of the configuration throughout the system life cycle
[Bersoff, (3)]. CM isformally defined [IEEE 610] as:
“A discipline applying technical and administrative
direction and surveillance to: identify and document the
functional and physical characteristics of a
configuration item, control changes to those
characteristics, record and report change processing and
implementation status, and verify compliance with
specified requirements.”
The concepts of configuration management apply to all
items to be controlled although there are some differences
in implementation between hardware CM and software
CM.
This chapter presents a breakdown of the key software
configuration management (SCM) concepts along with a
succinct description of each concept. The concepts are
generally accepted in that they cover the areas typically
addressed in texts and standards. The descriptions cover the

primary activities of SCM and are only intended to be
sufficient for alowing the reader to select appropriate
reference material according to the reader’s needs. The
SCM activities are: the management of the software
configuration management process, software configuration
identification, software configuration control, software
configuration status accounting, software configuration
auditing, and software rel ease management and delivery.
Figure 1 shows a stylized representation of these activities

Coordination of Change Activities (“ Code Management”)

Authorization of Changes Supports
(Should changes be made?) Customer
Maintenance Team
Status for: Project Management
Product Assurance Physmal &
Development Team Functional
Completeness
Mgmt. & Control Status Release Auditing
Planning Accounting| | Processing
Management
Development
SCMP

{ Configuration Identification

Figure 1. SCM Activities

Following the breakdown of SCM topics, key references
for SCM are listed along with a cross-reference of topics
that each listed reference covers. Findly, topics in related
disciplines that areimportant to SCM are identified.

3 BREAKDOWN OF TOPICS FOR SCM

Breakdown of Topics

An outline of the breakdown of topics is shown below in
Figure 2. Following the chart, a brief description of each
breakdown topic is provided. The breakdown covers the
concepts and activities of SCM. The variety of SCM tools
and tool systems now available, as well as the variety of
characteristics of the projects to which they are applied,
may make the implementation of these concepts and the
nature of the activities appear quite different from project to
project. However, the underlying concepts and types of
activities still apply.

I. Management of the SCM Process

Software configuration management is a supporting
software life cycle process [ISO/IEC 12207] that benefits
project and line management, development and
maintenance activities, assurance activities, and the
customers and users of the end product. From a
management perspective, SCM controls the evolution and
integrity of a product by identifying its elements, managing
and controlling change, and verifying, recording and
reporting on configuration information. From the
developer's perspective, SCM facilitates the development
and change implementation activities. A successful SCM
implementation requires careful planning and management.
This, in turn, reguires an understanding of the
organizational context for, and the constraints placed upon,
the design and i mplementation of the SCM process.

I.A Organizational Context for SCM

To plan an SCM process for a project, it is necessary to
understand the organizational structure and the
relationships among organizational elements. SCM
interacts with several other activities or organizational
elements.

SCM, like other processes such as software quality
assurance and software verification and validation (V&V),
is categorized as a supporting life cycle process. The
organizational elements responsible for these processes
may be structured in various ways. Although the
responsibility for performing certain SCM tasks might be
assigned to other organizations, such as the development
organization, the overall responsibility for SCM typically
rests with a distinct organizational element or designated
individual.

Software is frequently developed as part of alarger system
containing hardware and firmware elements. In this case,
SCM activities take place in parallel with hardware and
firmware CM activities and must be consistent with system
level CM. Buckley [5] describes SCM within this context.
Note that firmware contains hardware and software and,
therefore, both hardware and software CM concepts are
applicable.

SCM is closely related to the software quality assurance
(SQA) activity. The goas of SQA can be characterized
[Humphrey] as monitoring the software and its
development process, ensuring compliance with standards
and procedures, and ensuring that product, process, and
standards defects are visible to management. SCM
activities help in accomplishing these SQA goals. In some
project contexts, e.g. see [IEEE 730], specific SQA
requirements prescribe certain SCM activities.
SCM might also interface with an organization’s quality
assurance activity on issues such as records management
and non-conforming items. Regarding the former, some
items under SCM control might also be project records
subject to provisions of the organization’s quality assurance
program. Managing non-conforming items is usually the
responsibility of the quality assurance activity, however,
SCM might assist with tracking and reporting on software
items that fall in this category.
Perhaps the closest relationship is with the software
development and maintenance organizations. The
environment for software engineering includes such things
asthe:
+ software life cycle model and its resulting plans and
schedules,
+ project strategies such as concurrent or distributed
development activities,
+ software reuse processes,
+ development and target platforms, and
+ software development tools.

© |IEEE — Stoneman (Version 0.9) — February 2001

Softwar e Configuration Managemen

Management Software Software Cosn?‘fitv:ljérl;?i o Software S';’;tl\g:;:
— of the SCM Configuration — Configuratio — Stgtus — Configuratio ™ Management
Process — ldentification Control . Auditing ge
Accounting and Delivery
Organizational Identifying Requesting, Software Software Software
™ Context for Items to be Evaluatingand 1y Configuration l» Functional id Building
M Controlled Approving Status Configuration Sof
Constraints and Sofware | Software Information Audit eltware
l»- Guidance for Configuration Changes Software Software > an eaesni ot
ScM - S(f)ft‘Naf? . S‘f’f“’"“‘? Configuration Physical ageme
Planning for onfiguration - onfiguration - Status ; .
> SCMg - Items Control Board Reporting Conflgg_ratlon
Software Audit
SCM Configuration Software Change In-Process
Organization and - Item “ Request Process Audits of a
R sabiliti ; f
esponsshrities Relationships Implementing Software
SCM Resources Software Baseline
and Schedules Versions “1r Software
Changes
Tool Selection Basdlines - o
and - . Deviations and
Implementation Acquiring Waivers
Software <
Vendor/ Configuration
Subcontractor - Items
Control
Interface Control < Sqftware
Library
Software
Configuration
L
Management
Plan
> Surveillance of
Software
Configuration
Management
SCM Metrics
and
Measurement
In-Process
Audits of SCM

Figure 2 Breakdown of SCM Topics

This environment is also the environment within which
many of the software configuration control tasks are
conducted. Frequently, the same tools support
development, maintenance and SCM purposes.

|.B Constraints and Guidance for SCM

Constraints affecting, and guidance for, the SCM process
come from a number of sources. Policies and procedures
set forth at corporate or other organizational levels might
influence or prescribe the design and implementation of the
SCM process for a given project. In addition, the contract
between the acquirer and the supplier might contain
provisions affecting the SCM process. For example, certain
configuration audits might be required or it might be
specified that certain items be placed under configuration
management. When software products to be developed
have the potential to affect the public safety, external

© |IEEE — Stoneman (Version 0.9) — February 2001

regulatory bodies may impose constraints. For example, see
[USNRC]. Finally, the particular software life cycle model
chosen for a software project and the tools selected to
implement the software affect the design and
implementation of the SCM process [Bersoff, (4)].

Guidance for designing and implementing an SCM process
can also be obtained from ‘best practice’ as reflected in the
standards on software engineering issued by the various
standards organizations. Moore [31] provides a roadmap to
these organizations and their standards. Best practiceisalso
reflected in process improvement and process assessment
models such as the Software Engineering Institute's
Capability Maturity Model (SEI/CMM) [Paulk] and the
International Organization for Standardization’s Software
Process Improvement and Capability determination project
(ISO SPICE) [El Emam].

I.C Planning for SCM

The planning of an SCM process for a given project should
be consistent with the organizational context, applicable
constraints, commonly accepted guidance, and the nature of
the project (e.g., size and criticality). The major activities
covered are Software Configuration Identification,
Software Configuration Control, Software Configuration
Status Accounting, Software Configuration Auditing, and
Software Release Management and Delivery. In addition,
issues such as organization and responsibilities, resources
and schedules, tool selection and implementation, vendor
and subcontractor control, and interface control are
typically considered. Theresults of the planning activity are
recorded in a Software Configuration Management Plan
(SCMP). The SCMP istypically subject to SQA review and
audit.

[.C.1 SCM Organization and Responsibilities

To prevent confusion about who will perform given SCM
activities or tasks, organizations to be involved in the SCM
process need to be clearly identified. Specific
responsibilities for given SCM activities or tasks also need
to be assigned to organizational entities, either by title or
organizational element. The overall authority and reporting
channels for SCM should also be identified, although this
might be accomplished in the project management or
quality assurance planning.

|.C.2 SCM Resources and Schedules

The planning for SCM identifies the staff and tools
involved in carrying out SCM activities and tasks. It
addresses schedule questions by establishing necessary
sequences of SCM tasks and identifying their relationships
to the project schedules and milestones established in the
project management planning. Any training requirements
necessary for implementing the plans and training new staff
members are al so specified.

I.C.3 Tool Selection and Implementation

Different types of tool capabilities, and procedures for their
use, support the SCM activities. Depending on the
situation, these tool capabilities can be made available with
some combination of manual tools, automated tools
providing a single SCM capability, automated tools
integrating a range of SCM (and, perhaps other)
capabilities, or integrated tool environments that serve the
needs of multiple participants in the software development
process (e.g., SCM, development, V&V). Automated tool
support becomes increasingly important, and increasingly
difficult to establish, as projects grow in size and as project
environments get more complex. These tool capabilities
provide support for:

+ the SCM Library,

+ the software change request (SCR) and approval
procedures,

+ code (and related work products) and change
management tasks,

-4

+ reporting software configuration status and collecting
SCM measurements,

+ software auditing,
+ managing and tracking software documentation,
+ performing software builds, and

+« managing and tracking software releases and their
distribution.

The use of tools in these areas increases the potential for
obtaining product and process measurements to be used for
project management and process improvement purposes.
Royce [37] describes seven core metrics of value in
managing software processes. Information available from
the various SCM tools relates to Royce's Work and
Progress management indicator and to his quality indicators
of Change Traffic and Stability, Breakage and Modularity,
Rework and Adaptability, and MTBF (mean time between
failures) and Maturity. Reporting on these indicators can be
organized in various ways, such as by software
configuration item or by type of change requested. Details
on specific goals and metrics for software processes are
described in [Grady].

Figure 3 shows a representative mapping of tool
capabilities and procedures to the SCM Activities.

Code Mgmt Baselines, CCBs DBMS, Code Mgmt Systems
Systems Libraries,
SCRs
4 N\ 4 ¥
Planning Control Status Release Auditing
Accounting Processing
Management
Development
SCMP oo
Configuration Identification
N J/ .
\ I I
Change Change Release Audit
Implementation Evaluation & Authorization Procedures
Approval & Preparation

Figure 3 Characterization of SCM Tools and Related
Procedures

In this example, code management systems support the
operation of software libraries by controlling access to
library elements, coordinating the activities of multiple
users, and helping to enforce operating procedures. Other
tools support the process of building software and release
documentation from the software elements contained in the
libraries. Tools for managing software change requests
support the change control procedures applied to controlled
software items. Other tools can provide database
management and reporting capabilities for management,
development, and quality assurance activities. As
mentioned above, the capabilities of several tool types
might be integrated into SCM systems, which, in turn, are
closely coupled to various other software activities.

The planning activity assesses the SCM tool needs for a
given project within the context of the software engineering
environment to be used and selects the tools to be used for
SCM. The planning considers issues that might arise in the

© |IEEE — Stoneman (Version 0.9) — February 2001

implementation of these tools, particularly if some form of
culture change is necessary. An overview of SCM systems
and selection considerations is given in [Dart, (7)], a recent
case study on selecting an SCM system is given in [Midha],
and [Hoek] provides a current web-based resource listing
web links to various SCM tools.

I.C.4 Vendor/Subcontractor Control

A software project might acquire or make use of purchased
software products, such as compilers. The panning for
SCM considers if and how these items will be taken under
configuration control (e.g., integrated into the project
libraries) and how changes or updates will be evaluated and
managed.

Similar considerations apply to subcontracted software. In
this case, the SCM requirements to be imposed on the
subcontractor’s SCM process as part of the subcontract and
the means for monitoring compliance also need to be
established. The latter includes consideration of what SCM

information must be available for effective compliance
monitoring.

|.C.5 Interface Control

When a software item will interface with another software
or hardware item, a change to either item can affect the
other. The planning for the SCM process considers how the
interfacing items will be identified and how changes to the
items will be managed and communicated. The SCM role
may be part of a larger system-level process for interface
specification and control and may involve interface
specifications, interface control plans, and interface control
documents. In this case, SCM planning for interface control
takes place within the context of the system level process.
A discussion of the performance of interface control
activitiesis given in [Berlack].

|.D Software Configuration Management Plan

The results of SCM planning for a given project are
recorded in a Software Configuration Management Plan
(SCMP). The SCMPis a‘living document’ that serves as a
reference for the SCM process. It is maintained (i.e.,
updated and approved) as necessary during the software life
cycle. In implementing the plans contained in the SCMP, it
is typically necessary to develop a number of more
detailed, subordinate procedures that define how specific
requirements will be carried out during day-to-day
activities.

Guidance for the creation and maintenance of an SCMP,
based on the information produced by the planning activity,
is available from a number of sources, such as [IEEE 828
and |EEE 1042]. This reference provides requirements for
the information to be contained in an SCMP. It aso defines
and describes six categories of SCM information to be
included in an SCMP:

1. Introduction (purpose, scope, terms used)

2. SCM Management (organization, responsibilities,
authorities, applicable policies, directives, and
procedures)

© |IEEE — Stoneman (Version 0.9) — February 2001

3. SCM Activities (configuration identification,

configuration control, etc.)

4. SCM Schedules (coordination with other project
activities)

5. SCM Resources (toals,
resources)

6. SCMP Maintenance

I.E Surveillance of Software Confi guration Management

After the SCM process has been implemented, some degree
of surveillance may be conducted to ensure that the
provisions of the SCMP are properly carried out (e.g., see
[Buckley]). There are likely to be specific SQA
requirements for ensuring compliance with specified SCM
processes and procedures. This could involve an SCM
authority ensuring that the defined SCM tasks are
performed correctly by those with the assigned
responsibility. The software quality assurance authority, as
part of a compliance auditing activity, might also perform
this surveillance.

The use of integrated SCM tools that have capabilities for
process control can make the surveillance task easier. Some
tools facilitate process compliance while providing
flexibility for the developer to adapt procedures. Other
tools enforce process, leaving the developer less flexibility.
Surveillance reguirements and the level of developer
flexibility to be provided are important considerations in
tool selection.

|.E.1 SCM Metrics and Measurement

SCM metrics can be designed to provide specific
information on the evolving product or to provide insight
into the functioning of the SCM process. A related goal of
monitoring the SCM process is to discover opportunities
for process improvement. Quantitative measurements
against SCM process metrics provide a good means for
monitoring the effectiveness of SCM activities on an
ongoing basis. These measurements are useful in
characterizing the current state of the process as well asin
providing a basis for making comparisons over time.
Analysis of the measurements may produce insights leading
to process changes and corresponding updates to the
SCMP.

The software libraries and the various SCM tool
capabilities provide sources for extracting information
about the characteristics of the SCM process (as well as
providing project and management information). For
example, information about the processing time required
for various types of changes would be useful in an
evaluation of the criteria for determining what levels of
authority are optima for authorizing certain types of
changes.

Care must be taken to keep the focus of the surveillance on
the insights that can be gained from the measurements, not
on the measurements themsel ves.

I.E.2 In-process Audits of SCM

physical, and human

7-5

Audits can be carried out during the development process
to investigate the current status of specific elements of the
configuration or to assess the implementation of the SCM
process. In-process auditing of SCM provides a more
formal mechanism for monitoring selected aspects of the
process and may be coordinated with the SQA auditing
function.

I1. Softwar e Configuration I dentification

The software configuration identification activity identifies
items to be controlled, establishes identification schemes
for the items and their versions, and establishes the tools
and techniques to be used in acquiring and managing
controlled items. These activities provide the basis for the
other SCM activities.

[1.A Identifying Itemsto be Controlled

A first step in controlling change is to identify the software
items to be controlled. This involves understanding the
software configuration within the context of the system
configuration, selecting software configuration items,
developing a strategy for labeling software items and
describing their relationships, and identifying the baselines
to be used, aong with the procedure for a baseline's
acquisition of theitems.

I1.A.1 Software Configuration

A software configuration is the set of functional and
physical characteristics of software as set forth in the
technical documentation or achieved in a product [IEEE
610]. It can be viewed as a part of an overall system
configuration.

I1.A.2 Software Configuration Item

A software configuration item (SCI) is an aggregation of
software that is designated for configuration management
and is treated as a single entity in the SCM process [| EEE
610]. A variety of items, in addition to the code itself, are
typically controlled by SCM. Software items with potential
to become SCls include plans, specifications and design
documentation, testing material's, software tools, source and
executable code, code libraries, data and data dictionaries,
and documentation for installation, maintenance, operations
and software use.

Selecting SCls is an important process that must achieve a
balance between providing adequate visibility for project
control purposes and providing a manageable number of
controlled items. A list of criteria for SCI selection is given
in[Berlack].

I1.A.3 Software Configuration Item Relationships

The structural relationships among the selected SCls, and
their constituent parts, affect other SCM activities or tasks,
such as software building or analyzing the impact of

proposed changes. Proper tracking of these relationships is
also important for supporting traceability verifications. The
design of the identification scheme for SCls should
consider the need to map the identified items to the

software structure as well as the need to support the
evolution of the software items and their relationships.

I1.A.4 Software Versions

Software items evolve as a software project proceeds. A
version of a software item is a particular identified and
specified item. It can be thought of as a state of an evolving
item [Conradi]. A revision is a hew version of an item that
is intended to replace the old version of the item. A variant
is a new version of an item that will be added to the
configuration without replacing the old version. The
management of software versions in various software
engineering environments is a current research topic; for
example, see [Conradi], [Estublier], and [Sommerville,
(39)].

[1.A.5 Baseline

A software baseline is a set of software items formally
designated and fixed at a specific time during the software
life cycle. The term is also used to refer to a particular
version of a software item that has been agreed upon. In
either case, the baseline can only be changed through
formal change control procedures. A baseline, together with
all approved changes to the baseline, represents the current
approved configuration.

Commonly used baselines are the functional, allocated,
developmental, and product baselines; e.g. see [Berlack].
The functional baseline corresponds to the reviewed system
requirements. The allocated baseline corresponds to the
reviewed software regquirements specification and software
interface requirements specification. The developmental
baseline represents the evolving software configuration at
selected times during the software life cycle. Change
authority for this baseline typically rests primarily with the
development organization, but may be shared by other
organizations (e.g., SCM or Test). The product baseline
corresponds to the completed software product delivered
for system integration. The baselines to be used for a given
project, along with their associated levels of authority
needed for change approval, are typically identified in the
SCMP.

I1.A.6 Acquiring Software Configuration Items

Software configuration items are placed under SCM control
at different times; i.e. they are incorporated into a particular
baseline at a particular point in the software life cycle. The
triggering event is the completion of some form of formal
acceptance task, such as a forma review. Figure 4
characterizes the growth of baselined items as the life cycle
proceeds. This figure is based on a waterfall model for
purposes of illustration only; the subscripts used in the
figure indicate versions of the evolving items. The software
change request (SCR) is described in section I11.A.

© |IEEE — Stoneman (Version 0.9) — February 2001

Requirements\ Design Test Readiness \ Acceptance
Review Review Review
SR SR
SRSA SRS, & $
SDD, SDD
SDD, 8 ¢
Cod Cod
SCR control & ®
of SRS mods Test Test
SCR control | Plang Plang
of SRS, SDD
mods User
SCR control | Manual
of SRS, SDD)
Code, Test Regression
Plans Test DBA

Figure 4 Acquisition of Items

Following the acquisition of an SCI, changes to the item
must be formally approved as appropriate for the SCI and
the baseline involved, as defined in the SCMP. Following
the approval, the item is incorporated into the software
baseline according to the appropriate procedure.

I1.B Software Library

A software library is a controlled collection of software and
related documentation designed to aid in software
development, use, and maintenance [IEEE 610]. It is also
instrumental in software release and delivery activities.
Several types of libraries might be wused, each
corresponding to a particular level of maturity of the
software item. For example a working library could support
coding and a project support library could support testing,
whereas a master library could be used for finished
products. An appropriate level of SCM control (associated
baseline and level of authority for change) is associated
with each library. Security, in terns of access control and
the backup facilities, is akey aspect of library management.
A model of asoftwarelibrary isdescribed in [Berlack].

The tool(s) used for each library must support the SCM
control needs for that library, both in terms of controlling
SCls and controlling access to the library. At the working
library level, this is a code management capability serving
developers, maintainers and SCM. It is focused on
managing the versions of software items while supporting
the activities of multiple developers. At higher levels of
control, access is more restricted and SCM is the primary
user.

These libraries are also an important source of information
for measurements of work and progress.

I11. Software Configuration Control

Software configuration control is concerned with managing
changes during the software life cycle. It covers the process
for determining what changes to make, the authority for
approving certain changes, support for the implementation
of those changes, and the concept of formal deviations and
waivers from project requirements. Information derived

© |IEEE — Stoneman (Version 0.9) — February 2001

from these activities is useful in measuring change traffic,
breakage, and aspects of rework.

I11.A. Requesting, Evaluating and Approving Software
Changes

The first step in managing changes to controlled items is
determining what changes to make. The software change
regquest process (see Figure 5) provides formal procedures
for submitting and recording change requests, evaluating
the potential cost and impact of a proposed change, and
accepting, modifying or rejecting the proposed change.
Requests for changes to software configuration items may
be originated by anyone at any point in the software life
cycle and may include a suggested solution and requested
priority. One source of change requests is the initiation of
corrective action in response to problem reports. Regardless
of the source, the type of change (e.g. defect or
enhancement) usually recorded on the SCR.

Need for Preliminary
Change "1 Investigation

CCB Review

Approved

Change
identified for
controlled item

I¢....—..

Rejected
i Inform
Requester

SCRgenerated
or undated

Assign to
Software ‘Emergency Path’
Engineer usually also exists.

i Changes can be
implemented with
deSsciggdtueI;, change process
complete change performed afterward

& incomplete

complete

Figure5 Flow of a Change Control Process

This provides an opportunity for tracking defects and
collecting change activity measurements by change type.
Once an SCR is received, a technical evaluation (also
known as an impact analysis) is performed to determine the
extent of modifications that would be necessary should the
change request be accepted. A good understanding of the
relationships among software (and possibly, hardware)
items is important for this task. Finally, an established
authority, commensurate with the affected baseline, the SCI
involved, and the nature of the change, will evaluate the
technical and managerial aspects of the change request and
either accept, modify, reject or defer the proposed change.

I11.A.1. Software Configuration Control Board

The authority for accepting or rejecting proposed changes
rests with an entity typically known as a Configuration
Control Board (CCB). In smaller projects, this authority
actually may reside with the responsible leader or an
assigned individual rather than a multi-person board. There
can be multiple levels of change authority depending on a
variety of criteria, such as the criticality of the item
involved, the nature of the change (e.g., impact on budget
and schedule), or the current point in the life cycle. The
composition of the CCBs used for a given system varies

-7

depending on these criteria (an SCM representative would
always be present). All stakeholders, appropriate to the
level of the CCB, are represented. When the scope of
authority of a CCB is strictly software, it is known as a
software configuration control board (SCCB). The
activities of the CCB are typically subject to SQA audit or
review.

I11.A.2 Software Change Request Process

An effective SCR process requires the use of supporting
tools and procedures ranging from paper forms and a
documented procedure to an dectronic tool for originating
change requests, enforcing the flow of the change process,
capturing CCB decisions, and reporting change process
information. A link between this tool capability and the
problem reporting system can facilitate the tracking of
solutions for reported problems. Change process
descriptions and supporting forms (information) are given
in a variety of references, e.g. [Berlack] and [IEEE 1042].
Typically, change management tools are tailored to local
processes and tool suites and are often locally developed.
The current trend is towards integration of these kinds of
tools within a suite referred to as a software engineering
environment.

[11.B. Implementing Software Changes

Approved change requests are implemented using the
defined software procedures in accordance with the
applicable schedule requirements. Since a number of
approved change requests might be implemented
simultaneously, it is necessary to provide a means for
tracking which change requests are incorporated into
particular software versions and baselines. As part of the
closure of the change process, completed changes may
undergo configuration audits and SQA verification. This
includes ensuring that only approved changes were made.
The change request process described above will typically
document the SCM (and other) approval information for
the change.

The actual implementation of a change is supported by the
library tool capabilities that provide version management
and code repository support. At a minimum, these tools
provide check-infout and associated version control
capabilities. More powerful tools can support parallel
development and geographically distributed environments.
These tools may be manifested as separate specialized
applications under control of an independent SCM group.
They may also appear as an integrated part of the software
development environment. Finaly, they may be as
elementary as a rudimentary change control system
provided with an operating system.

I11.C. Deviations and Waivers

The constraints imposed on a software development effort
or the specifications produced during the development
activities might contain provisions that cannot be satisfied
at the designated point in the life cycle. A deviation is an
authorization to depart from a provision prior to the

-8

development of the item. A waiver is an authorization to
use an item, following its development, that departs from
the provision in some way. In these cases, a formal process
isused for gaining approval for deviations to, or waivers of,
the provisions.

V. Software Configuration Status Accounting

Software configuration status accounting (SCSA) is the
recording and reporting of information needed for effective
management of the software configuration. The design of
the SCSA capability can be viewed from an information
systems perspective, utilizing accepted information systems
design techniques.

IV.A. Software Configuration Status Information

The SCSA activity designs and operates a system for the
capture and reporting of necessary information as the life
cycle proceeds. As in any information system, the
configuration status information to be managed for the
evolving configurations must be identified, collected, and
maintained. Various information and measurements are
needed to support the SCM process and to meet the
configuration status reporting needs of management,
software engineering, and other related activities. The types
of information available include the approved configuration
identification as well as the identification and current
implementation status of changes, deviations and waivers.
A partial list of important data elements is given in
[Berlack].

Some form of automated tool support is necessary to
accomplish the SCSA data collection and reporting tasks.
This could be a database capability, such as arelational or
object-oriented database management system. This could
be a stand-alone tool or a capability of a larger, integrated
tool environment.

IV.B. Software Configuration Status Reporting

Reported information can be used by various organizational
and project elements, including the development team, the
maintenance team, project management, and quality
assurance activities. Reporting can take the form of ad hoc
queries to answer specific questions or the periodic
production of pre-designed reports. Some information
produced by the status accounting activity during the
course of the life cycle might become quality assurance
records.

In addition to reporting the current status of the
configuration, the information obtained by SCSA can serve
as a basis for various measurements of interest to
management, development, and SCM. Examples include

the number of change requests per SCI and the average
time needed to implement a change request.

V. Softwar e Configuration Auditing

A software audit is an activity performed to independently
evaluate the conformance of software products and
processes to applicable regulations, standards, guidelines,
plans, and procedures [IEEE 1028]. Audits are conducted

© |IEEE — Stoneman (Version 0.9) — February 2001

according to a well-defined process consisting of various
auditor roles and responsibilities. Consequently, each audit
must be carefully planned. An audit can require a number
of individuals to perform a variety of tasks over a fairly
short period of time. Tools to support the planning and
conduct of an audit can greatly facilitate the process.
Guidance for conducting software audits is available in
various references, such as [Berlack], [Buckley], and [|[EEE
1028].

The software configuration auditing activity determines the
extent to which an item satisfies the required functional and
physical characteristics. Informal audits of this type can be
conducted at key points in the life cycle. Two types of
formal audits might be required by the governing contract
(e.g., in contracts covering critical software): the Functional
Configuration Audit (FCA) and the Physical Configuration
Audit (PCA). Successful completion of these audits can be
a prerequisite for the establishment of the product baseline.
Buckley [5] contrasts the purposes of the FCA and PCA in
hardware versus software contexts and recommends careful
evaluation of the need for the software FCA and PCA
before performing them.

V.A. Software Functional Configuration Audit

The purpose of the software FCA is to ensure that the
audited software item is consistent with its governing
specifications. The output of the software verification and
validation activitiesis a key input to this audit.

V.B. Software Physical Configuration Audit

The purpose of the software PCA is to ensure that the
design and reference documentation is consistent with the
as-built software product.

V.C. In-process Audits of a Software Baseline

As mentioned above, audits can be carried out during the
development process to investigate the current status of
specific elements of the configuration. In this case, an audit
could be applied to sampled baseline items to ensure that
performance was consistent with specification or to ensure
that evolving documentation was staying consistent with
the developing baseline item.

V1. Software Release Management and Delivery

The term “release” is used in this context to refer to the
distribution of a software configuration item outside the
development activity. This includes internal releases as
well as distribution to customers. When different versions
of a software item are available for delivery, such as
versions for different platforms or versions with varying
capabilities, it is frequently necessary to recreate specific
versions and package the correct materials for delivery of
the version. The software library is a key element in
accomplishing release and delivery tasks.

VI.A. Software Building

Software building is the activity of combining the correct
versions of software items, using the appropriate
configuration data, into an executable program for delivery
to a customer or other recipient, such as the testing activity.

© |IEEE — Stoneman (Version 0.9) — February 2001

For systems with hardware or firmware, the executable is
delivered to the system building activity. Build instructions
ensure that the proper build steps are taken and in the
correct sequence. In addition to building software for new
releases, it is usually also necessary for SCM to have the
capability to reproduce previous releases for recovery,
testing, or additional release purposes.

Software is built using particular \ersions of supporting
tools, such as compilers. It might be necessary to rebuild an
exact copy of a previously built software item. In this case,
the supporting tools and associated build instructions need
to be under SCM control to ensure availability of the
correct versions of the tools.

A tool capability is useful for selecting the correct versions
of software items for a given target environment and for
automating the process of building the software from the
selected versions and appropriate configuration data. For
large projects with paralel development or distributed
development environments, this tool capability is
necessary. Most software development environments
provide this capability. These tools vary in complexity from
requiring the engineer to learn a specialized scripting
language to graphics-oriented approaches that hide much of
the complexity of an “intelligent” build facility.

The build process and products are often subject to SQA
verification. Outputs of the build process might be needed
for future reference and may become quality assurance
records.

VI.B Softwar e Release Management

Software release management encompasses the
identification, packaging and delivery of the elements of a
product, for example, the executable, documentation,
release notes, and configuration data. Given that product
changes can be occurring on a continuing basis, one issue
for release management is determining when to issue a
release. The severity of the problems addressed by the
release and measurements of the fult densities of prior
releases affect this decision [Sommerville, (38)]. The
packaging task must identify which product items are to be
delivered and select the correct variants of those items,

given the intended application of the product. The set of

information documenting the physical contents of arelease
is known as a version description document and may exist
in hardcopy or electronic form. The release notes typically
describe new capabilities, known problems, and platform
requirements necessary for proper product operation. The
package to be released also contains loading or upgrading
instructions. The latter can be complicated by the fact that
some current users might have versions that are severa

releases old. Finally, in some cases, the release
management activity might be required to track the
distribution of the product to various customers or target
systems. An example would be a case where the supplier
was required to notify a customer of newly reported
problems.

-9

A tool capability is needed br supporting these release
management functions. It is useful to have a connection
with the tool capability supporting the change request
process in order to map release contents to the SCRs that
have been received. This tool capability might also
maintain information on various target platforms and on
various customer environments.

4 BREAKDOWN RATIONALE

One of the primary goals of the Guide to the SWEBOK is
to arrive at a breakdown that is ‘generally accepted’.
Consequently, the breakdown of SCM topics was
developed largely by attempting to synthesize the topics
covered in the literature and in recognized standards, which
tend to reflect consensus opinion. The topic on Software
Release Management and Delivery is an exception since it

5 MATRIX OF TOPICSVS. REFERENCE MATERIAL

has not commonly been broken out separately in the past.
The precedent for this was set by the ISO/IEC 12207
standard [23], which identifies a * Release Management and
Delivery’ activity.

There is widespread agreement in the literature on the SCM
activity areas and their key concepts. However, there
continues to be active research on implementation aspects
of SCM. Examples are found in ICSE workshops on SCM
such as [Estublier] and [Sommerville, (39)].

The hierarchy of topics chosen for the breakdown presented
in this paper is expected to evolve as the Guide to the
SWEBOK review processes proceed. A detailed discussion
of the rationale for the proposed breakdown, keyed to the
Guide to the SWEBOK development criteria, is given in
Appendix B.

Table 1. Coverage of the Breakdown Topics by the Recommended References

Babich Berlack | Buckley Conradi Dart

Hoek

IEEE/EIA
12207

|IEEE Midha Moore Paulk | Pressman Sommerville

828

Royce

|. Management of the SCM Process

A. Organizational Context for SCM c2 c2

4.2.1

B. Constraints and Guidance for C5

SCM

41, X
423

C. Planning for SCM Cc2

6.2.1

1. SCM Organization and c7

Responsibilities

42

2. SCM Resources and Schedules c7 C3

44,45

C15 C3,

3. Tool Selection and ,
App A

Implementation

X C29

4. Vendor/Subcontractor Control C13 Cl1

436

5. Interface Control C12

435

D. SCM Plan C7

4 L2-81

E. Surveillance of SCM

L2-87

1. SCM Metrics and Measurement

202,283~

2. In-Process Audits of SCM C15

I1. Softwar e Configuration
I dentification

6.2.2

A. Identifying Items to be Controlled

431 L2-83

1. Software Configuration C4,6

C9

2. Software Configuration Item C4,6 c2

C9

3. Software Configuration Item Cc2

Relationships

C9

4. Software Versions Cc2 C3,C4,C5

C9

5. Baseline

Cc9

Qe

6. Acquiring Software
Configuration Items

B. Software Library C25 Cl4

43.1 L2-82

111. Softwar e Configuration
Control

6.2.3 L2-84

A. Requesting, Evaluating and
Approving Software Changes

432 C9 C33

1. Software Configuration Control C9

Board

Co11

C9

2. Software Change Request Cc9

Process

C9,11

Cc9

B. Implementing Software Changes cé6 C9 C9,11

4324 C9 C33

C. Deviations & Waivers C9 C12

1V. Softwar e Configuration Status
Accounting

6.2.4 L2-85 Cc9 C33

A. Software Configuration Status Inf. C10 C13

433

B. Software Configuration Status C10 C13

Rptg.

V. Softwar e Configuration
Auditing

434 6.25 L2-86 C9,C17

A. Software Functional Configuration
Audit

Cc11 C15

7-10

© |IEEE — Stoneman (Version 0.9) — February 2001

Babich Berlack | Buckley Conradi Dart

Hoek

|IEEE
828

|EEE/EIA
12207

Midha Moore Paulk | Pressman Royce | Sommerville

B. Software Physical Configuration
Audit

Cc11 C15

C. In-Process Audits of a Software C15

Baseline

V1. Softwar e Release M anagement
and Delivery

6.2.6

A. Software Building Ccé6

C33

B. Software Release Management

C33

6 RECOMMENDED REFERENCESFOR SCM

Cross Reference Matrix

Table 1, in Appendix A, provides a cross reference between
the recommended references and the topics of the
breakdown. Note that, where a recommended reference is
also shown in the Further Reading section, the cross
reference reflects the full text rather than just the specific
passage referenced in the Recommended References.
Recommended References

Specific recommendations are made here to provide
additional information on the topics of the SCM
breakdown.

W.A. Babich, Software Configuration Management,
Coordination for Team Productivity [1]

Pages 20-43 address the basics of code management.
H.R. Berlack, Software Configuration Management [2]

See pages 101-175 on configuration identification,
configuration control and configuration status accounting,
and pages 202-206 on libraries.

F.J. Buckley, Implementing Configuration Management:
Hardware, Software, and Firmware [5]

See pages 10-19 on organizational context, pages 21-38 on
CM planning, and 228-250 on CM auditing.

R. Conradi and B. Westfechtel, "Version Models for
Software Configuration Management" [6]

An in-depth article on version models used in software
configuration management. It defines fundamental concepts
and provides a detailed view of versioning paradigms. The
versioning characteristics of various SCM systems are
discussed.

S.A. Dart, Spectrum of Functionality in Configuration
Management Systems [7]

This report covers features of various CM systems and the
scope of issues concerning users of CM systems. As of this
writing, the report can be found on the Internet at:
http://www.sei.cmu.edu/about/website/search.html

Hoek, “ Configuration Management Yellow Pages,” [13]
This web page provides a current compilation of SCM
resources.

http://www.cs.col orado.edu/users/andre/configuration_man
agement.html

IEEE/EIA Sd 12207.0-1996, Software Life Cycle

Processes, [20] and IEEE/EIA Std 12207.1-1996, Software
Life Cycle Processes - Life Cycle Data, [21]

© |IEEE — Stoneman (Version 0.9) — February 2001

These standards provide the 1SO/IEC view of software
processes along with specific information on life cycle data
keyed to software engineering standards of other standards
bodies.

IEEE Std.828-1990, IEEE Standard for Software
Configuration Management Plans [17] and |EEE Std.1042-
1987, IEEE Guide to Software Configuration Management
[19]

These standards focus on SCM activities by specifying
requirements and guidance for preparing the SCMP. These
standards reflect commonly accepted practice for software
configuration management.

A.K. Midha, "Software Configuration Management for the
21st Century" [30]

This article discusses the characteristics of SCM systems,
assessment of SCM needs in a particular environment, and
the issue of selecting and implementing an SCM system. It
isacurrent case study on thisissue.

JW. Moore, Software Engineering Standards, A User's
Road Map [31]

Pages 118-119 cover SCM and pages 194-223 cover the
perspective of the 12207 standards.

M.C. Paulk, et al., Key Practices of the Capability Maturity
Model [32]

Pages 180-191 cover the SCM key process area of the SEI
CMM.

R.S. Pressman, Software Engineering: A Practitioner’s
Approach [36]

Pages 209-226 address SCM in the context of atextbook on
software engineering.

Walker Royce, Software Project Management, A United
Framework [37]

Pages 188-202 and 283-298 cover metrics of interest to
software project management that are closely related to
SCM.

I. Sommerville, Software Engineering [38]

Pages 675-696 cover SCM with an emphasis on software
building and rel ease management.

7-11

APPENDIX A — LIST OF FURTHER READINGS

The following set of references was chosen to provide
coverage of all aspects of SCM, from various perspectives
and to varying levels of detail. The author and title are
cited; the complete reference is given in the References
section. Some items overlap with those in the
Recommended References since they cover the full texts
rather than specific passages.

W.A. Babich, Software Configuration Management,
Coordination for Team Productivity [1]

This text is focused on code management issues from the
perspective of the development team.

H.R. Berlack, Software Configuration Management [2]

This textbook provides detailed, comprehensive coverage
of the concepts of software configuration management.
Thisis one of the more recent texts with thisfocus.

F.J. Buckley, Implementing Configuration Management:
Hardware, Software, and Firmware [5]

This text presents an integrated view of configuration
management for projects in which software, hardware and
firmware are involved. It is a recent text that provides a
view of software configuration management from a systems
perspective.

J. Estublier, Software Configuration Management, ICSE
SCM -4 and SCM -5 Workshops Sel ected Papers[10]

These workshop proceedings are representative of current
experience and research on SCM. This reference is
included with the ntention of directing the reader to the
whole class of conference and workshop proceedings.

The suite of IEEE/EIA and ISO/IEC 12207 standards, [20]-
[24]

These standards cover software life cycle processes and
address SCM in that context. These standards reflect
commonly accepted practices for software life cycle
processes. Note - the developing ISO/IEC TR 15504
(SPICE99) expands on SCM within the context of the
ISO/IEC 12207 standard.

IEEE Std.1042-1987, |EEE Guide to Software
Configuration Management [19]

This standard provides guidance, keyed to IEEE 828, for
preparing the SCMP.

JW. Moore, Software Engineering Standards, A User’'s
Road Map [31]

This text provides a comprehensive view of current
standards and standards activities in the area of software
engineering.

7-12

© |IEEE — Stoneman (Version 0.9) — February 2001

APPENDIX B — REFERENCES USED TO WRITE AND
JUSTIFY THE KNOWLEDGE AREA DESCRIPTION

These references were used in preparing this paper; the
recommended references for SCM are listed in Section 3.1.

1

10.

11.

12.

13.

14,

W.A. Babich, Software Configuration Management:
Coordination for Team Productivity, Addison-Wesley,
Reading, Massachusetts, 1986.

H.R. Berlack, Software Configuration Management,
John Wiley & Sons, New Y ork, 1992.

E.H. Bersoff, "Elements of Software Configuration
Management,” Software Engineering, M. Dorfman and
R.H. Thayer ed., IEEE Computer Society Press, Los
Alamitos, CA, 1997.

E.H. Bersoff and A.M. Davis, "Impacts of Life Cycle
Models on Software Configuration Management,”
Communications of the ACM, Voal. 34, No. 8, August
1991, pp104-118.

F.J. Buckley, Implementing Configuration
Management: Hardware, Software, and Firmware,
Second Edition, |IEEE Computer Society Press, Los
Alamitos, CA, 1996.

R. Conradi and B. Westfechtel, "Version Models for
Software Configuration ~ Management,” ACM
Computing Surveys, \ol. 30, No. 2, June 1998, pp.
232-282.

S.A. Dart, Spectrum of Functionality in Configuration
Management Systems, Technical Report CMU/SEI -90-
TR-11, Software Engineering Institute, Carnegie
Meéellon University, 1990.

S.A. Dart, "Concepts in Configuration Management
Systems," Proceedings of the Third International
Workshop on Software Configuration Management,
ACM Press, New York, 1991, pp1-18.

Khaled EI Emam, et a., SPICE, The Theory and
Practice of Software Process Improvement and
Capability Determination, |EEE Computer Society,
Los Alamitos, CA, 1998.

J. Estublier, Software Configuration Management,
ICSE SCM -4 and SCM -5 Workshops Selected Papers,
Springer-Verlag, Berlin, 1995.

P.H. Feiler, Configuration Management Models in
Commercial Environments, Technical Report
CMU/SEI -91-TR-7, Software Engineering Institute,
Carnegie Mellon University, 1991.

R.B. Grady, Practical Software Metrics for Project
Management and Process Improvement, Prentice-Hall,
Englewook Cliffs, NJ, 1992.

Hoek, “Configuration Management Yelow Pages,”
http://www.cs.colorado.edu/users/andre/configuration

management.html

W.S. Humphrey, Managing the Software Process,
Addison-Wesley, Reading, MA, 1989.

© |IEEE — Stoneman (Version 0.9) — February 2001

15.

16.

17.

18.

19.

20.

21.

22.

23.

24,

25,

26.

27.

28.

29.

30.

31.

32.

|[EEE Std.610.12-1990, IEEE Standard Glossary of
Software Engineering Terminology, |EEE, Piscataway,
NJ, 1990.

I[EEE Std.730-1998, |EEE Standard for Software
Quality Assurance Plans, |EEE, Piscataway, NJ, 1998.

IEEE $td.828-1998, |EEE Standard for Software
Configuration Management Plans, |EEE, Piscataway,
NJ, 1998.

IEEE Std.1028-1997, IEEE Standard for Software
Reviews, |EEE, Piscataway, NJ, 1997.

IEEE Std.1042-1987, IEEE Guide to Software

Configuration Management, |IEEE, Piscataway, NJ,
1987.

IEEE/EIA Std 12207.0-1996, Software Life Cycle
Processes, |EEE, Piscataway, NJ, 1996.

IEEE/EIA Std 12207.1-1996, Guide for Software Life
Cycle Processes — Life Cycle Data, |IEEE, Piscataway,
NJ, 1996.

IEEE/EIA Std 12207.2-1996, Guide for Software Life
Cycle Processes — Implementation Considerations,
| EEE, Piscataway, NJ, 1996.

ISO/IEC 12207:1995(E), Information Technology -
Software Life Cycle Processes, ISO/IEC, Geneve,
Switzerland, 1995.

ISO/IEC TR 15846:1998, Information Technology -
Software Life Cycle Processes - Configuration
Management , | SO/IEC, Geneve, Switzerland, 1998.

ISO/DIS 90047 (now [ISO 10007), Quality
Management and Quality System Elements, Guidelines
for Configuration = Management, Internationa
Organization for Standardization, Geneve,
Switzerland, 1993.

P. Jdote, An Integrated Approach to Software
Engineering, Springer-Verlag, New Y ork, 1997

John J. Marciniak and Donald J. Reifer, Software
Acquisition Management, Managing the Acquisition of
Custom Software Systems, John Wiley & Sons, 1990.
JJ. Marciniak, "Reviews and Audits" Software
Engineering, M. Dorfman and R.H. Thayer ed., IEEE
Computer Society Press, Los Alamitos, CA, 1997.

K. Meiser, "Software Configuration Management
Terminology," Crosstalk, 1995,
http://www.stsc.hill.af .mil/crosstalk/1995/jan/terms.ht
ml, February 1999.

A.K. Midha, "Software Configuration Management for
the 21st Century," Bell Labs Technical Journal, Winter
1997.

JW. Moore, Software Engineering Standards, A User's
Roadmap, |EEE Computer Society, Los Alamitos, CA,
1998.

M.C. Paulk, et a., Key Practices of the Capability
Maturity Model, Version 1.1, Technical Report
CMU/SEI -93-T R-025, Software Engineering Institute,
Carnegie Mellon University, 1993

7-13

33. M.C. Paulk, et a., The Capability Maturity Model,
Guidelines for Improving the Software Process,
Addison-Wesley, Reading, Massachusetts, 1995.

34. S.L. Pfleeger, Software Engineering: Theory and
Practice, Prentice Hall, Upper Saddle River, NJ, 1998

35. R.K. Port, "Software Configuration Management
Technology Report, September 1994, "
http://www.stsc.hill.af.mil/cm/REPORT .html,
February 1999.

36. R.S. Pressman, Software Engineering: A Practitioner's
Approach, McGraw-Hill, New Y ork, 1997.

37. Walker Royce, Software Project Management, A
United Framework, Addison-Wesley, Reading,
M assachusetts, 1998.

38. Sommerville, Software Engineering, Fifth Edition,
Addison-Wesley, Reading, Massachusetts, 1995.

39. Sommerville, Software Configuration Management,
ICSE SCM -6 Workshop, Selected Papers, Springer-
Verlag, Berlin, 1996.

40. USNRC Regulatory Guide 1.169, Configuration
Management Plans for Digital Computer Software
Used in Safety Systems of Nuclear Power Plants, U.S.
Nuclear Regulatory Commission, Washington DC,
1997.

41. JP. Vincent, et al., Software Quality Assurance,
Prentice-Hall, Englewood Cliffs, NJ, 1988.

42. W.G. Vincenti, What Engineers Know and How They
Know It, The Johns Hopkins University Press,
Baltimore, MD, 1990.

43. D. Whitgift, Methods and Tools for Software
Configuration Management, John Wiley & Sons,
Chichester, England, 1991.

M.C. Paulk, et a., Key Practices of the Capability Maturity
Model [32]

This report describes the key practices that could be
evaluated in assessing software process maturity.
Therefore, the section on SCM key practices provides a
view of SCM from a software process assessment
perspective.

R.S. Pressman, Software Engineering: A Practitioner's
Approach [36]

This reference and the Sommerville reference address SCM
in the context of atextbook on software engineering.

I. Sommerville, Software Engineering [38]

This reference and the Pressman reference address SCM in
the context of atextbook on software engineering.

J.P. Vincent, et al., Software Quality Assurance [41]

In this text, SCM is described from the perspective of a
complete set of assurance processes for a software
development project.

D. Whitgift, Methods and Tools for Software Configuration
Management [43]

7-14

This text covers the concepts and principles of SCM. It
provides detailed information on the practical questions of
implementing and using tools. This text is out of print but
dtill availablein libraries.

© |IEEE — Stoneman (Version 0.9) — February 2001

APPENDIX C — RATIONALEDETAILS

Criterion (a): Number of topic breakdowns
One breakdown is provided.
Criterion (b): Reasonableness

The breakdowns are reasonable in that they cover the areas
typically discussed in texts and standards, although there is
somewhat less discussion of release management as a
separate topic. In response to comments on version 0.5 of
the paper, the tool discussion under ‘ Planning for SCM’ has
been expanded. The various tool subheadings used
throughout the text have been removed (so they do not
appear as topics), however, the supporting text has been
retained and incorporated into the next higher level topics.
Criterion (c): Generally Accepted

The breakdowns are generally accepted in that they cover
the areas typically discussed in texts and standards.

At level 1, the breakdown is identical to that given in IEC
12207 (Section 6.2) except that the term “Management of
the Software Configuration Management Process’ was
used instead of “Process Implementation” and the term
“Software Configuration Auditing” was used instead of
“Configuration Evaluation.” The typical texts discuss
Software Configuration Management Planning (our topic
A.3); We have expanded this to a “management of the
process’ concept in order to capture related ideas expressed
in many of the references that we have used. These ideas
are captured in topics A.1 (organizational context), A.2
(constraints and guidance), and A.4 (surveillance of the
SCM process). A similar comparison can also be made to
[Buckley] except for the addition of “Software Release
Management and Delivery.”

We have chosen to include the word “ Software” as a prefix
to most of the configuration topics to distinguish the topics
from hardware CM or system level CM activities. We
would reserve “Configuration Management” for system
purposes and then use HCM and SCM for hardware and
software respectively.

The topic A.1, “Software Configuration Management
Organizational Context,” covers key topics addressed in
multiple texts and articles and it appears within the level 1
headings consistently with the placement used in the
references. This new term on organizational context was
included as a placeholder for capturing three concepts
found in the references. First, [Buckley] discusses SCM in
the overall context of a project with hardware, software,
and firmware elements. We believe that thisis alink to a
related discipline of system engineering. (Thisis similar to
what |EEE 828 discusses under the heading of “Interface
Control”). Second, SCM is one of the product assurance
processes supporting a project, or in IEC 12207
terminology, one of the supporting lifecycle processes. The
processes are closely related and, therefore, interfaces to
them should be considered in planning for SCM. Finally,
some of the tools for implementing SCM might be the same
tools used by the developers. Therefore, in planning SCM,

© |IEEE — Stoneman (Version 0.9) — February 2001

there should be awareness that the implementation of SCM
is strongly affected by the environment chosen for the
development activities.

The inclusion of the topic “Release Management and
Delivery” is somewhat controversial since the majority of
texts on software configuration management devote little or
no attention to the topic. We believe that most writers
assume the library function of configuration identification
would support release management and delivery but,
perhaps, assume that these activities are the responsibility
of project or line management. The IEC 12207 standard,
however, has established this as a required area for SCM.
Since this has occurred and since this topic should be
recognized somewhere in the overall description of
software activities, “Release Management and Delivery”
has been included.

Criterion (d): No Specific Application Domains

No specific application domains have been assumed.
Criterion (e): Compatible with Various Schools of
Thought

SCM concepts are fairly stable and mature.

Criterion (f): Compatible with Industry, Literature, and
Standards

The breakdown was derived from the literature and from
key standards reflecting consensus opinion. The extent to
which industry implements the SCM concepts in the
literature and in standards varies by company and project.
Criterion (g): Aslnclusive as Possible

The inclusion of the level 1 topic on management of SCM
expands the planning concept into a larger area that can
cover al management-related topics, such as surveillance
of the SCM process. For each level 1 topic, the level 2
topics categorize the main areas in various references
discussions of the level 1 topic. These are intended to be
general enough to allow an open-ended set of subordinate
level 3 topics on specific issues. The level 3 topics cover
specifics found in the literature but are not intended to
provide an exhaustive breakdown of the level 2 topic.
Criterion (h): Themes of Quality and M easurement

The relationship of SCM to product assurance and
measurement is provided for in the breakdowns. The
description also conveys the role of SCM in achieving a
consistent, verified, and validated product.

Criterion (i): 2to 3lewels, 5to9topicsat thefirst level
The proposed breakdown satisfies this criterion.

Criterion (j): Topic Names Meaningful Outside the
Guide

For the most part, we believe this is the case. Some terms,
such a “Baselines’ or “Physical Configuration Audit”
regquire some explanation but they are obviously the terms
to use since appear throughout the literature.

Criterion (k): Topics only sufficiently described to allow
reader to select appropriate material

7-15

We believe this has been accomplished. We have not
attempted to provide atutorial on SCM.

Criterion (I): Text on the Rationale Underlying the
Proposed Breakdowns

This document provides the rationale.

7-16 © |IEEE — Stoneman (Version 0.9) — February 2001

CHAPTER 8

SOFTWARE ENGINEERING M ANAGEMENT

Stephen G. MacDonell and Andrew R. Gray
University of Otago,
Dunedin, New Zealand
+64 3 479 8135 (phone) +64 3 479 8311 (fax)

stevemac@infoscience.otago.ac.nz

Table of Contents

1 INtrOQUCHION......ceiiieireeerteeee e 1
2 Déefinition of the Software Engineering Management
KNOWIEdgE ATEQ.......ccoeeeeeeeee vt 1
3 Breakdown of Topics for Software Engineering
MaNAgEMENT ... s 3
4 Breakdown Rationalecocccvvereeerrenerenenereeeereneesenenens 9
5 Matrix of Topicsvs. Reference Material..................... 10
6 Recommended References for Software Engineering
Management...........ooeccerrrcinrsee s 11
Appendix A — List of Further Readings.........c.cccoverereririnne. 12
Appendix B — References Used to Write and Justify the
(D= o2 1 o1 o o ST 14

Appendix C — Table of Correspondence with PMBOK.....15

1 INTRODUCTION

Thisis the current draft (version 0.9) of the knowledge area
description for Software Engineering Management. The
primary goals of this document are to:

1) define the Software Engineering Management
knowledge area,

2) present a breakdown of the knowledge area in an
hierarchical topic framework,

3) provide alist of references that addresses the topicsin
the breakdown,

4) provide atopic-reference matrix,

5) provide a list of further readings and supplementary
references that also address topics in this knowledge
area.

This document has been developed and written according
to the guidelines provided by the Software Engineering
Coordinating Committee of the IEEE Computer Society

© |IEEE — Stoneman (Version 0.9) — February 2001

and the ACM, as managed by the Université du Québec a
Montréal. As such, the document has been subject to a
number of constraints relating to goals 1 to 5 above (see
Chapter 1 of this Guide). These constraints have meant that
whilst every effort has been made to include all topics and
references of relevance, the lists are by no means
exhaustive. They are, however, sufficient to achieve the
objectives of the Guide to the SWEBOK project.

2 DEFINITION OF THE SOFTWARE ENGINEERING
MANAGEMENT KNOWLEDGE AREA

Before defining the Software Engineering Management
knowledge area it is first necessary to set out the scope or
context in which it is placed. As an organizational process,
it is also important that its relationship to other related
standards and to other knowledge areasis clear.

21 Scope and definition

The scope of this knowledge area follows the general focus
of the Guide; that is, “emphasis... is placed upon the
construction of useful software artifacts’ (page i, Preface to
the Guide to the SWEBOK). As aresult we are principally
concerned with issues related to software devel opment — the
acquisition of software solutions receives less attention
here.

Software engineering is characterized in this Guide
according to the IEEE definition: “(1) The application of a
systematic, disciplined, quantifiable approach to the
development, operation, and maintenance of software; that
is, the application of engineering to software.” Management
generally incorporates the following activities: planning,
coordinating, measuring, monitoring, controlling and
reporting. Combining these two definitions leads us to an
understanding of Software Engineering Management: the
application of management activities — planning,
coordinating, measuring, monitoring, controlling and

reporting — to ensure that the development of software is
systematic, disciplined and measured.

The Software Engineering Management knowledge area
therefore addresses the management of software

81

development and the measurement and modeling of
software development. Whilst measurement is an important
aspect of all Guide to the SWEBOK knowledge areas, it is
here that the topic is most focused, particularly with regard
to issues involved in goal-driven measurement selection,
model development and testing for the purposes of software
engineering management.

2.2 Themanagement of software engineering

Whilst it is true to say that in one sense it should be
possible to manage software engineering in the same way
as any other (complex) process, there are aspects particular
to software products and the software engineering process
that complicate effective management — just a few of them
areasfollows:

= the perception of dients is such that there is a lack of
appreciation for the complexity inherent in software
engineering, particularly in relation to the impact of
changing requirements

= related to the point just made, it is almost inevitable
that the software engineering process itsalf will
generate the need for new or changed client
reguirements

= as a result, software is often built in an iterative
process rather than a concrete sequence of closed tasks

= software engineering necessarily incorporates aspects
of creativity and discipline — maintaining an
appropriate balance between the two is often difficult

= unlike many other disciplines, we are largely lacking

an underlying theory (e.g. engineering is founded on
the principles of physics and mathematics)

= software engineers create intangible products that
cannot easily be tested in the same sense that a
physical product can

= the degree of novelty and complexity of the software
we are asked to build is extremely high, in that most (if
not all) of the common and simple products have
already been built

= we are faced with an extremely rapid rate of change in
the underlying technology.

2.3 Relationship to general management and project
management

With respect to software engineering, management
activities occur at two levels. Aspects of generd
organizational management are relevant in terms of their
impact on software engineering. For instance, planning at
the strategic, tactical and operational level, organizational
culture and behavior, and functional enterprise management
in terms of procurement, supply chain management,
marketing, sales, and distribution all have an influence,
albeit indirectly, on an organization’s software engineering
process. Perhaps more pertinent to this knowledge area is
the notion of project management, as “the construction of

8-2

useful software artifacts” is normally managed in the form
of (perhaps programs of) individual projects. In this regard
we find extensive support in the Guide to the Project
Management Body of Knowledge (PMBOK) [PMI, 1996],
which itself includes the following project management
knowledge areas. integration, scope, time, cost, quality,
human resource, communications, risk, and procurement.
Clearly all of these topics have direct relevance to this
knowledge area. Rather than attempt to duplicate the
content of the Guide to the PMBOK here, which would be
both impossible and inappropriate, we instead provide a
cross-reference table at the end of this document so that the
relationship between thetwo is evident.

24 Relationship to other Guide to the SWEBOK
knowledge ar eas and standards

Not unexpectedly this knowledge area is closely related to
others in the Guide to the SWEBOK, and reading the
following knowledge area documents in conjunction with

this one would be particularly useful. Materia that is
covered in these separate documentsis not duplicated here.

Software Configuration Management, as this deals
with the administration, monitoring and control of
collections of [software] components.

Software Engineering Process, where these process
activities must be managed.

Software Quality, as quality is constantly a goal of

management and is an aim of many activities that
must be managed.

In order to provide a broader context in which these
knowledge areas can be considered it is useful to map them
to the IEEE/EIA Standard for Information Technology
(ISO/IEC 12207) — Software life cycle processes. This sees
the four management-oriented knowledge areas principally
aligned to ‘6. Supporting Life Cycle Processes and to ‘7.
Organizational Life Cycle Processes’ asfollows:

Engineering Process

Guide to the SWEBOK ISO/IEC 12207
Chapter 7 Software 6.2 Configuration
Configuration Management
M anagement
Chapter 8 Software 7.1 Management
Engineering Management
Chapter 9 Software 7.3 Improvement

Chapter 11 Software
Quality

6.3 Quality Assurance 6.6
Joint Review

6.4 Verification 6.7 Audit

6.5 Validation

Chapters 2 through 6 of the Guide to the SWEBOK
represent the phases of the software development process
(and map to sections 5.3 Development and 5.5 Maintenance
of ISO/IEC 12207). Clearly each process must be managed
— issues of particular relevance to each process are dealt

© |EEE — Stoneman (Version 0.9) — February 2001

with in the associated knowledge area. Our focus is on the
relevant aspects of enterprise, process and project
management as they apply to ftware engineering rather
than to individual development processes.

25 Management and measurement

As aluded to above, the Software Engineering
Management knowledge area consists of both the
management process and measurement/metrics sub-areas.
Whilst these two topics are often regarded as being
separate, and indeed they do possess many mutually unique
aspects, their close relationship has led to their combined
treatment here as part of the Guide to the SWEBOK.
Unfortunately the public perception of the software
industry is that it delivers products late, over budget, with
poor quality and uncertain functionality. Measurement-
informed management — an assumed principle of any true
engineering discipline — can help to turn this perception
around. In essence, management without measurement,
qualitative and quantitative, suggests a lack of rigor, and
measurement without management suggests a lack of
purpose or context. In the same way, however, management
and measurement without expert knowledge is equally
ineffectual so we must be careful to avoid over-
emphasizing the quantitative aspects of Software
Engineering Management. Effective management requires
a combination of both numbers and stories.

The following working definitions are adopted here:

Management process refers to the activities that are
undertaken in order to ensure that the software
development process is performed in a manner

consistent with the organization's policies, goals, and
standards.

Measurement/metrics refers to the assignment of
values and labels to aspects of software development
(products, processes, and resources as defined by
[Fenton and Pfleeger, 1997]) and the models that are
derived from them whether these models are
developed using statistical, expert knowledge, or other
techniques.

The management process sub-area makes extensive use of
the measurement/metrics sub-area. This exchange between
the two sub-areas occurs continuously throughout the
software development processes.

3 BREAKDOWN OF TOPICS FOR SOFTWARE

ENGINEERING MANAGEMENT

As the Software Engineering Management knowledge area
is viewed here as an organizational process that
incorporates the notion of process and project management,
we have created a breakdown that is both topic-based and
life cycle-based. There are three major topic areas:
organizational management, which deals with high-level
management activities that have a relevant but somewhat
indirect impact on software engineering; process/project

© |IEEE — Stoneman (Version 0.9) — February 2001

management, which deals with generally accepted software
engineering management activities; and software
engineering measurement, which deals with the effective
development and implementation of measurement
programs in software engineering organizations. Within
each main topic area relevant sub-topics are listed, and
described where necessary. In particular, further
explanation is provided in the process/project management
and software engineering measurement topic areas where
distinct issues relating to software engineering management
warrant more detailed attention.

A. Organizational management

1. Policy management — organizational policies and
standards provide the framework in which software
engineering is undertaken. As such, they
operationalize overall organizational strategies and
have an indirect influence on the software engineering
process and its management. It is important that those
charged with the management of software engineering
both understand and influence the development,
dissemination, deployment and enforcement of
policies and standards. [Pfle: c2; Reif: c2; Sonm: ¢30;
Thay: c2,c4]

1. Meansof policy development
2. Policy dissemination and enforcement
3. Development and deployment of standards

2. Personnel management — policies and procedures used
at the organizational level to recruit, select, motivate
and reward personnel also affect the management of
software engineering teams and individuals. It is
acknowledged that in order to recruit and retain high-
quality personnel in the software engineering industry
it isvital that training, motivation, career development
and the like are given adequate attention. [F&P: c11;
Pfle: ¢3; Press: c3; Reif: ¢7,c8, Somm: c28; Thay:
c7,c8]

1. Hiring and retention
2. Training and motivation
3. Mentoring for career development

3. Communication management — even if project-based
communication is effective, an organization is
unlikely to survive long-term without clear policies
and procedures that are applicable in the wider
context. An awareness of communication channels
(formal and informal), conventions in terms of
terminology, form and style, mechanisms for feedback
and the impact of organizational structures on
communication, has an indirect but important
influence on communication within the software
engineering process. [Press: ¢3; Somm: ¢28; Thay:
cl,c3]

1. Communication channels and media
2. Meeting procedures

83

Softwar e Engineering M anagement

3. Written presentations
4. Oral presentations
5. Negotiation

Portfolio management — organizations that deal with
multiple clients and/or multiple projects are often
faced with the need to prioritize their effort in terms of
the projects they undertake. It is important that those
involved in software engineering management both
contribute to and are guided by the organizational
management of project portfolios, where portfolios
are constructed in light of the advantages and
disadvantages of undertaking individual projectsusing
avariety of cost/benefit and similar analysis methods.
[Press: c10]

1. Strategy development and coordination

2. Genera investment management technigques
3. Project selection
4

Portfolio construction (risk minimization and
value maximization)

Procurement management — in cases where an
organization outsources (part of) their operation to an
external agency this process must be managed
effectively in order to ensure a successful outcome.
As it is not uncommon for organizations to purchase
some or all of their software engineering activity in
such a way, organizational policies and procedures

Organizational Pr ocess/Pr oj ect Softwar_e
Management 1 Management | Endineering
M easur ement
> Policy Management Initiation and scope > Gods
id definition
Personnel] M easurement
™ Management id Planning > Selection
Communication i Enactment Measuring Software
™ Management > and its
Review and Development
Portfolio i i
> Management Evaluation » Collection of data
> Closure)
Procurement Software Metric
» Management > Models

should exist to facilitate effective provider-consumer
relationships. [Press: ¢5; Reif: ¢15; Somm: c2]

1. Procurement planning and selection
2. Supplier contract management

B. Process/project management (largely following
7.11SO/IEC 12207 M anagement Process)

1. Initiation and scope definition— the focus of this set of
activities is on the effective determination of process
and/or project requirements via various elicitation
methods and the assessment of the process/project’s
feasibility from a variety of standpoints. Once
feasibility has been established, the remaining task
within this process is the specification of requirements
review and modification procedures (see also Chapter
2 of the Guide to the SWEBOK).

1. Determination and negotiation of requirements—
methods of requirements engineering, elicitation
(e.g. observation), analysis (e.g. data modelling,
use case modelling), specification, and validation
(e.g. prototyping) must be selected and applied
in cognizanhce of various stakeholder
perspectives. This leads to the determination of
process/project scope, objectives and constraints.
Thisisaways an important activity, asit setsthe
visible boundaries for the set of tasks being
undertaken, and is particularly so where the
novelty of the undertaking is high. [D&T: c4;
Pfle: c4; Press: ¢5,c11,c12; Somm: c411]

© |EEE — Stoneman (Version 0.9) — February 2001

2. Feasibility analysis (technical, operational,
financial, socia/palitical) — the software
engineering manager must be assured that
adequate capability and resources are available
in the form of people, expertise, facilities,
infrastructure, and support (either internally or
externally) to ensure that the process/project can
be successfully completed in a timely and cost-
effective manner (using, for example, a
requirement-capability matrix). This often
requires some ‘ball-park’ estimation of effort
and cost based on appropriate methods (e.g.
expert-informed analogy techniques). [Press:
c10]

3. Process for the review and revision of
requirements — given the inevitability of change,
it is vital that agreement among stakeholders is
reached at this early point as to the means by
which scope and requirements are to be reviewed
and revised (e.g. via agreed change management
procedures). This clearly implies that scope and
requirements will not be ‘set in stone’ but can
and should be revisited at pre-determined points
as the process occurs (e.g. at design reviews,
acceptance tests). If changes are accepted then
some form of traceability analysis and risk
analysis (see below) should be used to ascertain
the impact of those changes. A managed change
approach should also be useful when it comes
time to review the outcome of the
process/project, as the scope and requirements
should form the basis for evaluation of success.
[Somm: 4]

Planning — the iterative planning process is informed
by the scope and requirements and the establishment
of feasibility. At this point, software processes are
evaluated and the most appropriate (given the nature
of the process/project, its degree of novelty, its
functional and technical complexity, its quality
requirements, and so on) is sdected. Where relevant,
the project itself is then planned in the form of an
hierarchical decomposition of tasks, the associated
deliverables of each task are specified and
characterized in terms of quality and other attributes
in line with stated requirements, and detailed effort,
schedule and cost estimation is undertaken. Resources
are then allocated to tasks so as to optimize personnel
productivity (at individual, team, and organizational
levels), equipment and materials utilization and
adherence to schedule. Detailed risk management is
undertaken and the ‘risk profile’ of the process/project
is discussed among and accepted by all relevant
stakeholders. Comprehensive quality management
processes are determined as part of the planning
process in the form of procedures and responsibilities
for quality assurance, verification and validation (see
also Chapter 11 of the Guide to the SWEBOK). As an

© |IEEE — Stoneman (Version 0.9) — February 2001

iterative process, it is vital that the processes and
responsibilities for ongoing plan management, review
and revision are also clearly stated and agreed.

1. Process planning — selection of the appropriate
software process (e.g. spiral, cleanroom) and the
specification and deployment of appropriate
process standards are undertaken in the light of
the particular scope and requirements of the
process/project. Relevant methods and tools are
aso selected. [D&T: ¢5,c11; Pfle: c2; Press: c2;
Reif: c1,c2,c4; Somm: c1; Thay: c3]

2. Project planning — appropriate methods and tools
are used to decompose the project into tasks,
with associated inputs, outputs and completion
conditions (e.g. work breakdown structure).
[D&T: cl0; Pfle: c3; Press: c3,c5; Reif: c3,c4;
Somm: ¢3; Thay: c4,c6]

3. Determine deliverables — the product(s) of each
task (e.g. high level architectural design,
inspection report) are specified and
characterized. [Pfle: ¢3; Press. ¢3,c7; Somm: c3;
Thay: c4]

4. Effort, schedule and cost estimation — based on
the breakdown of tasks, inputs and outputs, the
expected effort range required for each is
determined using a calibrated estimation model
based on historical size-effort data where
available and relevant (e.g. anaogy-based
estimation, function point analysis); task
dependencies are established and potential
bottlenecks are identified using suitable methods
(e.g. critical path analysis); bottlenecks are
resolved where possible and the expected
schedule of tasks with projected start times,
durations and end times is produced (e.g. PERT
chart); resource requirements (people, tools) are
translated into cost estimates. [D&T: c10; F&P:
c12; Pfle: c3; Press: c5,c7; Reif: c4,c5; Somm:
€3,¢29; Thay: c5]

5. Resource alocation — equipment, facilities and
people are associated with the scheduled tasks,
including the allocation of responsibilities for
completion (using, for example, a Gantt chart).
This activity is informed and constrained by the
availability of resources and their optima use
under these circumstances, as well as by issues
relating to personnel e.g. productivity of
individual s'teams, team dynamics,
organizational and team structures. [Pfle: ¢3;
Press. ¢5; Reif: ¢7,c8; Somm: c3; Thay: c6,c7]

6. Risk management — risk identification and
analysis (what can go wrong, how and why, and
what are the likely consequences), critical risk
assessment (which are the most significant risks
in terms of exposure, which can we do

85

something about in terms of leverage), risk
mitigation and contingency planning
(formulating a strategy to deal with risks and to
manage the risk profile) are al undertaken. Risk
assessment methods (e.g. decision trees and
process simulations) should be used in order to
highlight ~and evaluate risks. Project
abandonment policies should also be determined
at this point in discussion with all other
stakeholders. [D&T: ¢10; Pfle: c3; Press. c6;
Reif: c11; Thay: c4]

Quality management — quality is defined in
terms of pertinent attributes of the specific
process/project and any associated product(s),
perhaps in both quantitative and qualitative
terms. (These quality attributes will have been
determined in the specification of detailed
requirements.) Thresholds for adherence to
quality are set for each attribute as appropriate to
stakeholder expectations for the software at
hand. Procedures relating to ongoing software
quality assurance (SQA) throughout the process
and for product (deliverable) verification and
validation are also specified at this stage (e.g.
reviews and inspections) (see also Chapter 11 of
the Guide to the SWEBOK). [D&T: ¢7,c9; Press:
¢8; Reif: ¢10; Somm: c30,c31; Thay: c9,c10]

Plan management — in an environment where
change is an expectation rather than a shock, it is
vital that plans are themselves managed. This
requires that adherence to plans is systematically
directed, monitored, reviewed, reported, and,
where appropriate, revisad. Plans associated with
other management-oriented support processes
(e.g. documentation, configuration management
and problem resolution) also need to be managed
in the same manner. [Somm: ¢3; Thay: c4]

Enactment — the plans are then implemented and the
processes embodied in the plans are enacted.
Throughout, there is a focus on adherence to the
plans, with an over-riding expectation that such
adherence will lead to the successful satisfaction of
stakeholder requirements and achievement of the
process/project objectives. Fundamental to enactment
are the ongoing management activities of measuring,
monitoring, controlling and reporting.

1.

Implementation of plans— the processisinitiated
and the process/project activities are undertaken
according to the schedule. In the process,
resources are utilized (e.g. personnel effort,
funding) and deliverables are produced (e.g.
architectural design documents, test cases). [Pfle:
€3; Somm: c3]

Implementation of measurement process — the
measurement process is enacted alongside the
software development process/project, ensuring

that relevant and useful datais collected (see aso
section C of this knowledge area breakdown).
[F&P: c13,cl4; Press. c4; Reif: ¢9,c10,c12;
Thay: ¢3,c10]

Monitor process — adherence to the various plans
is systematically assessed continually and at pre-
determined intervals. Outputs and completion
conditions for each task are anayzed,
deliverables are evaluated in terms of their
required characteristics (e.g. via joint reviews,
test audits), effort expenditure, schedule
adherence and costs to date are investigated,
resource usage is examined, the process/project
risk profile is revisited, and adherence to quality
requirements is evaluated. Metric data is
modeled and analyzed. Variance analysis based
on the deviation of actua from expected
outcomes and values is undertaken. This may be
in the form of cost overruns, schedule slippage
and the like. Outlier identification and analysis
of quality and other metric data is performed
(e.g. defect density analysis). Risk exposure and
leverage are recalculated and decisions trees,
simulations and so on are re-run in the light of
new data. These activities enable problem
detection and exception identification based on
exceeded thresholds. Outcomes ae reported as
needed and certainly where acceptable
thresholds are surpassed. [D&T: ¢7,c9,c10;
Press. ¢7; Reif: ¢9,c10; Somm: c31; Thay: ¢3;c9]

Control process — the outcomes of the process
monitoring activities provide the basis on which
action decisions are taken. Where appropriate,
and where the impact and associated risks are
modeled and managed, changes can be made to
the process/project. This may take the form of
corrective action (e.g. re-testing certain
components), it may involve the incorporation of
contingencies so that similar occurrences are
avoided (e.g. the decision to use prototyping to
assist in requirements validation), and/or it may
entail the revision of the various plans and other
project documents (e0. requirements
specification) b accommodate the unexpected
outcomes and their flow-on implications. In
some instances it may lead to abandonment of
the process/project. In all cases, change control
and configuration management procedures are
adhered to (see Chapter 7 of the Guide to the
SWEBOK), decisions are documented and
communicated to all relevant parties, plans are
revisited and revised where necessary, and
relevant data is recorded in the central database
(see aso section C of this knowledge area
breakdown). [D&T: c10; Press: c9; Reif: ¢c9,cl10;
Thay: c3,c9]

© |EEE — Stoneman (Version 0.9) — February 2001

5. Reporting — at specified and agreed periods,
adherence to the plans is reported, both within
the organization (e.g. to the project portfolio
steering committee) and to external stakeholders
(e.g. clients, users). Reports of this nature should
focus on overal adherence as opposed to the
detailed reporting required frequently within the
process/project team. [Reif: ¢9,c10; Thay:
c3,c10]

Review and evaluation — at critical points in the
process/project overall progress towards achievement
of the stated objectives and satisfaction of stakeholder
reguirements is evaluated. Similarly, assessments of
the effectiveness of the overall process to date, the
personnel involved, and the tools and methods
employed are also undertaken at particular milestones.

1. Determining satisfaction of requirements —since
attaining stakeholder (user and customer)
satisfaction is one of our principal aims, it is
important that progress towards this aim is
formally and periodically assessed. This occurs
at the achievement of major process/project
milestones (e.g. confirmation of software design
architecture, software integration joint review).
Variances from expectations are identified and
appropriate action is taken. As in the Control
process activity above, in al cases change
control and configuration management
procedures are adhered to (see Chapter 7 of the
Guide to the SWEBOK), decisions are
documented and communicated to all relevant
parties, plans are revisited and revised where
necessary, and elevant data is recorded in the
central database (see also section C of this
knowledge area breakdown). [Reif: ¢9,cl0;
Thay: ¢3,c10]

2. Reviewing and evauating performance -
periodic performance reviews for process/project
personnel provide insights as to the likelihood of
adherence to plans as well as possible areas of
difficulty (e.g. team member conflicts). The
various methods, tools and techniques employed
are evaluated for their effectiveness and
appropriateness, and the process itself is
systematically and periodically assessed for its
relevance, utility and efficacy in the
process/project context (see aso the other
SWEBOK chapters). Where appropriate,
changes are made and managed. [D&T: c7; Pfle:
€7,c8; Press: ¢8; Reif: ¢9,c10; Thay: ¢3,c10]

Closure — the process/project reaches closure when all

of the plans and embodied processes have been

enacted and completed. At this stage the criteria for
process/project success are revisited. Once closure is

established, archival, post mortem and process
improvement activities are performed.

© |IEEE — Stoneman (Version 0.9) — February 2001

1. Determining closure — the tasks as specified in
the plans are complete and satisfactory
achievement of completion criteria is confirmed.
All planned products have been delivered with
acceptable characteristics. Requirements are
checked off and confirmed as satisfied and the
objectives of the process/project have been
achieved. These processes generally involve all
stakeholders and result in the documentation of
client acceptance and any remaining known
problem reports. [D&T: ¢7; Reif: ¢9,¢c10; Thay:
c3,¢c10]

2. Closure activities — after closure has been
confirmed, archival of process/project materials
takes place in line with stakeholder-agreed
methods, location and duration. The
organization's measurement database is updated
with final process/project data and post-project
analyses are undertaken. A process/project post
mortem is undertaken so that issues, problems
and opportunities encountered during the process
(particularly via Review and Evauation) are
analyzed, lessons are drawn from the process,
and are fed into organizationa learning and
improvement endeavors (see also Chapter 9 of
the Guide to the SWEBOK). [Pfle: c11; Somm:
c31]

(Software then moves into operation,
maintenance and, perhaps eventually, retirement.
Whilst these tasks also need to be managed they
are not explicitly addressed here — software
maintenance as a set of activities is addressed in
Chapter 6 of the Guide to the SWEBOK, and the
other topics (software operation and retirement)
are outside the scope of the Guide.)

C. Software engineering measurement

1.

Determining the goals of a measurement program —
the ad hoc approach to software engineering
measurement that characterized early efforts —that is,
measuring everything possible — often failed to
provide genuine insights in terms of organizational
improvement, or worse, it led to spurious outcomes
that did not generalize to other cases. Each
measurement endeavor should be guided by
organizational objectives and driven by an over-riding
goal that has organizational improvement at its
foundation. In this way, measurement effort
expenditure should ultimately result in some sort of
cost-effective gain to the organization, based on
justified prioritization of efforts.

1. Organizational objectives — organizational
strategies inform software engineering
management in terms of identifying the broad
issues and objectives that hold principal
relevance at the organizational level (e.g. being

87

8-8

first-to-market with new products). [F&P:
€3,c13; Press: c4]

2. Software process improvement goals -
organizational objectives are translated into
specific software-related goals that, if achieved,
can assist the organization in attaining its
objectives (e.0. optimizing software
development with a view to shortening the
product life-cycle whilst maintaining process and
product quality). [F&P: ¢3,c13; Pfle: c12; Press:
c4; Reif: c2; Somm: c31]

M easurement selection — development of an effective
measurement process is informed by the
organizational objectives and software process
improvement goals as specified. This provides the
necessary context for more specific and detailed
measurement selection. Some understanding of the
validity, accuracy and reliability of the selected
measures is also crucia in terms of assessing the
value of the measurement program and the confidence
that can be placed in the results generated from it.

1. Goakdriven measurement selection — once
software process improvement goals are set, we
are then in a position to utilize a decomposition
process in order to ask questions of direct
relevance and interest, leading finally to the
selection of useful and relevant measures (e.g.
the Goal/Question/Metric approach incorporates
just such a decomposition process). In relation to
shortening the product life-cycle we may adopt a
measurement goal of maximizing software
development productivity. In turn, we might ask
guestions such as: how much effort is expended
on rework? what is the range of developer
productivity rates? is developer productivity in
line with danges in developer experience? All
require quite different measures in order to
provide the answers needed to achieve the over-
riding goals. [F&P: c1,c3,c13,cl4; Reif: cl2;
Thay: c10]

2. Measurement validity — an awareness of issues
relating to measurement validity and reliability is
essential if the measurement program is to
provide effective and bounded results. In
particular, an appreciation of measurement scales
and the implications of each scale type in
relation to the subsequent selection of data
analysis methods is especially important. [F&P:
c2; Pfle: c11]

Measuring software and its development — whilst the

application of measurement to software engineering

can be complex, particularly in terms of modeling and
analysis methods (see below), there are severa
aspects of software engineering measurement that are
fundamental and that underlie much of the more
advanced measurement and analysis processes.

Furthermore, achievement of process and product
improvement efforts can only be assessed if a set of
baseline measures has been established. Software
engineering management therefore includes, as a
minimum, the measurement of product size, product
structure, resource utilization and product and process
quality.

1. Size measurement — software product size is
most often assessed by measures of length (e.g.
lines of source code in a module, pages in a
requirements specification document) or
functionality (e.g. function points in a
specification or design, COCOMO evaluation of
a system design). [F&P: c7; Press. ¢4,c18,c23;
Reif: ¢12; Somm: c30]

2. Structure measurement — a diverse range of
measures of software product structure may be
applied to both high- and low-level design and
code artifacts to reflect control-flow (e.g. the
cyclomatic number, code knots), data-flow (e.g.
measures of dlicing), nesting (e.g. nesting
polynomial measure, the BAND measure),
control structures (e.g. the vector measure, the
NPATH measure), and modular structure and
interaction (e.g. information flow, tree-based
measures, coupling and cohesion). [F&P: c8;
Press: ¢18,c23]

3. Resource measurement — whilst some effort can
be made to assess the utilization of tools and
hardware, the primary resource that needs to be
managed in software engineering is personnel.
As a result the main measures of interest are
those related to productivity of individuals and
of teams (e.g. using a measure of function points
produced per unit of person-effort) and their
associated levels of experience in software
engineering in general and perhaps in particular
technologies. [F& P: ¢3,c11; Somm: c29]

4. Quality measurement — as a multi-dimensional
attribute, quality measurement is less
straightforward to define than those above.
Furthermore, some of the dimensions of quality
(e.g. usahility, maintainability, and value to the
client) are likely to require measurement in
qualitative rather than quantitative form. A more
detailed discussion of software quality
assessment is provided in Chapter 11 of the
Guide to the SWEBOK. [F&P: ¢9,c10; Press:. c4;
Reif: c12; Somm: c30]

Collection of data — when developing a measurement

process it is important to ensure that the optimal set of

metrics is chosen. By optimal it is not just meant that
the metrics are those that necessarily provide the
greatest (predictive) power for the desired purpose. It
is also important that the cost of data collection is
minimized or at least balanced against the benefits to

© |EEE — Stoneman (Version 0.9) — February 2001

be gained from the outputs of the program. The
possibility of reusing metrics collected for other
purposes is also considered as part of the collection
process. The data collected is aso useful from the
perspective of enabling appropriate models to be
developed for analysis, classification and prediction.

1. Survey techniques and form design — data
collection forms and questionnaires are pilot
tested before they are wused on actua
processes/projects. Forms are logically laid out,
require minimum completion, and make use of
default values where possible. Assistance for
form and survey completion is made available.
[F&P: c4,c5]

2. Automated and manual data collection — all data
collection has associated costs, both direct (in
terms of people employed and software
purchased) and indirect (in the costs of
interruptions and delays as metric data are
analyzed). For this reason, the measurement
process is treated as an investment in the
development process, with justification for
expenditure and quantification of the resulting
benefits. Procedures relating to data collection
detail the point at which the datais available, the
way in which it is collected, the personnel
responsible for collection, and the cost
associated with collection. Where possible,
unobtrusive automated data collection is
preferred. This information is important in
ensuring that that program is actually feasible.
The potential exists for a measurement process
to be created, only to find that some of the data
cannot physically be collected, or not in
sufficient quantities. [F&P: ¢5; Press: c4; Somm:
c30]

5. Software metric models — as the data is collected and
the neasurement database is populated we become
able to build models using both data and knowledge.
These models exist for the purposes of analysis,
classification and prediction. Such models need to be
evaluated to ensure that their levels of accuracy are
sufficient and that their limitations are known and
understood. The refinement of models, which takes
place both during and after projects are completed, is
another important activity. The implementation of
metric models is more management-oriented since the
use of such models has an influential effect on
personnel behavior.

1. Model building, calibration and evaluation — the
goal-driven approach to measurement informs
the model building process to the extent that
models are constructed to answer relevant
questions and achieve software improvement
goals. This process is also influenced by the
implied limitations of particular measurement

© |IEEE — Stoneman (Version 0.9) — February 2001

scales in relation to the choice of analysis
method. The models are calibrated (by using
particularly relevant observations e.g. recent
projects, projects using similar technology) and
their effectiveness is evaluated (e.g. by testing
their performance on holdout samples). [F&P:
c4,c6,c13; Pfle: ¢3,c11,c12; Somm: c29]

2. Implementation, interpretation and refinement of
models — the calibrated models are applied to the
process/project (see Process/project enactment),
their outcomes are interpreted and evaluated in
the context of the process/project, and the
models are then refined where appropriate.
[F&P: c6; Pfle: ¢3,c11,c12; Press. c4; Somm:
c29]

4 BREAKDOWN RATIONALE

The following subsections each describe how the proposed
draft of the knowledge area description meets the criteria
given in the project guidelines.

One or two breakdowns with identical topics
A single breakdown of topicsis shown.
Soundness and reasonabl eness

The primary references and secondary sources were
examined quite thoroughly in order to list all main topics.
The division of the management process into life-cycle
based topics seems both plausible and useful in terms of
educational presentation.

Generally acceptable

In our view the material in this knowledge area description
meets the criterion of being generally acceptable in terms of
being “applicable to most projects, most of the time” and
having “widespread consensus about their value and
usefulness” [PMI, 1996]. These topics are those that
receive the greatest coverage in both the original texts and
additional materials suggested here.

Similarly, the Industrial Advisory Board definition of
“study material of a software engineering licensing exam
that a graduate would pass after completing four years of
work experience” appears to be met. However, in this case
the specific responsibilities of the graduate will obviously
influence in what areas they have the opportunity to gain
experience. Project management is often a more senior
position and as such, graduates with four years of practice
may not have had significant experience in managing, at
least large-scale, projects.

The importance of measurement and its role in better
management practices is widely acknowledged and so its
importance can only increase in coming years. Effective

measurement has become one of the cornerstones of
organizational maturity.

Compatible with various schools of thought within software
engineering

89

Excluding debate on measurement theoretic issues there is
little intense debate in the measurement/metrics field. There
is nothing that appears to be controversial in the
management process sub-area.

Compatible with breakdown in industry, literatures, and
standards

The breakdown is in line with others proposed, and is
particularly aligned with the IEEE/EIA Standard for
Information Technology (ISO/IEC 12207) — Software life
cycle processes and the Guide to the Project Management
Body of Knowledge.

Depth and node density
The suggested guidelines have been met here.
Meaningful topic names

We have continued to use the common terminology (in
software engineering circles) of software metrics here,
rather than limiting ourselves to measurement. We
recognize that this could lead to some confusion with
engineers familiar with the empirical model-building
process from another discipline, necessitating careful
wording. The alternative of using more standard
terminology however, whilst well intentioned, would make

5 MATRIX OF TOPICSVS. REFERENCE MATERIAL

less obvious the connection between this work and many
excellent papers and books (including Fenton and
Pfleeger’ s seminal work [Fenton and Pfleeger, 1997]). Here
it seems that the best solution is to use both sets of
expressions in a somewhat interchangeable manner so that
practitioners are familiar with both.

Brevity of topic descriptions

Although they have been expanded significantly between
the last draft and this, the descriptions remain adequately
brief and to the point.

Specific reference material

Additional reference material for more specialized topics

not covered adeguately in the primary reference material
has been added.

Proposed reference material (publicly available)
All material is publicly available.

Maximum number of core reference materialsis 15
We have adhered to this limit.

Preferenceto IEEE or ACM copyrighted material

This is evident in the selection of reference material,
especially the collections of papers.

Thelevel of granularity used in Table 1 isamixture of second and third level topics, depending on the specificity of the topic

in question.

Topic D&T F&P Pfle Press Reif Somm Thay
A. Organizational Management

Policy management Ch.2 Ch.2 Ch.30 Ch.24
Personnel management Ch. 11 Ch.3 Ch.3 Ch.7,8 Ch.28 Ch.7,8
Communication management Ch.3 Ch.28 Ch.1,3
Portfolio management Ch. 10

Procurement management Ch.5 Ch.15 Ch.2

B. Process/project Management

Initiation and scope definition

Determination and negotiation of Ch.4 Ch.4 Ch.51112 Ch. 411
requirements

Feasibility analysis Ch. 10

Review/revision of requirements Ch.4

Planning

Process planning Ch.511 Ch.2 Ch.2 Ch.124 Ch.1 Ch.3
Project planning Ch.10 Ch.3 Ch.35 Ch.34 Ch.3 Ch.4,6
Determine deliverables Ch.3 Ch.37 Ch.3 Ch.4
Effort, schedule and cost estimation Ch.10 Ch.12 Ch.3 Ch.5,7 Ch.45 Ch.3,29 Ch.5
Resource allocation Ch.3 Ch.5 Ch.7.8 Ch.3 Ch.6,7
Risk management Ch.10 Ch.3 Ch.6 Ch.11 Ch.4
Quality management Ch.79 Ch.8 Ch.10 Ch.30,31 | Ch.9,10
Plan management Ch.3 Ch. 4
Enactment

Implementation of plans Ch.3 Ch.3

8-10

© |EEE — Stoneman (Version 0.9) — February 2001

Topic D&T F&P Pfle Press Reif Somm Thay

Implementation of measurement process Ch. 13,14 Ch.4 Ch.9,10,12 Ch.3,10
Monitor process Ch.79,10 Ch.7 Ch.9,10 Ch.31 Ch.39
Control process Ch.10 Ch.9 Ch.9,10 Ch.39
Reporting Ch.9,10 Ch.3,10
Review and evaluation

Determining satisfaction of requirements Ch.9,10 Ch.310
Reviewing and evaluating performance Ch.7 Ch.738 Ch.8 Ch.9,10 Ch.310
Closure

Determining closure Ch.7 Ch.9,10 Ch.3,10
Closure activities Ch.11 Ch.31

C. Software Enginesring Measurement

Determining the goals of a measurement

program
Organizational objectives Ch.313 Ch.4
Software process improvement goals Ch.3,13 Ch.12 Ch.4 Ch.2 Ch.31
Measurement selection
Goal-driven measurement selection Ch. Ch.12 Ch.10
1,31314
Measurement validity Ch.2 Ch. 11
Measuring software and its devel opment
Size measurement Ch.7 Ch.4,18,23 | Ch.12 Ch.30
Structure measurement Ch.8 Ch.18,23
Resource measurement Ch.311 Ch.29
Quality measurement Ch.9,10 Ch.4 Ch.12 Ch.30
Collection of data
Survey techniques and form design Ch.45
Automated and manual data collection Ch.5 Ch.4 Ch.30
Software metric models
Mode! building, calibration and evaluation Ch.4,6,13 Ch.311,12 Ch.29
Implementation, interpretation and refinement Ch.6 Ch.311,12 | Ch.4 Ch.29
of models
Table 1: Topicsand their references
3) [Pfle: Pfleeger, 1998] Shari Lawrence Pfleeger. 1998.
6 RECOMMENDED REFERENCES FOR SOFTWARE Software engineering: theory and practice. Prentice
ENGINEERING MANAGEMENT Hall. [Chapters 2-4, 7, 8, 11, 12]
The Topic-Reference matrix shown above requires the 4) [Press: Pressman, 1997] Roger S. Pressman. 1997.
following references to be included in the Guide to the Software engineering: a practitioner's approach.
SWEBOK. (Fourth edition) McGraw-Hill. [Chapters 2-12, 18, 23]
1) [D&T: Dorfman and Thayer, 1997] Merlin Dorfman 5 [Reif: Reifer, 1997] Donald J. Reifer (ed). 1997.
and Richard H. Thayer (eds). 1997. Software Soft_vvare management, 5" edition. IEEE Computer
engineering. IEEE Computer Society. [Chapters 4, 5, 7, Society. [Chapters 1-5, 7-12, 15]
9-11] 6) [Somm: Sommerville, 1996] lan Sommerville. 1996.
2) [F&P: Fenton and Pfleeger, 1997] Norman E. Fenton Software engineering. Addison-Wesley. [Chapters 1-11,
and Shari Lawrence Pfleeger. 1997. Software metrics: a 28-31]
rigorous practical approach. PWS Publishing 7) [Thay: Thayer, 1997] Richard H. Thayer (e.d). 1997.
Company. [Chapters 1-14] Software engineering project management. |EEE

Computer Society. [Chapters 1-10]

© |IEEE — Stoneman (Version 0.9) — February 2001 8-11

APPENDIX A — LIST OF FURTHER READINGS

The following readings are useful sources of information
for this knowledge area.

Process/Project Management:

Adler, T.R., Leonard, J.G. and Nordgren, RK. Improving
risk management: moving from risk elimination to risk
avoidance. Information and Software Technology 41: 29-34
(1999).

Baines, R. Across disciplines. risk, design, method,
process, and tools. |EEE Soft. (July/Aug): 61-64 (1998)

Binder, R.V. Gn a manufacturing quality model work for
software? |EEE Soft. (September/October): 101-102,105
(1997).

Boehm, B.W. and DeMarco, T. Software risk management
(Guest editors' introduction). |EEE Soft. (May/June): 17-19
(1997).

Carr, M.J. Risk management may not be for everyone.
|EEE Soft. (May/June): 21,24 (1997).

Charette, R.N. Large-scale project management is risk
management. | EEE Soft. (July): 110-117 (1996).

Charette, R.N., Adams, K.M. and White, M.B. Managing
risk in software maintenance. |EEE Soft. (May/June): 43-50
(2997).

Callier, B., DeMarco, T. and Fearey, P. A defined process
for project postmortem review. IEEE Soft. (July): 6572
(1996).

Conrow, E.H. and Shishido, P.S. Implementing risk
management on software intensive projects. |EEE Soft.
(May/June): 83-89 (1997).

DeMarco, T. and Lister, T. Peopleware: productive
projects and teams. Dorset House Publishing, 1987.

DeMarco, T. and Miller, A. Managing large software
projects. |IEEE Soft. (July): 24-27 (1996).

Favaro, J. and Pfleeger, S.L. Making software development
investment decisions. ACM S GSoft Software Engineering
Notes 23(5): 69-74 (1998).

Fayad, M.E and Cline, M. Managing object-oriented
software development. Computer (Sept): 26-31 (1996)

Fleming, R. A fresh perspective on old problems. |EEE
Soft. (January/February): 106-113 (1999).

Garvey, P.R., Phair, D.J. and Wilson, JA. An information

architecture for risk assessment and management. |IEEE
Soft. (May/June): 25-34 (1997).

Gemmer, A. Risk management: moving beyond process.
Computer (May): 33-43 (1997).

Glass, R.L. The ups and downs of programmer stress.
Communications of the ACM 40(4): 17-19 (1997).

Glass, R.L. Short-term and long-term remedies for runaway
projects. Comm. ACM 41(7): 13-15 (1998).

8-12

Glass, R.L. How not to prepare for a consulting assignment,
and other ugly consultancy truths. Communications of the
ACM 41(12): 11-13 (1998).

Henry, SIM. and Stevens, K.T. Using Belbin's leadership
role to improve team effectiveness. an empirical
investigation. Journal of Systems and Software 44: 241-250
(1999).

Hohmann, L. Coaching the rookie manager. |EEE Soft.
(January/February): 16-19 (1999).

Hsia, P. Making software development visible. IEEE Soft.
(March): 23-26 (1996).
Humphrey, W.S. Managing Technical People: Innovation,

Teamwork, and the Software Process. Addison-Wedley,
1997.

Jackman, M. Homeopathic remedies for team toxicity.
|EEE Soft. (July/August): 43-45 (1998).

Kansala, K. Integrating risk assessment with cost
estimation. |EEE Soft. (May/June): 61-67 (1997).

Karlsson, J. and Ryan, K. A cost-value aproach for
prioritizing requirements. |EEE Soft. (September/October):
87-74 (1997).

Karolak, D.W. Software engineering risk management.
|IEEE Computer Society, 1996.

Keil, M., Cule, P.E., Lyytinen, K. and Schmict, R.C. A
framework for identifying software project risks.
Communications of the ACM 41(11): 76-83 (1998).

Kitchenham, B. and Linkman, S. Estimates, uncertainty,
andrisk. |EEE Soft. (May/June): 69-74 (1997).

Leung, H.K.N. A risk index for software producers.
Software Maintenance: Research and Practice 8: 281-294
(1996).

Lister, T. Risk management is project management for
adults. IEEE Soft. (May/June): 20,22 (1997).

Mackey, K. Why bad things happen to good projects. |IEEE
Soft. (May): 27-32 (1996).

Mackey, K. Beyond Dilbert: creating cultures that work.
|EEE Soft. (January-February): 48-49 (1998).

Madachy, R.J. Heuristic risk assessment using cost factors.
|EEE Soft. (May/June): 51-59 (1997).

Martin, C. The need for software risk management tools.
Application Development Trends. p.20,22.

McConell, S.C. Rapid Development: Taming Wild Software
Schedules. Microsoft Press, 1996.

McConell, S.C. Software Project Survival Guide. Microsoft
Press, 1997.

Moynihan, T. How experienced project managers assess
risk. IEEE Soft. (May/June): 35-41 (1997).

Nesi, P. Managing OO projects better. |IEEE Soft.
(July/August): 50-60 (1998).

© |EEE — Stoneman (Version 0.9) — February 2001

Nolan, A.J. Learning from success. |EEE Soft.

(January/February): 97-105 (1999).

Parris, K.V.C. Implementing accountability. IEEE Soft.
(July): 83-93 (1996).

Putnam, L.H. and Myers, W. Industrial Strength Software:

Effective Management Using Measurement. Los Alamitos
CA, |IEEE Computer Society Press (1997) 309p.

Rodrigues, A.G. and Williams, T.M. System dynamics in
software project management: towards the development of

a forma integrated framework. European Journal of
Information Systems 6: 51-66 (1997).

Ropponen, J. and Lyytinen, K. Can software risk
management improve system development: an exploratory
study. European Journal of Information Systems 6: 41-50
(2997).

Schmidt, C., Dart, P, Johnston, L., Sterling, L. and Thorne,

P. Disincentives for communicating risk: a risk paradox.
Information and Software Technology 41: 403-411 (1999).

Slaughter, S.A., Harter, D.E. and Krishnan, M.S.
Evaluating the cost of software quality. Communications of
the ACM 41(8): 67-73 (1998).

van Scoy, R.L. Software development risk: opportunity, not
problem. CMU/SEI-92-TR-30, Software Engineering
Institute, Carnegie Mellon University, 1992.

van Solingen, R., Berghout, E. and van Latum, F.

Interrupts: just a minute never is. |IEEE Soft.
(September/October): 97-103 (1998).

Whitten, N. Managing Software Development Projects:
Formulasfor Success. Wiley, 1995.

Williams, R.C., Walker, JA. and Dorofee, A.J. Putting risk
management into practice. IEEE Soft. (May/June): 75-82
(1997).

Software Engineering Measurement:

Briand, L.C., Morasca, S. and Basili, V.R. Property-based
software engineering measurement. |EEE Transactions on
Software Engineering 22(1): 68-86 (1996).

Briand, L., EIl Emam, K. and Morasca, S. On the
application of measurement theory in software engineering.
Empirical Software Engineering 1: 61-88 (1996).

Briand, L.C., Morasca, S. and Basili, V.R. Response to:
Comments on "Property-based software engineering
measurement: refining the addivity properties'. |IEEE
Transactions on Software Engineering 23(3): 196-197
(1997).

Brooks, F.P., Jr. No silver bullet: essence and accidents of
software engineering. Computer (Apr.): 10-19 (1987).
Davis, A.M. Predictions and farewells. |IEEE Soft.
(July/August): 6-9 (1998).

Fenton, N.E. and Pfleeger, S.L. Software Metrics. A

Rigorous and Practical Approach. London, International
Thomson Computer Press (1997) 638p.

© |IEEE — Stoneman (Version 0.9) — February 2001

Fuggetta, A., Lavazza, L., Morasca, S., Cinti, S., Oldano,
G. and Orazi, E. Applying GQM in an industrial software
factory. ACM Transactions on Software Engineering and
Methodology 7(4): 411-448 (1998).

Glass, R.L. The redlities of software technology payoffs.
Communications of the ACM 42(2): 74-79 (1999).

Grable, R., Jernigan, J., Pogue, C. and Divis, D. Metrics for
small projects. experiences a the SED. |EEE Soft.
(March/April): 21-29 (1999).

Grady, R.B. and Caswell, D.L. Software Metrics:
Establishing A Company-Wide Program. Englewood Cliffs
NJ, USA, Prentice-Hall (1987).

Hall, T. and Fenton, N. Implementing effective software
metrics programs. | EEE Soft. (Mar/Apr): 55-64 (1997).

Kautz, K. Making sense of measurement for small
organizations. |EEE Soft. (March/April): 14-20 (1999).

Kernighan, B. and Pike, R. Finding performance
improvements. |EEE Soft. (March/April): 61-65 (1999).

McConnell, S. Software engineering principles. |EEE Soft.
(March/April): 6-8 (1999).

Offen, RJ. and Jeffery, R. Establishing software
measurement programs. IEEE Soft. (Mar/Apr): 4553
(2997).

Pfleeger, S.L. Assessing measurement (Guest editor's
introduction). | EEE Soft. (Mar/Apr): 25-26 (1997).

Pfleeger, S.L., Jeffery, R., Curtis, B. and Kitchenham, B.
Status report on software measurement. |IEEE Soft.
(March/April): 33-43 (1997).

Robillard, P.N. The role of knowledge in software
development. Comm. of the ACM 42(1): 87-92 (1999).

van Latum, F., van Solingen, R., Oivo, M., Hoisl, B.,
Rombach, D. and Ruhe, G. Adopting GQM -based

measurement in an industrial environment. |EEE Soft.
(January -February): 78-86 (1998).

Zelkowitz, M.V. and Wallace, D.R. Experimental models
for validating technology. Computer (May): 23-31 (1998).

8-13

APPENDIX B — REFERENCES USED TO WRITE AND
JUSTIFY THE DESCRIPTION

[IEEE/EIA, 1998] |EEE/EIA. 1998. Standard for
Information Technology (ISO/IEC 12207) — Software life
cycle processes. Institute of Electrical and Electronics
Engineers/Electronic Industries Association Engineering
Department.

[ISO/NEC, 1999] ISO/IEC. 1999. Draft Technical Report
(DTR) 16326 — Software engineering — guide for the
application of 1SO/IEC 12207 to project management.
International Organization for Standardization/International
Electrotechnical Commission.

[Moore, 1998] James W. Moore. 1998. Software
engineering standards. a user's road map. |EEE Computer
Society.

[PMI, 1996] Project Management Institute Standards

Committee. 1996. A guide to the project management body
of knowledge (PMBOK). Project Management I nstitute.

8-14

© |EEE — Stoneman (Version 0.9) — February 2001

APPENDIX C — TABLE OF CORRESPONDENCE WITH PMBOK

7.1 1SO/IEC 12207 Management Process Activities
PMBOK PMBOK Knowledge Area 7.1.1 Initiation 7.12 7.13 714 7.15
Knowledge Processes and Scope Planning | Enactment | Review and | Closure
Areas Definition Evaluation
4. Project 4.1 Project Plan Development X X
Integration 4.2 Project Plan Execution X X
Management 4.3 Overall Change Control X X
5. Project Scope 5.1 Initiation X X
Management 5.2 Scope Planning X X
5.3 Scope Definition X X
5.4 Scope Verification X X X
5.5 Scope Change Control X X X X
6. Project Time 6.1 Activity Definition X X
Management 6.2 Activity Sequencing X
6.3 Activity Duration Estimating X X X
6.4 Schedule Devel opment X
6.5 Schedule Control X X
7. Project Cost 7.1 Resources Planning X X
Management 7.2 Cost Estimating X X X
7.3 Cost Budgeting X
7.4 Cost Control X X
8. Project Quality | 8.1 Quality Planning X X
Management 8.2 Quality Assurance X X
8.3 Quality Control X X
9. Project Human | 9.1 Organizational Planning X X X
Resource 9.2 Staff Acquisition X X
Management 9.3 Team Devel opment X X
10. Project 10.1 Communications Planning X X
Communications | 10.2 Information Distribution X
Management 10.3 Performance Reporting X X
10.4 Administrative Closure X X
11. Project Risk 11.1 Risk Identification X X
Management 11.2 Risk Quantification X X
11.3 Risk Response Devel opment X X X
11.4 Risk Response Control X X X X
12. Project 12.1 Procurement Planning X X
Procurement 12.2 Solicitation Planning X X
Management 12.3 Solicitation X X
12.4 Source Selection X X X
12.5 Contract Administration X X
12.6 Contract Close-out X X

Table 2: Correspondence between PMBOK knowledge areas and 1SO/IEC 12207 management process activities (taken from
ISO/IEC Draft Technical Report (DTR) 16326)

© |IEEE — Stoneman (Version 0.9) — February 2001 8-15

CHAPTER 9

SOFTWARE ENGINEERING PROCESS

Khaled El Emam
Institute for Information Technology
National Research Council
Building M-50, Montreal Road
Ottawa, Ontario K1A OR6, Canada
+1 (613) 998 4260
Khaled.e-emam@iit.nrc.ca

Table of Contents

A 1014 oo [0 Tox 1 o o TR 1
2 Definition of the Software Engineering Process
KNOWIEAQGE ATEA.......cereeeerreereereee s 1
3 Breakdown of Topics for Software Engineering
Process and Breakdown Rationalecccoceecerreneunene 2
4 Key Referencesvs. Topics Mapping......ccceevveveeeninene 10

5 Recommended References for Software Process....... 12
Appendix A — List of Further Readings..........ccccevvereerrnnenne 14

1 INTRODUCTION

The software engineering process Knowledge Area has
witnessed dramatic growth over the last decade. This was
partly due to a recognition by major acquirers of systems
where software is a major component that process issues
can have an important impact on the ability of their
suppliers to deliver. Therefore, they encouraged a focus on
the software engineering process as a way to remedy this.
Furthermore, the academic community has recently pursued
an active research agenda in developing new tools and
techniques to support software engineering processes, and
aso empirically studying these processes and their
improvement. It should also be recognized that many
software engineering process issues are closely related to
other disciplines, namely those in the management
sciences, albeit they have used a different terminology. The
industrial adoption of software engineering process
technology has also been increasing, as demonstrated by a
number of published success stories. Therefore, there isin
fact an extensive body of knowledge on the software
engineering process.

© |IEEE — Stoneman (Version 0.9) — February 2001

Keywords

software process, software process improvement, software
process modeling, software process measurement,
organizational change, software process assessment.

Acronyms

CBA IPI CMM Based Appraisal for Internal Process
Improvement

CMM Capability Maturity Model

EF Experience Factory

FP Function Points

G/IQ/M Goal/Question/Metric

HRM Human Resources M anagement

IDEAL I nitiating-Diagnosing-Establishing-Acting-
Leaning (model)

MIS Management Information Systems

PDCA Plan-Do-Check-Act (cycle)

QIP Quality Improvement Paradigm

ROI Return on Investment

SCE Software Capability Evaluation

SEPG Software Engineering Process Group

SW-CMM Capability Maturity Model for Software

2 DEFINITION OF THE SOFTWARE ENGINEERING
PROCESS KNOWLEDGE AREA

The software engineering process Knowledge Area (KA)
can potentially be examined at two levels. The first level
encompasses the technical and managerial activities within
the software engineering process that are performed during
software acquisition, development, maintenance, and
retirement. The second is the metalevel, which is
concerned with the definition, implementation,

9-1

measurement, management, change and improvement of
the software engineering process itself. The latter we will
term softwar e process engineering.

Thefirst level is covered by the other KA’ s of this Guide to
the Software Engineering Body of Knowledge. This

Knowledge Area is concerned with the second: software
process engineering.

2.1 Scope

This Knowledge Area does not explicitly address the
following topics:

+ Human resources management (for example, as
embodied in the People CMM [30][31])

+ Systems engineering processes

While important topics in themselves, they are outside the
direct scope of software process engineering. However,
where relevant, interfaces (or references to interfaces) to
HRM and systems engineering will be addressed.

2.2 Currency of Material

The software process engineering discipline is rapidly
changing, with new paradigms and new models. The
breakdown and references included here are pertinent at the
time of writing. An attempt has been made to focus on
concepts to shield the knowledge area description from
changes in the field, but of course this cannot be 100%
successful, and therefore the material here must be evolved
over time. A good example is the on-going CMM
Integration effort (see
http://www.sei.cmu.edu/cmmi/products/model s.html for the
latest document suite) and the Team Software Process
effort [71], both of which are likely to have a considerable
influence on the software process community once widely
disseminated, and would therefore have to be
accommodated in the knowledge area description.

In addition, where Internet addresses are provided for
reference material, these addresses were verified at the time
of press. However, there are no guarantees that the

documents will still be available on-line at the same
location in the future.

2.3 Structure of the KA

To structure this KA in a way that is directly related to
practice, we have defined a generic process model for
software process engineering (see Figure 1). This model
identifies the activities that are performed in a process
engineering context. The topics are mapped to these
activities. The advantage of such a structure is that one can
see, in practice, where each of the topics is relevant, and
provides an overall rationale for the topics. This generic
model is based on the PDCA (plan-do-check-act) cycle
(also see[79)]).

9-2

3 BREAKDOWN OF
ENGINEERING
RATIONALE

SOFTWARE
BREAKDOWN

TOPICS FOR
PROCESS AND

Below is the overall breakdown of the topics in this

knowledge area. Further explanations are provided in the
subsequent sections.

Software Engineering Process Concepts
Themes
Terminology

Process Infrastructure
The Software Engineering Process Group
The Experience Factory

Process M easurement
M ethodology in Process Measurement
Process M easurement Paradigms

Analytic Paradigm
Benchmarking Paradigm

Process Definition
Types of Process Definitions
Life Cycle Framework Models
Software Life Cycle Process Models
Notations for Process Definitions
Process Definition Methods
Automation

Qualitative Process Analysis
Process Definition Review
Root Cause Analysis

Process Implementation and Change

Paradigms for Process Implementation and
Change
Guidelines for Process Implementation and
Change

Evaluating the Outcome of
Implementation and Change

Process

3.1 Software Engineering Process Concepts

3.1.1 Themes

Dowson [35] notes that “All process work is utimately
directed at ‘software process assessment and
improvement’”. This means that the objective is to

implement new or better processes in actual practices, be
they individual, project or organizational practices.

© |EEE — Stoneman (Version 0.9) — February 2001

Sofwar e Engineering Process

Software
; . e P
Engineering | | Process | Process | Process | Qualitative 'm Ir;CiStS tion
Process Infrastructure M easur ement Definition Process Analysis _| prementa
and Change
Concepts
Themes Software Methodology in Types of Process Process Paradigms for
B Engineering - Process Definitions - Definition Process
Terminology Process Group M easurement . Review Implementation
. Life Cycle and Change
Experience Process Ly Framework Root Cause
Factory l» Measurement Models * Andysis Guidelines for
Paradigms Process
Software Life Implementation
- Cycle Process and Change
Models
] Evaluating the
Notations for Outcome of
> Process Process
Definitions Implementation
Process and Change
> Definition
Methods

We describe the main topics in the software process
engineering (i.e., the meta-level that has been alluded to
earlier) areain terms of a cycle of process change, based on
the commonly known PDCA cycle. This cycle highlights
that individual process engineering topics are part of a
larger process to improve practice, and that process
evaluation and feedback is an important element of process
engineering.

Software process engineering consists of four activities as
illustrated in the model in Figure 1. The activities are
sequenced in an iterative cycle allowing for continuous
feedback and improvement of the software process.

The “Establish Process Infrastructure” activity consists of
establishing commitment to process implementation and
change (including obtaining management buy-in), and
putting in place an appropriate infrastructure (resources and
responsibilities) to make it happen.

The activities “Planning of Process Implementation and
Change” and “Process Implementation and Change” are the
core ones in process engineering, in that they are essential
for any long-lasting benefit from process engineering to
accrue. In the planning activity the objective is to
understand the current business objectives and process
needs of the organization®, identify its strengths and
weaknesses, and make a plan for process implementation

1

1

The term “organization” is meant in aloose sense here. It could be a
project, ateam, or even an individual.

© |IEEE — Stoneman (Version 0.9) — February 2001

» Automation

and change. In “Process Implementation and Change”, the
objective is to execute the plan, deploy new processes
(which may involve, for example, the deployment of tools
and training of staff), and/or change existing processes.

The fourth activity, “Process Evaluation” is concerned with
finding out how well the implementation and change went;
whether the expected benefits materialized. This is then
used as input for subsequent cycles.

At the centre of the cycle is the “Process Experience Base”.
This is intended to capture lessons from past iterations of

the cycle (e.g., previous evaluations, process definitions,

and plans). Evaluation lessons can be qualitative or
quantitative. No assumptions are made about the nature or
technology of this “Process Experience Base”, only that it
be a persistent storage. It is expected that during subsequent
iterations of the cycle, previous experiences will be adapted
and reused. It is also important to continuously re-assess
the utility of information in the experience base to ensure
that obsol ete information does not accumulate.

With this cycle as a framework, it is possible to map the
topics in this knowledge area to the specific activities
where they would be most relevant. This mapping is aso
shown in Figure 1. The bulleted boxes contain the
Knowledge Areatopics.

It should be noted that this cycle is not intended to imply
that software process engineering is relevant to only large
organizations. To the contrary, process-related activities
can, and have been, performed successfully by small
organizations, teams, and individuals. The way the

9-3

activities defined in the cycle are performed would be
different depending on the context. Where it is relevant, we
will present examples of approaches for small
organizations.

7

J Process Measurement (9.3.3)

§

% Process Definition (9.3.4)

J Qualitative Process Analysis
(9.3.5)

\

/ Process
Infrastructure (9.3.2)

Establish
Process
Infrastructure

7
/' Process

Implementation and

Planning of
Process
Implementation
and Change
g/ Change (9.3.6)
Process
Implementation
and Change

Process
Experience
Base

Process
Evaluation

:: Process Measurement (9.3.3)

/ Qualitative Process Analysis

,(935)

§ Process Implementation and
Change(9.3.6)

Figure 1 A model of the software process engineering
cycle, and the relationship of its activities to the KA topics.
The circles are the activities in the process engineering
cycle. The square in the middle of the cycle is a data store.
The bulleted boxes are the topics in this Knowledge Area

that map to each of the activities in the cycle. The numbers
refer to the topic sectionsin this chapter.

Thetopicsin thisKA areasfollows:

Process Infrastructure: This is concerned with
putting in place an infrastructure for software process
engineering.

Process Measurement: This is concerned with
quantitative techniques to diagnose software processes,
to identify strengths and weaknesses. This can be
performed to initiate process implementation and

change, and afterwards to eval uate the consequences of
process implementation and change.

Process Definition: This is concerned with defining
processes in the form of models, plus the automated
support that is available for the modeling task, and for
enacting the models during the software process.

Qualitative Process Analysis: This is concerned with
qualitative techniques to analyze software processes, to
identify strengths and weaknesses. This can be
performed to initiate process implementation and

change, and afterwards to eval uate the consequences of
process implementation and change.

Process Implementation and Change: This is
concerned with deploying processes for the first time
and with changing existing process. This topic focuses
on organizational change. It describes the paradigms,
infrastructure, and critical success factors necessary for
successful process implementation and change. Within
the scope of this topic, we aso present some
conceptual issues about the evaluation of process
change.

The main, generaly accepted, themes in the software
engineering process field have been described by Dowson

in [35]. His themes are a subset of the topics that we cover
in this KA. Below are Dowson' s themes:

+ Process definition: covered in topic 3.4 of this KA
breakdown

+ Process assessment: covered in topic 3.3 of this KA
breakdown

¢ Process improvement: covered in topics 3.2 and 3.6 of
thisKA breakdown

+ Process support: covered in topic 34 of this KA
breakdown

We also add one theme in this KA description, namely the
qualitative process analysis (covered in topic 3.5).

3.1.2 Terminology

There is no single universal source of terminology for the
software engineering process field, but good sources that
define important terms are [51][96], and the vocabulary
(Part 9) in the ISO/IEC TR 15504 documents[81].

3.2 Process|nfrastructure

At the initiation of process engineering, it is necessary to
have an appropriate infrastructure in place. This includes
having the resources (competent staff, tools and funding),
as well as the assignment of responsibilities. This is an
indication of management commitment to and ownership of
the process engineering effort. Various committees may
have to be established, such as a steering committee to
oversee the process engineering effort.

It is widely recognized that a team separate from the
developers/maintainers must be set up and tasked with
process analysis, implementation and change [16]. The
main reason for this is that the priority of the
developers/maintainers is to produce systems or releases,
and therefore process engineering activities will not receive
as much attention as they deserve or need. This, however,
should not mean that the project organization is not
involved in the process engineering effort at all. To the
contrary, their involvement is essential. Especialy in a
small organization, outside help (e.g., consultants) may be
required to assist in making up a process team.

© |EEE — Stoneman (Version 0.9) — February 2001

Two types of infrastructure are have been used in practice:
the Experience Factory [8][9] and the Software Engineering
Process Group [54]. The IDEAL handbook [100] provides

a good description of infrastructure for process
improvement in general.

3.2.1 The Software Engineering Process Group

The SEPG is intended to be the central focus for process

improvement within an organization. The SEPG typically
has the following ongoing activities:

¢+ Obtains and maintains the support of al levels of
management

+ Facilitates software process assessments (see below)

+ Works with line managers whose projects are affected
by changes in software engineering practice

+ Maintains collaborative working relationships with
software engineers

+« Arranges and supports any training or continuing
education related to process implementation and
change

+ Tracks, monitors, and reports on the status of
particular improvement efforts

+ Facilitates the creation and maintenance of process
definitions

+ Maintains aprocess database

+ Provides process consultation to development projects
and management

+ Participate in integrating software engineering
processes with other organizational processes, such as
systems engineering

Fowler and Rifkin [54] suggest the establishment of a
steering committee consisting of line and supervisory
management. This would alow management to guide
process implementation and change, align this effort with
strategic and business goals of the organization, and also
provides them with visibility. Furthermore, technical
working groups may be established to focus on specific
issues, such as selecting a new design method to setting up
ameasurement program.

3.2.2 The Experience Factory

The concept of the EF separates the project organization
(e.g., the software development organization) from the
improvement organization. The project organization
focuses on the development and maintenance of
applications. The EF is concerned with improvement. Their
relationship is depicted in Figure 2.

The EF isintended to institutionalize the collective learning
of an organization by developing, updating, and delivering
to the project organization experience packages (e.g., guide

© |IEEE — Stoneman (Version 0.9) — February 2001

books, models, and training courses).? The project
organization offers to the experience factory their products,
the plans used in their development, and the data gathered
during development and operation. Examples of experience
packagesinclude:

+ resource models and baselines® (eg., local cost
models, resource allocation models)

+ change and defect baselines and models (e.g., defect
prediction models, types of defects expected for the
application)

+ project models and baselines (e.g., actual vs. expected
product size)

+ process definitions and models (e.g., process models
for Cleanroom, Ada waterfall model)

+ method and technique evaluations (e.g., best method
for finding interface faults)

+ products and product parts (e.g., Ada generics for
simulation of satellite orhits)

+« quaity models (eg. reliability models, defect
slippage models, ease of change models), and

+ lessons learned (e.g., risks associated with an Ada

development).

Project Experience Factory:
Organization: Capture, Analyze, and Package

Develop Experiences
Applications \

metrics &
lessons
learned

Application
Developers, guide books,
models,

training

Ny

Application

/Application
Testers

Figure 2 The relationship between the Experience Factory
and the project organization as implemented at the
Software Engineering Laboratory at NASA/GSFC. This
diagram is reused here from [10] with permission of the
authors.

3.3 Process M easurement

Process measurement, as used here, means that quantitative
information about the process is collected, analyzed, and
interpreted. Measurement is used to identify the strengths
and weaknesses of processes, and to evaluate processes

1

2 Also refered to as process assets
Baselines can be interpreted as descriptive reports presenting the
current status.

9-5

after they have been implemented and/or changed (e.g.,
evaluate the ROI from implementing a new process).*

An important assumption made in most process engineering
work is illustrated by the path diagram in Figure 3. Here,
we assume that the process has an impact on process
outcomes. Process outcomes could be, for example, product
quality (faults per KLOC or per FP), maintainability (effort
to make a certain type of change), productivity (LOC or FP
per person month), time-to-market, the extent of process
variation, or customer satisfaction (as measured through a
customer survey). This relationship depends on the
particular context (e.g., size of the organization, or size of
the project).

Process

Process >
A Outcomes

Context

Figure 3 Path diagram showing the relationship between
process and outcomes (results). The context affects the
relationship between the process and process outcomes.
This means that this process to process outcome
relationship depends on the context value.

Not every process will have a positive impact on all
outcomes. For example, the introduction of software
inspections may reduce testing effort and cost, but may
increase interval time if each inspection introduces large
delays due to the scheduling of large inspection meetings
[131]. Therefore, it is preferred to use multiple process

outcome measures that are important for the organization’s
business.

In general, we are most concerned about the process
outcomes. However, in order to achieve the process
outcomes that we desire (e.g.,, better quality, better
maintainability, greater customer satisfaction) we have to
implement the appropriate process.

Of course, it is not only process that has an impact on
outcomes. Other factors such as the capability of the staff
and the tools that are used play an important role®
Furthermore, the extent to which the process is
institutionalized or implemented (i.e., process fidelity) is

Process measurement may serve other purposes aswell. For example,
process measurement is useful for managing a software project. Some
of these are covered in the Software Engineering Management and
other KA’s. Here we focus on process measurement for the purpose of
process implementation and change.

And when evaluating the impact of a process change, for example, it
isimportant to factor out these other influeneces.

9-6

important as it may explain why “good” processes do not
give the desired outcomes.

One can measure the quality of the software process itself,
or the process outcomes. The methodology in Section 3.3.1
is applicable to both. We will focus in Section 3.3.2 on
process measurement since the measurement of process

outcomes is more genera and applicable in other
Knowledge Areas.

3.3.1 Methodology in Process M easurement

A number of guides for measurement are available
[108][109][126]. All of these describe a goal-oriented
process for defining measures. This means that one should
start from specific information needs and then identify the
measures that will satisfy these needs, rather than start from
specific measures and try to use them. A good practical text
on establishing and operating a measurement program has
been produced by the Software Engineering Laboratory
[123]. This also discusses the cost of measurement. Texts
that present experiences in implementing measurement in
software organizations include [86][105][115]. An
emerging international standard that defines a generic
measurement process is also available (I1SO/IEC CD 15939:
Information Technology — Software Measurement Process)
[82].

Two important issues in the measurement of software
engineering processes are the reliability and validity of
measurement. Reliability is concerned with random
measurement error. Validity is concerned with the ability of
the measure to really measure what we think it is
measuring.

Reliability becomes important when there is subjective
measurement, for example, when assessors assign scores to
a particular process. There are different types of validity
that ought to be demonstrated for a software process
measure, but the most critical one is predictive validity.
This is concerned with the relationship between the process
measure and the process outcome. A discussion of both of
these and different methods for achieving them can be
found in [40][59]. An IEEE Standard describes a
methodology for validating metrics (IEEE Standard for a
Software Quality Metrics Methodology. |IEEE Std 1061-
1998) [76].

An overview of existing evidence on reliability of software
process assessments can be found in [43][49], and for
predictive validity in [44][49][59][88] .

3.3.2 Process Measurement Paradigms

Two general paradigms that are useful for characterizing
the type of process measurement that can be performed
have been described by Card [21]. The distinction made by
Card is a useful conceptual one. Although, there may be
overlapsin practice.

The first is the analytic paradigm. This is characterized as
relying on "quantitative evidence to determine where
improvements are needed and whether an improvement

© |EEE — Stoneman (Version 0.9) — February 2001

initiative has been successful"® The second, the
benchmarking paradigm, "depends on identifying an
‘excellent’ organization in a field and documenting its
practices and tools'. Benchmarking assumes that if a less-
proficient organization adopts the practices of the excellent
organization, it will also become excellent. Of course, both

paradigms can be followed at the same time, since they are
based on different types of information.

We use these paradigms as general titles to distinguish
between different types of measure ment.

3.3.21 Analytic Paradign?

The analytic paradigm is exemplified by the Quality
Improvement Paradigm (QIP) consisting of a cycle of
understanding, assessing, and packaging [124] .

+ Experimenta and Observational Studies

+ Experimentation involves setting up controlled or
quasi experiments in the organization to evaluate
processes [101]. Usually, one would compare a new
process with the current process to determine whether
the former has better process outcomes. Correlational
(nonexperimental) studies can also provide useful

feedback for identifying process improvements (e.g.,
for example, seethe study described by Agresti [2]).

. Process Simulation

+« The process simulation approach can be used to
predict process outcomes if the current process is
changed in a certain way [117]. Initial data about the
performance of the current process needs to be
collected, however, asabasis for the simulation.

+ Orthogonal Defect Classification

+ Orthogonal Defect Classification is a technique that
can be used to link faults found with potential causes.
It relies on a mapping between fault types and fault
triggers [22][23]. There exists an |IEEE Standard on
the classification of faults (or anomalies) that may
aso be useful in this context (EEE Standard for the
Classification of Software Anomalies. |IEEE Std 1044
1993) [74].

. Statistical Process Control

+ Placing the software process under statistical process
control, through the use of control charts and their
interpretations, is an effective way to identify
stability, or otherwise, in the process. One recent book
provides a good introduction to SPC in the context of
software engineering [53].

. The Personal Software Process

6 Although quditative evidence also can play an important role. In such
acase, see Section 3.5 on qualitative process analysis.

These are intended as examples of the anaytic paradigm, and reflect
what is currently done in practice. Whether a specific organization
uses al of these techniaues will depend, at least partialy, on its
maturity.

© |IEEE — Stoneman (Version 0.9) — February 2001

¢« This defines a series of improvements to an
individual’s development practices in a specified
order [70]. It is ‘bottomup’ in the sense that it
stipulates personal data collection and improvements
based on the datainterpretations.

3.3.2.2 Benchmarking Paradigm

This paradigm involves measuring the maturity of an
organization or the capability of its processes. The
benchmarking paradigm is exemplified by the software
process assessment® work. A general introductory overview
of process assessments and their application is provided in
[135].

¢ Process assessment models

An assessment model captures what are believed to be
good practices. The good practices may pertain to
technical software engineering activities only, or may
also encompass, for example, management, systems
engineering, and human resources management
activities as well.

Architectures of assessment models

There are two general architectures for an assessment
model that make different assumptions about the order
in which processes must be measured: the continuous
and the staged architectures [110]. At this point it is
not possible to make a recommendation as to which
approach is better than another. They have
considerable differences. An organization should
evaluate them to see which are most pertinent to their
needs and objectives when sel ecting a model.

Assessment models

The most commonly used assessment model in the
software community is the SW-CMM [122]. It is also
important to recognize that ISO/IEC 15504 is an
emerging international standard on software process
assessments [42][81]. It defines an exemplar
assessment model and conformance requirements on
other assessment models. 1SO 9001 is also a common
model that has been applied by software organizations
(usually in conjunction with 1SO 9000-1) [132]. Other
notable examples of assessment models are Trillium
[25], Bootstrap [129], and the requirements
engineering capability model [128]. There are also
maturity models for other software processes
available, such as for testing [18][19][20], a
measurement maturity model [17], and a maintenance
maturity model [36] (although, there have been many
more capability and maturity models that have been
defined, for example, for design, documentation, and
formal methods, to name afew). A maturity model for

1

8

In some instances the term “appraisal” is used instead of assessment,
and the term “capabillity evaluation” is used when the appraisal isfor
the purpose of contract award.

9-7

systems engineering has also been developed, which
would be useful where a project or organization is
involved in the development and maintenance of
systems including software [39]. The applicability of
assessment models to small organizations is addressed
in [85][120], where assessiments models tailored to
small organizations are presented.

. Process assessment methods

In order to perform an assessment, a specific
assessment method needs to be followed. In addition
to producing a quantitative score that characterizes the
capability of the process (or maturity of the
organization), an important purpose of an assessment
is to create a climate for change within the
organization [37]. In fact, it has been argued that the
latter is the most important purpose of doing an
assessment [38].

The most well known method that has a reasonable
amount of publicly available documentation is the
CBA IPI [37]. This method focuses on assessments
for the purpose of process improvement using the
SW-CMM. Many other methods are refinements of
this for particular contexts. Another well known
method using the SW-CMM, but for supplier
selection, is the SCE [6]. The activities performed
during an assessment, the distribution of effort on
these activities, as well as the atmosphere during an
assessment is different if it is for the purpose of
improvement versus contract award. Reguirements on
both types of methods that reflect what are believed to
be good assessment practices are provided in[81][99].

There have been criticisms of various models and methods
following the benchmarking paradigm, for example
[12][50][62][87]. Most of these criticisms were concerned
with the empirical evidence supporting the use of
assessments models and methods. However, since the
publication of these articles, there has been an
accumulation of systematic evidence supporting the

efficacy of process assessments
[24][47][48][60][64][65][66][94].

3.4 Process Definition

Software engineering processes are defined for a number of
reasons, including: facilitating human understanding and
communication, supporting process improvement,
supporting process management, providing automated
process guidance, and providing automated execution

support [29][52][68]. The types of process definitions
required will depend, at least partially, on the reason.

It should be noted also that the context of the project and
organization will determine the type of process definition
that is most important. Important variables to consider
include the nature of the work (e.g., maintenance or
development), the application domain, the structure of the

9-8

delivery process (e.g., waterfal, incremental, evolutionary),
and the maturity of the organization.

There are different approaches that can be used to define
and document the process. Under this topic the approaches
that have been presented in the literature are covered,
although at this time there is no data on the extent to which
these are used in practice.

3.4.1 Typesof Process Definitions

Processes can be defined at different levels of
abstraction (e.g., generic definitions vs. tailored
definitions, descriptive vs. prescriptive vs.
proscriptive). The differentiation amongst these has
been described in [69][97][111].

Orthogonal to the levels above, there are also types of

process definitions. For example, a process definition
can be aprocedure, apolicy, or astandard.

3.4.2 LifeCycle Framework Models

These framework models serve as a high level
definition of the phases that occur during
development. They are not detailed definitions, but
only the high level activities and their
interrelationships. The common ones are: the waterfall
model, throwaway prototyping model, evolutionary
prototyping model, incremental/iterative development,
spiral model, reusable software model, and automated
software synthesis. (see [11][28][84][111][113]).
Comparisons of these models are provided in
[28][32], and a method for selection amongst many of
them in[3].

3.4.3 Software Life Cycle Process Models

Definitions of life cycle process models tend to be
more detailed than framework models. Another
difference being that life cycle process models do not
attempt to order their processes in time. Therefore, in
principle, the life cycle processes can be arranged to
fit any of the life cycle frameworks. The two main
references in this area are ISO/IEC 12207:
Information Technology — Software Life Cycle
Processes [80] and ISO/IEC TR 15504: Information
Technology — Software Process Assessment [42][81].
Extensive guidance material for the application of the
former has been produced by the IEEE Guide for
Information Technology - Software Life Cycle
Processes - Life cycle data, |IEEE Std 12207.1-1998,
and Guide for Information Technology - Software Life
Cycle Processes — Implementation. Considerations
|IEEE Std 12207.2-1998) [77][78]. The latter defines a
two dimensional model with one dimension being
processes, and the second a measurement scale to
evaluate the capability of the processes. In principle,
ISO/IEC 12207 would serve as the process dimension
of ISO/IEC 15504.

© |EEE — Stoneman (Version 0.9) — February 2001

The |EEE standard on developing life cycle processes
aso provides a list of processes and activities for
development and maintenance (IEEE Standard for
Developing Software Life Cycle Processes, IEEE Std
1074-1991) [73], and provides examples of mapping
them to life cycle framework models. A standard that
focuses on maintenance processes is also available
from the IEEE (IEEE Sandard for Software
Maintenance, |EEE Std 1219-1992) [75].

3.4.4 Notationsfor Process Definitions

Different elements of a process can be defined, for
example, activities, products (artifacts), and resources [68].
Detailed frameworks that structure the types of information
required to define processes are described in[4][98].

There are a large number of notations that have been used
to define processes. They differ in the types of information
defined in the above frameworks that they capture. A text
that describes different notations is[125].

Because there is no data on which of these was found to be
most useful or easiest to use under which conditions, this
Guide covers what seemingly are popular approaches in
practice. data flow diagrams [55], in terms of process
purpose and outcomes [8l], as a list of processes
decomposed in constituent activities and tasks defined in
natural language [80], Statecharts [89][117] (also see [63]
for a comprehensive description of Statecharts), ETVX
[116], Actor-Dependency modeling [14][134], SADT
notation [102], Petri nets [5], IDEFO [125], rule-based [7],
and System Dynamics [1]. Other process programming
languages have been devised, and these are described in
[29][52][68].

3.4.5 Process Definition Methods

These methods specify the activities that must be
performed in order to develop and maintain a process
definition. These may include eliciting information from
developers to build a descriptive process definition from
scratch, and to tailoring an existing standard or commercial
process. Examples of methods that have been applied in
practice are [13][14][90][98][102]. In general, there is a
strong similarity amongst them in that they tend to follow a
traditional software development life cycle.

3.4.6 Automation

Automated tools either support the execution of the process
definitions, or they provide guidance to humans performing
the defined processes. In cases where process anaysis is
performed, some tools allow different types of simulations
(e.g., discrete event simulation).

There exist tools that support each of the above process
definition notations. Furthermore, these tools can execute
the process definitions to provide automated support to the
actual processes, or to fully automate them in some
instances. An overview of process modeling tools can be

© |IEEE — Stoneman (Version 0.9) — February 2001

found in [52], and of process-centered environments in
[57][58].

Recent work on the application of the Internet to the
provision of real-time process guidanceis described in[91].

3.5 Qualitative Process Analysis

The objective of qualitative process analysis is to identify
the strengths and weaknesses of the software process. It can
be performed as a diagnosis before implementing or
changing a process. It could also be performed after a
process is implemented or changed to determine whether
the change has had the desired effect.

Below we present two techniques for qualitative anaysis

that have been used in practice. Although it is plausible that
new techniques would emerge in the future.

3.5.1 Process Definition Review

Qualitative evaluation means reviewing a process definition
(either a descriptive or a prescriptive one, a both), and
identifying deficiencies and potential process
improvements. Typical examples of this are presented in
[5][89]. An easily operational way to analyze aprocessisto
compare it to an existing standard (national, international,
or professional body), such as | SO/IEC 12207 [80].

With this approach, one does not collect quantitative data
on the process. Or if quantitative datais collected, it plays a
supportive role. The individuals performing the analysis of
the process definition use their knowledge and capabilities

to decide what process changes would potentially lead to
desirable process outcomes.

3.5.2 Root Cause Analysis

Another common qualitative technique that is used in
practice is a “Root Cause Analysis’. This involves tracing
back from detected problems (e.g., faults) to identify the
process causes, with the aim of changing the process to
avoid the problems in the future. Examples of this for
different types of processes are described in
[23][27][41][107].

With this approach, one starts from the process outcomes,
and traces back along the path in Figure 3 to identify the
process causes of the undesirable outcomes. The
Orthogonal Defect Classification technique described in
Section 3.3.2.1 can be considered a more formalized

approach to root cause analysis using quantitative
information.

3.6 Process|mplementation and Change

This topic describes the situation when processes are
deployed for the first time (e.g., introducing an inspection
process within a project or a complete methodology, such
as Fusion [26] or the Unified Process [83]), and when

9-9

current processes are changed (e.g., introducing a tool, or
optimizing a procedure).” In both instances, existing
practices have to be modified. If the modifications are
extensive, then changes in the organizational culture may
be necessary.

3.6.1 Paradigmsfor Process Implementation and Change

Two general paradigms that have emerged for driving
process implementation and change are the Quality
Improvement Paradigm (QIP) [124] and the IDEAL model

[100]. The two paradigms are compared in [124]. A
concrete instantiation of the QIP is described in [16].

3.6.2 Guidelinesfor Process Implementation and Change

Process implementation and change is an instance of
organizational change. Most successful organizational
change efforts treat the change as a project in its own right,
with appropriate plans, monitoring, and review.

Guidelines about process implementation and change
within software engineering organizations, including action
planning, training, management sponsorship and
commitment, and the selection of pilot projects, ad that
cover both the transition of processes and tools, are givenin
[33][92][95][104][114][120][127][130][133]. An empirical
study evaluating success factors for process change is
reported in [46]. Grady describes the process improvement
experiences at Hewlett-Packard, with some genera
guidance on implementing organizational change [61].

The role of change agents in this activity should not be
underestimated. Without the enthusiasm, influence,
credibility, and persistence of a change agent,
organizational change has little chance of succeeding. This
isfurther discussed in[72].

Process implementation and change can also be seen as an
instance of consulting (either internal or external). A
suggested text, and classic, on consulting is that of Schein
[121].

One can aso view organizational change from the
perspective of technology transfer. The classic text on the
stages of technology transfer is that by Rogers [119].
Software engineering articles that discuss technology
transfer, and the characteristics of recipients of new
technology (which could include process related
technologies) are [112][118].

3.6.3 Evaluating the Outcome of Process Implementation
and Change

Evaluation of process implementation and change
outcomes can be qualitative or quantitative. The topics
above on qualitative analysis and measurement are relevant
when evaluating implementation and change since they
describe the techniques. Below we present some conceptual

1

9

This can also be termed “ process evolution”.

9-10

issues that become important when evaluating the outcome
of implementation and change.

There are two ways that one can approach evaluation of
process implementation and change. One can evaluate it in
terms of changes to the process itself, or in terms of
changes to the process outcomes (for example, measuring
the Return on Investment from making the change). This
issue is concerned with the distinction between cause and
effect (as depicted in the path diagram in Figure 3), and is
discussed in[16].

Sometimes people have very high expectations about what
can be achieved in studies that evaluate the costs and
benefits of process implementation and change. A
pragmatic look at what can be achieved from such
evaluation studiesisgivenin[67].

Overviews of how to evaluate process change, and

examples of studies that do so can be found in
[44][59][88][92][93][101].

4 KEY REFERENCESVS. TOPICS MAPPING

Below are the matrices linking the topics to key references.
In an attempt to limit the number of references and the total
number of pages, as requested, some relevant articles are
not included in this matrix. The reference list below
provides a more conprehensive coverage.

In the cells, where there is a check mark it indicates that the
whole reference (or most of it) is relevant. Otherwise,
specific chapter numbers are provided in the cell.

© |EEE — Stoneman (Version 0.9) — February 2001

Elements
[45]

SPICE
[42] [111]

Pfleeger

Fuggetta
[56]

Messnarz
[103]

Moore
[106] [97]

Madhavji

Dowson
[35]

Software Engineering
Process Concepts

Themes

Terminology

Process | nfrastructure

The Software Engineering
Process Group

The Experience Factory

Process M easur ement

Methodology in Process
M easurement

Process Measurement
Paradigms

Ch.1,7

Ch.3

Process Definition

Types of Process
Definitions

Life Cycle Framework
Models

Ch.2

Software Life Cycle
ProcessModels

Ch. 13

Notations for Process
Definitions

Ch.1

Process Definition
Methods

Ch.7

Automation

Ch.2

Ch.2

Qualitative Process
Analysis

Process Definition Review

Ch.7

Root Cause Analysis

Ch.7

Process | mplementation
and Change

Paradigms for Process
Implementation and
Change

Ch.1,7

Guiddlines for Process
Implementation and
Change

Ch. 11

Ch. 4

Ch. 16

Eval uatingthe Outcome of
Process | mplementation
and Change

Ch.7

Feiler &
Humphrey
[51]

Briand et al.
[15]

SEL
[124]

SEPG
[54]

Dorfmann &
Thayer
[34]

El Emam &
Goldenson

[49]

Softwar e Engineering
Process Concepts

Themes

Terminology

Process Infrastructure

The Software Engineering
Process Group

© |IEEE — Stoneman (Version 0.9) — February 2001

9-11

Feler &
Humphrey
(51]

Briand et al.
[15]

SEL
[124]

SEPG
[54]

Dorfmann &
Thayer

[34]

El Emam &
Goldenson

[49]

The Experience Factory

Process M easur ement

Methodology in Process o)
M easurement

Process M easurement [e)
Paradigms

Process Definition

Types of Process Definitions

Life Cycle Framework
Models

Ch.11

Software Life Cycle Process
Models

Notations for Process
Definitions

Process Definition Methods

Automation

Qualitative Process Analysis

Process Definition Review o

Root CauseAnalysis)

Process | mplementation and
Change

Paradigms for Process
Implementation and Change

Guidelines for Process
I mplementation and Change

Evaluatingthe Outcome of
Process | mplementation and
Change

5 RECOMMENDED REFERENCES FOR SOFTWARE
PROCESS

The following are the key references that are recommended

for this knowledge area. The mapping to the topicsis given
in Section 4.

K. El Emam and N. Madhavji (eds.): Elements of Software
Process Assessment and Improvement, IEEE CS Press,
1999.

This IEEE edited book provides detailed chapters on the
software process assessment and improvement area. It
could serve as a genera reference for this knowledge area,
however, specifically chapters 1, 7, and 11 cover quite a bit
of ground in a succinct manner.

K. El Emam, JN Drouin, W. Melo (eds.): SPICE: The
Theory and Practice of Software Process |mprovement and
Capability Determination. |[EEE CS Press, 1998.

This IEEE edited book describes the emerging ISO/IEC
15504 international standard and its rationale. Chapter 3
provides a description of the overall architecture of the

9-12

standard, which has since then been adopted in other
assessment models.

S-L. Pfleeger: Software Engineering: Theory and Practice.
Prentice-Hall, 1998.

This general software engineering reference has a good
chapter, chapter 2, that discusses many issues related to the
process modeling area.

Fuggetta and A. Wolf: Software Process, John Wiley &
Sons, 1996.

This edited book provides a good overview of the process
area, and covers modeling as well as assessment and
improvement. Chapters 1 and 2 are reviews of modeling
techniques and tools, and chapter 4 gives a good overview
of the human and organizational issues that arise during
process implementation and change.

R. Messnarz and C. Tully (eds.): Better Software Practice
for Business Benefit: Principles and Experiences, IEEE CS
Press, 1999.

This |EEE edited book provides a comprehensive
perspective on process assessment and improvement efforts

© |EEE — Stoneman (Version 0.9) — February 2001

in Europe. Chapter 7 isareview of the costs and benefits of
process improvement, with many references to prior work.
Chapter 16 describes factors that affect the success of
processimprovement.

J. Moore: Software Engineering Standards: A User’'s Road
Map. |IEEE CS Press, 1998.

This IEEE book provides a comprehensive framework and

guidance on software engineering standards. Chapter 13 is
the process standards chapter.

N. H. Madhavji: “The Process Cycle’. In Software
Engineering Journal, 6(5):234-242, 1991.

This article provides an overview of different types of

process definitions and relates them within an
organizational context.

M. Dowson: “Software Process Themes and Issues’. In
Proceedings of the 29 International Conference on the
Softwar e Process, pages 54-62, 1993.

This article provides an overview of the main themes in the

software process area. Although not recent, most of the
issuesraised are still valid today.

P. Feiler and W. Humphrey: “Software Process
Development and Enactment: Concepts and Definitions”.
In Proceedings of the Second International Conference on
the Software Process, pages 28-40, 1993.

This article was one of the first attempts to define

terminology in the software process area. Most of its terms
are commonly used nowadays.

L. Briand, C. Differding, and H. D. Rombach: “Practical
Guidelines for Measurement-Based Process Improvement”.
In Software Process Improvement and Practice, 2:253-280,
1996.

This article provides a pragmatic look a using
measurement in the context of process improvement, and
discusses most of the issues related to setting up a
measurement program.

Software Engineering Laboratory: Software Process
Improvement Guidebook. NASA/GSFC, Technical Report
SEL-95-102, April 1996. (available from

http://sel .gsfc.nasa.gov/website/documents/online-doc/95-
102.pdf)

Thisis a standard reference on the concepts of the QIP and
EF.

P. Fowler and S. Rifkin: Software Engineering Process
Group Guide. Software Engineering hstitute, Technical
Report CMU/SEI-90-TR-24, 1990. (available from
http://www.sei.cmu.edu/pub/documents/90.reports/pdf/tr24.
90.pdf)

This is the standard reference on setting up and running an
SEPG.

M. Dorfmann and R. Thayer (eds.): Software Engineering,
| EEE CS Press, 1997.

© |IEEE — Stoneman (Version 0.9) — February 2001

Chapter 11 of this |[EEE volume gives a good overview of
contemporary life cycle models.

K. El Emam and D. Goldenson: “An Empirical Review of
Software Process Assessments’. In Advances in
Computers, vol. 53, pp. 319-423, 2000.

This chapter provides the most up-to-date review of
evidence supporting process assessment and improvement,

as well as a historical perspective on some of the early MIS
work.

9-13

APPENDIX A — LIST OF FURTHER READINGS

[1]

(2]

(3]

[4]

(5]

(6]

[7]

(8]

[9]

[10]

9-14

T. Abdel-Hamid and S. Madnick, Software Project
Dynamics: An Integrated Approach, Prentice-Hall,
1991

W. Agresti, "The Role of Design and Analysis in
Process Improvement,” in Elements of Software
Process Assessment and Improvement, K. El-Emam
and N. Madhavji (eds.), |[EEE CS Press, 1999.

L. Alexander and A. Davis, "Criteria for Selecting
Software Process Models," in Proceedings of
COMPSAC'91, pp. 521-528, 1991.

J. Armitage and M. Kellner, "A Conceptual Schema
for Process Definitions and Models," in Proceedings
of the Third International Conference on the
Software Process, pp. 153-165, 1994.

S. Bandinelli, A. Fuggetta, L. Lavazza, M. Loi, and
G. Picco, "Modeling and Improving an Industrial
Software Process," |EEE Transactions on Software
Engineering, vol. 21, no. 5, pp. 440-454, 1995.

R. Barbour, "Software Capability Evaluation -
Version 3.0 : Implementation Guide for Supplier
Selection,” Software Engineering Institute,
CMU/SEI -95-TR012, 1996. (available at
http://www.sei.cmu.edu/publications/documents/95.
reports/95.tr.012.html)

N. Barghouti, D. Rosenblum, D. Belanger, and C.
Alliegro, "Two Case Studies in Modeling Real,
Corporate Processes,” Software Process -
Improvement and Practice, vol. Pilot Issue, pp. 17-
32, 1995.

V. Basili, G. Cadiera, and G. Cantone, "A
Reference Architecture for the Component Factory,”
ACM Transactions on Software Engineering and
Methodology, val. 1, no. 1, pp. 53-80, 1992.

V. Badili, G. Cadiera, F. McGarry, R. Pgjerski, G.
Page, and S. Waligora, "The Software Engineering
Laboratory - An Operational Software Experience
Factory,” in Proceedings of the International
Conference on Software Engineering, pp. 370-381,
1992.

V. Basili, S. Condon, K. El-Emam, R. Hendrick, and
W. Melo, "Characterizing and Modeling the Cost of
Rework in a Library of Reusable Software
Components,” in Proceedings of the 19th
International Conference on Software Engineering,
pp. 282-291, 1997.

B. Boehm, "A Spird Mode of Software
Development and Enhancement,” Computer, vol.
21, no. 5, pp. 61-72, 1988.

T. Bollinger and C. McGowan, "A Critical Look at
Software Capability Evaluations,” IEEE Software,
pp. 25-41, July, 1991.

L. Briand, V. Basli, Y. Kim, and D. Squire, "A
Change Analysis Process to Characterize Software

[14]

[19]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[29]

Maintenance Projects,” in Proceedings of the
International Conference on Software Maintenance,
1994,

L. Briand, W. Melo, C. Seaman, and V. Basili,
"Characterizing and Assessing a Large-Scae
Software Maintenance Organization," in
Proceedings of the 17th International Conferenceon
Software Engineering, pp. 133-143, 1995.

L. Briand, C. Differding, and H. D. Rombach,
"Practical Guidelines for Measurement-Based
Process Improvement,” Software Process
Improvement and Practice, vol. 2, pp. 253-280,
1996.

L. Briand, K. El Emam, and W. Melo, "An
Inductive Method for Software Process
Improvement: Concrete Steps and Guidelines,” in
Elements of Software Process Assessment and
Improvement, K. EI-Emam and N. Madhavji (eds.),
|IEEE CS Press, 1999.

F. Budlong and J. Peterson, "Software Metrics
Capability Evaluation Guide," The Software
Technology Support Center, Ogden Air Logistics
Center, Hill Air Force Base, 1995.

I. Burnstein, T. Suwannasart, and C. Carlson,
"Developing a Testing Maturity Model: Part 11,"
Crosstalk, pp. 19-26, September, 1996. (available at
http://www.stsc.hill.af .mil/crosstalk/)

I. Burnstein, T. Suwannasart, and C. Carlson,
"Developing a Testing Maturity Model: Part 1,"
Crosstalk, pp. 21-24, August, 1996. (available at
http://www.stsc.hill.af.mil/crosstalk/)

I. Burnstein, A. Homyen, T. Suwanassart, G.
Saxena, and R. Grom, "A Testing Maturity Model
for Software Test Process Assessment and
Improvement,” Software Quality Professional, vol.
1, no. 4, pp. 8-21, 1999.

D. Card, "Understanding Process Improvement,”
|EEE Software, pp. 102-103, July, 1991.

R. Chillarege, |. Bhandhari, J. Chaar, M. Halliday,
D. Moebus, B. Ray, and M. Wong, "Orthogonal
Defect Classification - A Concept for In-Process
Measurement,” IEEE Transactions on Software
Engineering, vol. 18, no. 11, pp. 943-956, 1992.

R. Chillarege, "Orthogonal Defect Classification,” in
Handbook of Software Reliability Engineering, M.
Lyu (eds.), IEEE CS Press, 1996.

B. Clark, "The Effects of Software Process Maturity
on Software Development Effort,” University of
Southern California, PhD Thesis, 1997.

F. Codlier, J. Mayrand, and B. Lague, "Risk
Management in Software Product Procurement,” in
Elements of Software Process Assessment and

Improvement, K. El-Emam and N. H. Madhavji
(eds.), IEEE CS Press, 1999.

© |EEE — Stoneman (Version 0.9) — February 2001

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[39]

[36]

[37]

[38]

D. Coleman, P. Arnold, S. Godoff, C. Dallin, H.
Gilchrist, F. Hayes, and P. Jeremaes, Object-
Oriented Development: The Fusion Method,
Englewood Cliffs, NJ:Prentice Hall., 1994.

J. Collofello and B. Gosalia, "An Application of
Causa Anaysis to the Software Production
Process," Software Practice and Experience, vol. 23,
no. 10, pp. 1095-1105, 1993.

E. Comer, "Alternative Software Life Cycle
Models," in Software Engineering, M. Dorfmann
and R. Thayer (eds.), |IEEE CS Press, 1997.

B. Curtis, M. Kellner, and J. Over, "Process
Modeling," Communications of the ACM, val. 35,
no. 9, pp. 75-90, 1992.

B. Curtis, W. Hefley, and S. Miller, "People
Capability Maturity Model," Software Engineering
Institute, CMU/SEI-95-MM-02, 1995. (available at
http://www.sei.cmu.edu/pub/documents/95.reports/p
df/mm002.95.pdf)

B. Curtis, W. Hefley, S. Miller, and M. Konrad,
"The People Capability Maturity Model for
Improving the Software Workforce," in Elements of
Software Process Assessment and |mprovement, K.
El-Emam and N. Madhavji (eds.), IEEE CS Press,
1999.

A. Davis, E. Bersoff, and E. Comer, "A Strategy for
Comparing Alternative Software Development Life
Cycle Models," IEEE Transactions on Software
Engineering, vol. 14, no. 10, pp. 1453-1461, 1988.
R. Dion, "Starting the Climb Towards the CMM
Level 2 Plateau,” in Elements of Software Process
Assessment and Improvement, K. EI-Emam and N.
H. Madhavji (eds.), IEEE CS Press, 1999.

M. Dorfmann and R. Thayer (eds.), "Software
Engineering,” |EEE CS Press, 1997.

M. Dowson, "Software Process Themes and | ssues,"

in Proceedings of the 2nd International Conference
on the Software Process, pp. 54-62, 1993.

D. Drew, "Tailoring the Software Engineering
Institute's (SEI) Capability Maturity Model (CMM)
to a Software Sustaining Engineering Organization,"
in Proceedings of the International Conference on
Software Maintenance, pp. 137-144, 1992.

D. Dunnaway and S. Masters, "CMM-Based
Appraisal for Internal Process Improvement (CBA
IPl): Method Description,” Software Engineering
Institute, CMU/SEI-96-T R-007, 1996. (available at
http://www.sei.cmu.edu/pub/documents/96.reports/p
df/tr007.96.pdf)

K. Dymond, "Essence and Accidents in SEI-Style
Assessments or ‘Maybe this Time the Voice of the
Engineer Will be Heard'," in Elements of Software
Process Assessment and Improvement, K. El-Emam

and N. Madhaviji (eds.), IEEE CS Press, 1999.

© |IEEE — Stoneman (Version 0.9) — February 2001

[39]

[40]

[41]

[42]

[43]

[44]

[49]

[46]

[47]

[48]

[49]

[50]

[51]

EIA, "EIA/IS 731 Systems Engineering Capability
Model,". available a
http://www.geia.org/eoc/G47/index.html)

K. El-Emam and D. R. Goldenson, "SPICE: An
Empiricist's Perspective,” in Proceedings of the
Second IEEE International Software Engineering
Standards Symposium, pp. 84-97, 1995.

K. El-Emam, D. Holtje, and N. Madhavji, "Causal
Analysis of the Requirements Change Process for a
Large System," in Proceedings of the International
Conference on Software Maintenance, pp. 214-221,
1997.

K. El-Emam, J-N Drouin, and W. Melo, SPICE: The
Theory and Practice of Software Process
Improvement and Capability Determination, |IEEE
CS Press, 1998.

K. El-Emam, "Benchmarking Kappa: Interrater
Agreement in Software Process Assessments,"”
Empirical Software Engineering: An International
Journal, val. 4, no. 2, pp. 113-133, 199.

K. El-Emam and L. Briand, "Costs and Benefits of
Software Process Improvement,” in Better Software
Practice for Business Benefit: Principles and
Experiences, R. Messnarz and C. Tully (eds.), IEEE
CS Press, 1999.

K. El-Emam and N. Madhavji, Elements of Software
Process Assessment and Improvement, IEEE CS
Press, 1999.

K. El-Emam, B. Smith, and P. Fusaro, "Success
Factors and Barriers in Software Process
Improvement: An Empirical Study," in Better
Software Practice for Business Benefit: Principles
and Experiences, R. Messnarz and C. Tully (eds.),
|EEE CS Press, 1999.

K. El-Emam and A. Birk, "Validating the ISO/IEC
15504 Measures of Software Development Process
Capability," Journal of Systems and Software, vol.
51, no. 2, pp. 119-149, 2000. (available at
E:\Articles\EIEmam_Birk _JSS.pdf)

K. El-Emam and A. Birk, "Validating the ISO/IEC
15504 Measures of Software Requirements Analysis
Process Capability,” IEEE Transactions on Software
Engineering, voal. 26, no. 6, pp. 541-566, June, 2000.

K. El-Emam and D. Goldenson, "An Empirical
Review of Software Process Assessments,”
Advancesin Computers, vol. 53, pp. 319-423, 2000.
M. Fayad and M. Laitinen, "Process Assessment:
Considered Wasteful,” Communications of the
ACM, vol. 40, no. 11, November, 1997.

P. Feiler and W. Humphrey, "Software Process
Development and Enactment: Concepts and
Definitions,” in Proceedings of the Second
International Conference on the Software Process,
pp. 28-40, 1993.

9-15

[52]

(53]

[34]

[59]

[56]

[57]

(58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

9-16

A. Finkelstein, J. Kramer, ad B. Nuseibeh (eds.),
"Software Process Modeling and Technology,"
Research Studies Press Ltd., 1994.

W. Florac and A. Carleton, Measuring the Software
Process: Satistical Process Control for Software
Process |mprovement, Addison Wesley, 1999.

P. Fowler and S. Rifkin, "Software Engineering
Process Group Guide" Software Engineering
Institute, CMU/SEI-90-TR-24, 1990. (available at
http://www.sei.cmu.edu/pub/documents/90.reports/p
df/tr24.90.pdf)

D. Frailey, "Defining a Corporate-Wide Software
Process," in Proceedings of the 1st International
Conference on the Software Process, pp. 113-121,
1991

A. Fuggetta and A. Wolf, Software Process, John
Wiley & Sons, 1996.

P. Garg and M. Jazayeri, Process-Centered Software
Engineering Environments, |EEE CS Press, 1995.

P. Garg and M. Jazayeri, "Process-Centered
Software Engineering Environments. A Grand
Tour," in Software Process, A. Fuggetta and A.
Wolf (eds.), John Wiley & Sons, 1996.

D. Goldenson, K. El-Emam, J. Herbsleb, and C.
Deephouse, "Empirical Studies of Software Process
Assessment Methods," in Elements of Software
Process Assessment and |mprovement, K. El-Emam
and N. H. Madhavji (eds.), IEEE CS Press, 1999.

D. R. Goldenson and J. Herbsleb, "After the
Appraisal: A Systematic Survey of Process
Improvement, its Benefits, and Factors that
Influence Success," Software Engineering Institute,
CMU/SEI -95-T R-009, 1995.

R. Grady, Successful Software
Improvement, Prentice Hall, 1997.

E. Gray and W. Smith, "On the Limitations of
Software Process Assessment and the Recognition
of a Required Re-Orientation for Global Process
Improvement," Software Quality Journal, vol. 7, pp.
21-34, 1998.

D. Harel and M. Politi, Modeling Reactive Systems
with Satecharts: The Satemate Approach,
McGraw-Hill, 1998.

J. Herbsleb, A. Carleton, J. Rozum, J. Siegel, and
D.Zubrow, "Benefits of CMM-based Software
Process Improvement: Initial Results," Software
Engineering Institute, CMU/SEI-94-T R-13, 1994,

J. Herbsleb and D. Goldenson, "A Systematic
Survey of CMM Experience and Results" in
Proceedings of the International Conference on
Software Engineering, pp. 25-30, 1996.

J. Herbsleb, D. Zubrow, D. Goldenson, W. Hayes,
and M. Paulk, "Software Quality and the Capability

Maturity Model," Communications of the ACM, val.
40, no. 6, pp. 30-40, 1997.

Process

[67]

[74]

[79]

[76]

[77]

[78]

[79]

[80]

[81]

[82]

J. Herbsleb, "Hard Problems and Hard Science: On
the Practical Limits of Experimentation,” |EEE
TCSE Software Process Newsletter, vol. 11, pp. 18-
21, 1998. (available at
http://www.seg.iit.nrc.ca/ SPN)

K. Huff, "Software Process Modeling," in Software
Process, A. Fuggettaand A. Wolf (eds.), John Wiley
& Sons, 1996.

W. Humphrey, Managing the Software Process,
Addison Wesley, 1989.

W. Humphrey, A Discipline for
Engineering, Addison Wesley, 1995.

W. Humphrey, An Introduction to the Team
Software Process, Addison-Wesley, 1999.

D. Hutton, The Change Agent's Handbook: A
Survival Guide for Quality Improvement
Champions, Irwin, 1994.

|EEE, "IEEE Standard for Developing Software Life
Cycle Processes,” |[EEE Computer Society, |EEE
Std 1074-1991, 1991.

IEEE, "IEEE Standard for the Classification of
Software Anomalies,” |IEEE Computer Society,
|EEE Std 1044-1993, 1993.

IEEE, "IEEE Standard for Software Maintenance,"
IEEE Computer Society, IEEE Std 1219-1998,
1998.

IEEE, "IEEE Standard for a Software Quality
Metrics Methodology,” IEEE Computer Society,
IEEE Std 1061-1998, 1998.

IEEE, "Guide for Information Technology -
Software Life Cycle Processes - Life cycle data,"
IEEE Computer Society, |IEEE Std 12207.1-1998,
1998.

IEEE, "Guide for Information Technology -
Software Life Cycle Processes - Implementation.
Considerations,” |EEE Computer Society, |[EEE Std
12207.2-1998, 1998.

K. Ishikawa, What Is Total Quality Control ? The
Japanese Way, Prentice Hall, 1985.

ISO/IEC, "ISO/IEC 12207: Information Technology
- Software Life Cycle Processes," International
Organization for Standardization and the
International Electrotechnical Commission, 1995.
ISO/IEC, "ISO/IEC TR 15504: Information
Technology - Software Process Assessment (parts 1-
9)," International Organization for Standardization
and the International Electrotechnical Commission,
1998 (part 5 was published in 1999). (available at
http://www.seg.iit.nrc.ca/spice)

ISO/IEC, "ISO/IEC CD 15939: Information
Technology - Software Measurement Process,"
International Organization for Standardization and
the International Electrotechnical Commission,
2000. (available at

Software

© |EEE — Stoneman (Version 0.9) — February 2001

(83]

[84]

[83]

[86]

[88]

[89]

[90]

[94]

[99]

[96]

http://www.info.ugam.ca/Labo_Recherche/Lrgl/sc7/
private_files/07n2274.pdf)

I. Jacobson, G. Booch, and J. Rumbaugh, The
Unified Software Development Process, Addison-
Wesley, 1998.

P. Jalote, An Integrated Approach to Software
Engineering, Springer, 1997.

D. Johnson and J. Brodman, "Tailoring the CMM
for Small Businesses, Small Organizations, and
Small Projects,” in Elements of Software Process
Assessment and Improvement, K. EI-Emam and N.
Madhavji (eds.), |IEEE CS Press, 1999.

C. Jones, Applied Software Measurement, McGraw-
Hill, 1994.

C. Jones, "Gaps in SEI Programs,” Software
Development, val. 3, no. 3, pp. 41-48, March, 1995.

C. Jones, "The Economics of Software Process
Improvements,” in Elements of Software Process
Assessment and Improvement, K. EI-Emam and N.
H. Madhavji (eds.), IEEE CS Press, 1999.

M. Kellner and G. Hansen, "Software Process
Modeling: A Case Study,” in Proceedings of the
22nd International Conference on the System
Sciences, 1989.

M. Kellner, L. Briand, and J. Over, "A Method for
Designing, Defining, and Evolving Software
Processes,” in Proceedings of the 4th International
Conference on the Software Process, pp. 37-48,
1996.

M. Kellner, U. Becker-Kornstaedt, W. Riddle, J.
Tomal, and M. Verlage, "Process Guides. Effective
Guidance for Process Participants,” in Proceedings
of the 5th International Conference on the Software
Process, pp. 11-25, 1998.

B. Kitchenham, "Selecting Projects for Technology
Evaluation,” IEEE TCSE Software Process
Newsletter, no. 11, pp. 3-6, 1998. (available at
http://www.seg.iit.nrc.ca/ SPN)

H. Krasner, "The Payoff for Software Process
Improvement: What it is and How to Get it," in
Elements of Software Process Assessment and
Improvement, K. El-Emam and N. H. Madhaviji
(eds.), IEEE CS Press, 1999.

M. S. Krishnan and M. Kellner, "Measuring Process
Consistency: Implications for Reducing Software
Defects," |IEEE Transactions on Software
Engineering, vol. 25, no. 6, pp. 800815,
November/December, 1999.

C. Laporte and S. Trudel, "Addressing the People
Issues of Process Improvement Activities at
Oerlikon Aerospace,” Software Process -
Improvement and Practice, vol. 4, no. 4, pp. 187-
198, 1998.

J. Lonchamp, "A Structured Conceptual and
Terminological Framework for Software Process

© |IEEE — Stoneman (Version 0.9) — February 2001

[97]

(98]

[99]

[100]

[101]

[102]

[103]

[104]

[105]

[106]

[107]

[108]

[109]

Engineering,” in Proceedings of the Second
International Conference on the Software Process,
pp. 41-53, 1993.

N. Madhavji, "The Process Cycle" Software
Engineering Journal, vol. 6, no. 5, pp. 234-242,
1991.

N. Madhavji, D. Hoeltie, W. Hong, and T.
Bruckhaus, "Elicit: A Method for Eliciting Process
Models," in Proceedings of the Third International
Conference on the Software Process, pp. 111-122,
1994.

S. Masters and C. Bothwell, "CMM Appraisal
Framework - Version 1.0," Software Engineering
Institute, CMU/SEI-T R-95-001, 1995. (available at
http://www.sei.cmu.edu/pub/documents/95.reports/p
df/tr001.95.pdf)

B. McFeeley, "IDEAL: A User's Guide for Software
Process Improvement,” Software Engineering
Institute, CM U/SEI -96-HB-001, 1996. (available at
http://www.sei.cmu.edu/pub/documents/96.reports/p
df/hb001.96.pdf)

F. McGarry, R. Pajerski, G. Page, S. Waligora, V.
Basili, and M. Zelkowitz, "Software Process
Improvement in the NASA Software Engineering
Laboratory,” Software Engineering Institute,
CMU/SEI-94-TR-22, 1994. (available at

http://www.sei.cmu.edu/pub/documents/94.reports/p
df/tr22.94.pdf)

C. McGowan and S. Bohner, "Model Based Process
Assessments,” in Proceedings of the International
Conference on Software Engineering, pp. 202-211,
1993.

R. Messnarz and C. Tully (eds.), "Better Software
Practice for Business Benefit: Principles and
Experiences," |EEE CS Press, 1999.

D. Moitra, "Managing Change for Software Process
Improvement Initiatives: A Practical Experience-
Based Approach,” Software Process - I mprovement
and Practice, vol. 4, no. 4, pp. 199-207, 1998.

K. Moller and D. Paulish, Software Metrics,
Chapman & Hall, 1993.

J. Moore, Software Engineering Standards: A User's
Road Map, |EEE CS Press, 1998.

T. Nakgo and H. Kume, "A Case History Analysis
of Software Error Cause-Effect Relationship," |IEEE
Transactions on Software Engineering, vol. 17, no.
8, 1991.

Office of the Under Secretary of Defense for
Acquisitions and Technology, "Practical Software
Measurement: A Foundation for Objective Project
Management,” 1998. (available a
http://www.psmsc.com)

R. Park, W. Goethert, and W. Florac, "Goal-Driven
Software Measurement - A Guidebook," Software
Engineering Institute, CMU/SEI -96-HB-002, 1996.

9-17

[110]

[111]

[112]

[113]

[114]

[115]

[116]

[117]

[118]

[119]

[120]

[121]

[122]

[123]

[124]

[125]

9-18

(available at http://www.sei.cmu.edu/pub/documents
/96.reports/pdf/hb002.96.pdf)

M. Paulk and M. Konrad, "Measuring Process
Capability Versus Organizational Process Maturity,"

in Proceedings of the 4th International Conference
on Software Quality, 1994.

S-L. Pfleeger, Software Engineering: Theory and
Practice, Prentice-Hall, 1998.

SL. Pfleeger, "Understanding and Improving
Technology Transfer in Software Engineering,"

Journal of Systems and Software, vol. 47, pp. 111-
124, 1999.

R. Pressman, Software Engineering: A Practitioner's
Approach, McGraw-Hill, 1997.

J. Puffer, "Action Planning,” in Elements of
Software Process Assessment and Improvement, K.
El-Emam and N. H. Madhavji (eds.), IEEE C S
Press, 1999.

L. Putnam and W. Myers, Measures for Excellence:
Reliable Software on Time, Within Budget, Y ourdon
Press, 1992.

R. Radice, N. Roth, A. O'Hara Jr., and W. Ciarfella,

"A Programming Process Architecture,” In IBM
Systems Journal, vol. 24, no. 2, pp. 79-90, 1985.

D. Raffo and M. Kellner, "Modeling Software
Processes Quantitatively and Evaluating the
Performance of Process Alternatives,” in Elements
of Software Process Assessment and | mprovement,
K. El-FEmam and N. Madhavji (eds), IEEE CS
Press, 1999.

S. Raghavan and D. Chand, "Diffusing Software-
Engineering Methods," |EEE Software, pp. 81-90,
July, 1989.

E. Rogers, Diffusion of Innovations Free Press,
1983.

M. Sanders (eds.), "The SPIRE Handbook: Better,
Faster, Cheaper Software Development in Small
Organisations," European Comission, 1998.

E. Schein, Process Consultation Revisited: Building
the Helping Relationship, Addison-Wesley, 1999.

Software Engineering Institute, The Capability
Maturity Model: Guidelines for Improving the
Softwar e Process, Addison Wesley, 1995.

Software Engineering Laboratory, "Software
Measurement Guidebook (Revision 1),", SEL-%4-
102, 1995. (available at http://sel.gsfc.nasa.gov/
website/documents/online-doc/94-102.pdf)

Software Engineering Laboratory, "Software
Process Improvement Guidebook. NASA/GSFC,",
SEL-95-102, 1996. (available at
http://sel .gsfc.nasa.gov/website/documents/online-
doc/95-102.pdf)

Software Productivity ~ Consortium, "Process
Definition and Modeling Guidebook,", SPC-92041-
CMC, 1992.

[126]

[127]

[128]

[129]

[130]

[131]

[132]

[133]

[134]

[135]

R. van Solingen and E. Berghout, The
Goal/Question/Metric Method: A Practical Guide
for Quality Improvement of Software Development,
McGraw Hill, 1999.

I. Sommerville and T. Rodden, "Human, Social and
Organisational Influences on the Software Process,"
in Software Process, A. Fuggetta and A. Wolf
(eds.), John Wiley & Sons, 1996.

I. Sommerville and P. Sawyer, Requirements
Engineering: A Good Practice Guide, John Wiley &
Sons, 1997.

H. Steinen, "Software Process Assessment and
Improvement: 5 Years of Experiences with
Bootstrap,” in Elements of Software Process

Assessment and Improvement, K. EI-Emam and N.
Madhavji (eds.), IEEE CS Press, 1999.

D. Stelzer and W. Méllis, "Success Factors of
Organizational Change in Software Process
Improvement,” Software Process: Improvement and
Practice, vol. 4, no. 4, pp. 227-250, 1998.

L. Votta, "Does Every Inspection Need a Meeting
?," ACM Software Engineering Notes, vol. 18, no. 5,
pp. 107-114, 1993.

S. Weissfelner, "ISO 9001 for Software
Organizations," in Elements of Software Process

Assessment and Improvement, K. EI-Emam and N.
Madhavji (eds.), IEEE CS Press, 1999.

K. Wiegers, Creating a Software Engineering
Culture, Dorset house, 1996.

E. Yu and J. Mylopolous, "Understanding 'Why' in
Software Process Modeling, Analysis, and Design,"
in Proceedings of the 16th International Conference
on Software Engineering, 1994.

S. Zahran, Software Process | mprovement: Practical
Guidelines for Business Success, Addison Wesley,
1998.

© |EEE — Stoneman (Version 0.9) — February 2001

CHAPTER 10
SOFTWARE ENGINEERING TOOLSAND METHODS

David Carrington
Department of Computer Science and Electrical Engineering
The University of Queensland
Brishane, Qld 4072 Australia
+61 7 3365 3310
davec@csee.ug.edu.au

Table of Contents

1 INtrOQUCHION......ceiiieireeerteeee e 1
2 Definition of the Software Engineering Tools and
Methods Knowledge Area.........cocvcrveneenenerseesssensnens 1
3 Breakdown of Topics for Software Engineering Tools
anNd Methods.........coveverereneerreeer e 2
4 Breakdown Rationalecccccvvererrrenrrennereseerenesenenens 5
5 Matrix of Topicsvs. Reference Materidl....................... 6
6 Recommended References for Software Engineering
toolsand Methods..........cccvrcnnenccrrereesseeee s 7
Appendix A — List of Further Readings.........cccoevvrviveniinnne. 9
Appendix B — References Used to Write and Justify the
Knowledge Area DesCriptionccocveeeeveveeeernnsennnns 10
Appendix C — Acknowledgments..........ccceeuveveeerereseeennnens 11

1 INTRODUCTION

This chapter provides an initial breakdown of topics within
the Software Engineering Infrastructure Knowledge Area
as defined by the document “ Approved Baseline for a List
of Knowledge Areas for the Stone Man Version of the
Guide to the Software Engineering Body of Knowledge”.
Earlier versions of this Knowledge Area included material
on integration and reuse, but this has been removed.
Consequently the Knowledge Area has been renamed from
“Software Engineering Infrastructure” to “Software
Engineering Tools and Methods”.

The five genera software engineering texts [DT97, M0098,
Pfl98, Pre97, and Som96] have been supplemented as
primary sources by “The Computer Science and
Engineering Handbook” [Tuc96], which provides nine
chapters on software engineering topics. Chapter 112,
“Software Tools and Environments’ by Steven Reiss
[Rei96] is particularly helpful for this Knowledge Area
Additional specialized references are identified for
particular topics.

© |IEEE — Stoneman (Version 0.9) — February 2001

One observation from assembling the guide to this
knowledge area is that there is a scarcity of recent technical
writing on practical software engineering tools. Obviously,
there are detailed manuals on specific tools and numerous
research papers on innovative software tools, but thereis a
gap between the two. One difficulty is the high rate of
change in software tools. Specific details alter regularly,
making it difficult to provide up-to-date concrete examples.
There also seems to be an attitude that software engineering
tools are prosaic and not worthy of study beyond the level
required for use.

2 DEFINITION OF THE SOFTWARE ENGINEERING
TOOLSAND METHODS KNOWLEDGE AREA

The Software Engineering Tools and Methods Knowledge
Areaincludes both the software development environments
and the development methods knowledge areas identified in
the Straw Man version of the guide.

Software development environments are the computer-
based tools that are intended to assist the software
development process. Tools alow repetitive, well-defined
actions to be automated, thus reducing the cognitive load
on the software engineer. The engineer is then free to
concentrate on the creative aspects of the process. Tools are
often designed to support particular methods, reducing any
administrative load associated with applying the method
manually. Like methods, they are intended to make
development more systematic, and they vary in scope from
supporting individual tasks to encompassing the complete
lifecycle.

Development methods impose structure on the software
development activity with the goal of making the activity
systematic and ultimately more likely to be successful.
Methods usually provide a notation and vocabulary,
procedures for performing identifiable tasks and guidelines
for checking both the process and the product.
Development methods vary widely in scope, from asingle
life cycle phase to the complete life cycle. The emphasisin
this Knowledge Area is on methods that encompass
multiple lifecycle phases since phase-specific methods are
likely to be covered in other Knowledge Areas.

10-1

3 BREAKDOWN OF TOPICS FOR SOFTWARE

ENGINEERING TOOLSAND METHODS

This section contains a breakdown of topics in the Software
Engineering Tools and Methods Knowledge Area, with
brief descriptions and references. The Knowledge Area is
partitioned at the top level into Software Tools and
Software Methods. Two levels of references are provided
with topics: the recommended references within brackets
and additional references within parentheses. References to
a particular chapter are denoted as Ref.cN where N is the
chapter number. A similar denotation is used for references
to a particular section RefisN. Figure 1 provides a
diagrammatic representation of the breakdown of topics.

|. Software Tools

The partitioning of the Software Tools section uses the
same structure as the Stone Man Version of the Guide to
the Software Engineering Body of Knowledge. The first
five subsections correspond to the five Knowledge Areas
(Requirements, Design, Construction, Testing, and
Maintenance) that correspond to a phase of a software
lifecycle, so these sections provide a location for phase
specific tools. The next four subsections correspond to the
remaining Knowledge Areas (Process, Quality,
Configuration Management and Management), and provide
locations for phase-independent tools that are associated
with activities described in these Knowledge Areas. Two
additional subsections are provided: one for infrastructure
support tools that do not fit in any of the earlier sections,
and a Miscellaneous subsection for topics, such as tool
integration techniques, that are potentially applicable to all
classes of tools. Because software engineering tools evolve
rapidly and continuously, the hierarchy and description
avoids discussing particular tools as far as possible.

A. Softwar e Requirements Tools

Tools for cealing with software requirements have been
partitioned into two topics: modeling and traceability. More
fine-grained partitioned would certainly be possible but this
partition was considered adequate based on the coverage of
toolsin the literature.

Requirements modeling tools

Tools used for eliciting, recording, analyzing and validating
software reguirements belong in this section.

Traceability tools

[Pre97:s29.3, DT97:s4.1, DT97:512.3]

Requirements traceability tools are becoming increasingly
important as the complexity of software systems grow, and
since traceability tools are relevant also in other lifecycle

phases, they have been separated from the other tools for
requirements.

B. Software Design Tools
[]

This section covers tools for creating and checking
software designs. There is a variety of such tools, with
much of this variety being a consequence of the diversity of

10-2

design notations and methods. While this variety of tools
exists, no compelling partitions for this topic were found.

C. Software Construction Tools

Software construction tools are concerned with the
production and translation of the program representation
(commonly known as source code) that is sufficiently
detailed and explicit to enable machine execution.

Program editors

Program editors are tools used for creation and
modification of programs (and possibly associated
documents). These tools can be general-purpose text or
document editors, or they can be specialized for a target
language. Editing refers to human-controlled development
tools.

Compilers and code generators

Traditionally, compilers have been non-interactive
translators of source code but there has been a trend to
integrate compilers and program editors to provide
integrated programming environments. This topic also
covers pre-processors, linker/loaders, and code generators.

Interpreters

Interpreters provide software execution through emulation.
They can support software construction activities by
providing a more controllable and observable environment
for program execution.

Debuggers
Debugging tools have been made a separate topic since

they support the construction process but are different from
program editors or compilers.

D. Software Testing Tools

Testing tools are categorized according to where in the
testing process they are used.

Test generators

Test generators assist the development of test cases.

Test execution frameworks

Test execution frameworks enable the execution of test
cases in a controlled environment where the behavior of the
object under test is observed.

Test evaluation tools

Test evaluation tools support the assessment of the results

of test execution, helping to determine whether the
observed behavior conformsto the expected behavior.

Test management tools

Test management tools provide support for managing all
aspects of the testing process.
Performance analysistools|]
This topic covers tools for measuring and anayzing
software performance. It is a specialized form of testing

where the goal is to assess the performance behavior rather
than the functional behavior (correctness).

© |IEEE — Stoneman (Version 0.9) — February 2001

Softwar e Engineering Tools and M ethods

— |. Software Tools — |1. Software Methods
Ly, Software Requirements lp. HeuristicMethods
Tools Structured methods -
Requirements modeling)
Traceability Data-oriented methods -
) Object-oriented methods -
> Software Design Tools Domain specific methods <
. Software Congtruction
Tools H>- Formal Methods —
Program editors - Specification languages
Compilers - .
Interpreters -« Refinement -
Debuggers -« Verification -«
B Software Testing Tools — > Prototyping Methods —
Test generators -
Test execution frameworks - Styles -+
TTest evaluation I Prototyping target -
est management ’]
Performance analysis < Evaluation techniques -«
, SoftwareMaintenance |, MiscellaneousMethod
Tools Issues
Comprehension - Method evaluation <«
Re-engineering <«
Software Engineering
_’.
Process Tools
Process modeling -

Process management -
Integrated CASE environments-
Process-centered software
engineering environments

B Software Quality Tools —

Inspection -
Static analysis <
Software Configuration
_>
Management Tools

Defect, enhancement, issue and
problem tracking

Version managment -

Release and build <«

N Software Engineering
Management Tools

Project planning and tracking -
Risk management -
Measurement <+
Infrastructure Support
Tools
Interpersonal communication
Information retrieval
System administrative and
support
Miscellaneous Tools
Issues

Tool integration techniques -
Meta tools -
Tool evaluation -«

A 44

Figure 1 — Breakdown of topicsin the software tools and methods knowledge area

© |IEEE — Stoneman (Version 0.9) — February 2001

10-3

E. Software Maintenance Tools

Software maintenance is often presented as additional
iterations of the development lifecycle and consequently
makes use of tools for all other phases. This category
encompasses tools that have particular importance in
software maintenance where an existing system is being
modified. Two categories are identified: comprehension
tools and re-engineering tools.

Comprehension tools

This topic concerns tools to assist human comprehension of
programs. Examples include visualization tools such as
animators and program slicers.

Re-engineering tools

Re-engineering tools allow translation of a program to a
new programming language, or a database to a new format.
Reverse engineering tools assist the process by working
backwards from an existing product to create abstract
artifacts such as design and specification descriptions,
which then can be transformed to generate a new product
from an old one.

F. Softwar e Engineering Process Tools
Process modeling tools

This topic covers tools to model and investigate software
processes.

Process management tools

Integrated CASE environments

(ECMA93, ECMAY4, |IEEE-1209, |EEE-1348, MNS96)
Computer-aided software engineering tools or
environments that cover multiple phases of the software
development lifecycle belong in this section. Such tools
perform multiple functions and hence potentially interact
with the software process that is being enacted.
Process-centered software engineering environments
(GJ96)

This topic covers those environments that explicitly

incorporate software process information and that guide
and monitor the user according to a defined process.

G. Software Quality Tools

Inspection tools

Thistopic coverstoolsto support reviews and inspections.
Satic analysistools

This topic deals with tools that analyze software artifacts,
such as syntactic and semantic analyzers, and data, control
flow and dependency analyzers. Such tools are intended for

checking software artifacts for conformance or for
verifying desired properties.

H. Softwar e Configuration Management Tools

Tools for configuration management have been categorized
as related to tracking issues associated with a particular
software product, management of multiple versions of a

product or to managing the task of software release and
build.

10-4

Defect, enhancement, issue and problemtracking tools
Version management tools

Release and build tools

This category includes installation tools that have become

widely used for configuring the installation of software
products.

|. Software Engineering M anagement Tools

Management tools are subdivided into three categories:
project planning and tracking, risk management, and
measurement.

Project planning and tracking tools

Risk management tools

Measurement tools

J. Infrastructure support tools

This section covers tools that provide interpersonal
communication, information retrieval, and system
administration and support. These tools, such as e-mail,
databases, web browsers and file backup tools, are
generally not specific to aparticular lifecycle stage, nor to a
particular development method.

I nterpersonal communication tools

Information retrieval tools

System administration and support tools
K. Miscellaneoustool issues

This section covers issues that are applicable to all classes
of tools. Three categories are identified: tool integration
techniques, meta-tools and tool eval uation.

Tool integration techniques

[Som96:s25.2]

(Bro94)

Tool integration is important for making individual tools
cooperate. This category potentially overlaps with
integrated software engineering environments where
integration techniques are applied, but it was felt that this
topic is sufficiently distinct to merit its own category. The
typical kinds of tool integration are platform, presentation,
process, data, and control.

Meta tools

M eta-tools generate other tools, compiler-compilers are the
classic example.

Tool evaluation

(IEEE-1209, |EEE-1348, M0s92, VB97)

Because of the continuous evolution of software
engineering tools, tool evaluation is an essential topic.

I1. Softwar e Development Methods

The software development section is divided into four
subsections: heuristic methods dealing with informal
approaches, formal methods dealing with mathematically
based approaches, prototyping methods dealing with
software development approaches based on various forms
of prototyping, and miscellaneou