

Using the PRiM method to Evaluate Requirements
Models with COSMIC-FFP

Gemma Grau, Xavier Franch

Universitat Politècnica de Catalunya (UPC)
c/ Jordi Girona 1-3, Barcelona E-08034, Spain.

{ggrau, franch}@lsi.upc.edu

Abstract. The COSMIC-FFP is a standard method that has been proven
effective for measuring the functional size of business applications and real-
time software systems from their functional user requirements specification.
Despite of this, the methods based on COSMIC-FFP usually require a mapping
between the concepts in the requirements specification and their own terms and
do not take into account non-functional requirements. On the other hand, PRiM
is a method that aims at assessing non-functional properties at the early stages
of the development process. PRiM uses the i* framework to model the
functional and non-functional requirements in terms of actors and dependencies
among them. In this paper we present how the i* constructs proposed in PRiM
can be adapted to measure the functional size using COSMIC-FFP and, as
PRiM works with requirements and allows the evaluation of non-functional
properties, there is a remarkable benefit when using both methods altogether.

1 Introduction

The COSMIC-FFP [1] provides a method for measuring the functional size which is
supported by the ISO/IEC 19761 [11]. The functional size is measured based on the
functional user requirements specification of software systems on the domains of
business applications and real-time software systems. Its effectiveness has converted
it into a well-establish method and many measurement procedures have arisen to
support it ([2], [10], among others). However, there still some open points. First, as
COSMIC-FFP aims at measuring the functional size, non-functional properties are not
taken into account. Second, there is a lack of a clear definition of the various concepts
that contribute to software size, particularly at the requirements modelling level [3].
Finally, as stated in [10], for productivity reasons it is important to avoid model
reconstruction dedicated for just measuring purposes.

On the other hand, PRiM [7] is a Process Reengineering i* Method that addresses
the specification, analysis and design of information systems from a reengineering
point of view. This is based on the premise that, nowadays, most of the information
systems are not built from the scratch, but from a legacy system or a human process
that need to be reengineered. PRiM uses the i* framework [14] for representing the
software model of the system in terms of actors and dependencies between them. The
PRiM method is conformed by the six phases presented in Fig. 1. The first phase

Proceedings of the IWSM - Mensura 2007110

2

involves capturing and recording the information about the current process in order to
inform further phases. During the second phase, the i* model of the current process is
build. In order to reengineer the current process, new goals are obtained, which is
done in the third phase of the method. With the aim of satisfying these goals, several
process alternatives are systematically generated during the fourth phase. In the fifth
phase, the different alternative i* models are evaluated by applying structural metrics
over them [6]. Finally, in the sixth phase, PRiM proposes the generation of the new
information system specification from the i* model of the chosen alternative.

The structural metrics proposed by PRiM focus on the evaluation of non-functional
properties such as easy of use, process agility, maintainability, etc. However, despite
that the i* models are constructed taking into account the functional requirements of
the system, functional metrics are not considered by the method. In [9] we propose a
framework to include other techniques within a reengineering framework such as
PRiM. In that context we found adequate to adapt the PRiM method to measure the
functional size because we have observed strong similarities between the
representation of the mappings used in COSMIC-FFP and the ones represented in
PRiM. Thus, we propose to calculate functional size to complement the set of metrics
proposed by PRiM, and by using the tool support provided by J-PRiM [8]. As the
PRiM method provides techniques for the elicitation of requirements, the generation
of design alternatives and the evaluation of non-functional properties, we believe that
the use of both techniques altogether provides mutual benefits.

In order to verify that COSMIC-FFP can be correctly applied within the PRiM
context, we have applied the measurement process steps proposed in [12], which are:
1) Design of the process method, 2) Application of the measurement method rules, 3)
Analysis of the measurement result, and 4) Exploitation of the measurement result.
However, due to the lack of space, here we only present some parts of the firsts two
steps. For the design of the process method we focus on: 1) the mapping between the
concepts of PRiM and the ones of the COSMIC-FFP metamodel; and, 2) on the
definition of the numerical assignment rules. On the other hand, for the application of
the measurement method we focus on: 1) how the software documentation is obtained
and the software model is constructed using the J-PRiM tool; and, 2) how we apply
the numerical assignment rules using the structural metrics. The proposed process is
exemplified by using the C-Registration Case Study [13].

The remainder of this paper is organized as follows. In section 2 we introduce the
i* framework. As a first step for using COSMIC-FFP in PRiM, in section 3, we
present the mapping between the modelling and evaluation concepts in both methods.
In section 4 we show how the functional size is measured in PRiM and, in section 5,
we introduce how non-functional properties can be evaluated within this method.
Finally, in section 6 we present the conclusions and future work.

PHASE 1:

Analysis of the Current Process

PHASE 2:

Construction of the i* Model of the

Current Process

PHASE 3:

Reengineering the Current Process

PHASE 5:

Evaluation of Alternatives

PHASE 6:

Specification of the New System

PHASE 4:

Generation of Alternatives

Fig 1. Overview of the PRiM method

Proceedings of the IWSM - Mensura 2007111

3

2 The i* Framework

The i* framework is a goal-oriented language defined by Eric Yu [14] with the aim of
modelling and reasoning about organizational environments and their information
systems. For doing so, it offers a formal representation of the involved actors and
their behaviours allowing the consideration of both functional and non-functional
requirements. The i* framework proposes the use of two types of models for
modelling systems, each one corresponding to a different abstraction level: a Strategic
Dependency (SD) model represents the strategic level by means of the dependencies
between the actors, whilst the Strategic Rationale (SR) model represents the rational
level by means of showing the intentionality inside each one of the represented actors.
As COSMIC-FFP takes into account the interaction between the actors rather than in
its internal behaviour, in this paper we focus on SD models.

A SD model consists of a set of nodes that represent actors and a set of
dependencies that represent the relationships among them, expressing that an actor
(depender) depends on some other (dependee) in order to obtain some objective
(dependum). The dependum is an intentional element that can belong to one of the
following four types: goal, task, resource, and softgoal. The semantics are:
 For goal dependencies, the dependee is free to make whatever decisions are

necessary to achieve the goal. For instance, in Fig. 2, the Registar depends on the
C-Registration System for the goal Student information is maintained.

 For task dependencies, the depender depends upon the dependee to attain a goal
following a prescriptive procedure. For instance, in Fig. 2, the Professor depends
on the C-Registration System to Submit student grades, which has to be done
following its own procedure.

 For resource dependencies, the depender depends upon a dependee for the
availability of a physical or informational entity. For instance, in Fig. 2, the C-
Registration System depends on the Student to obtain the entity Course
registration.

 For softgoal dependencies, the depender depends upon the dependee to attain some
goal, perform some task, or produce some resource, in a particular way. The
Student depends on the C-Registration System for a Secure remote access to the
system.

The graphical notation is shown in Fig. 2. For more details we refer to [14].

Registrar

C-

Registration

System

Student

Professor

Student

information is

maintained

Student

information

Grades

report card

Submit

student

grades

D
D

D D

D

D
D

D

D
D

Course

registration

D

D

Remote

access

instructions

D
D

D

D

Goal

Task
Softgoal

Resource

Actor D
Dependency

Link

Courses are

selected

D
D

Remote

access is

enabled

Secure remote

access to the

System

Fig.2. Excerpt of an i* model for the C-Registration System

Proceedings of the IWSM - Mensura 2007112

4

3 Mapping Phase: From COSMIC-FFP to PRiM

The first of the measurement process steps proposed in [12] refers to the design of the
process method, which includes: 1) the definition of the objectives; 2) the
characterization of the concept to be measured; 3) the design or selection of a
metamodel for the object to be measured; and, 4) the definition of the numerical
assignment rules. In this section we address the last two aspects, focusing on the
mapping of concepts between COSMIC-FFP and PRiM.

The metamodel selected for representing the software model to be evaluated is the
PRiM i* metamodel. In PRiM, the i* model is constructed in two different processes
in order to differentiate the functionality that is performed by the system (Operational
i* Model) from the strategic needs of the organization (Intentional i* Model). Thus,
the Intentional i* Model takes into account non-functional requirements and, as we
are interested in the functional user requirements, here we only address the
Operational i* Model.

The Operational i* Model is constructed based upon the information available
from the current process or on the description of how the new process has to be. In
order to facilitate the further construction of the model, this information is
summarized into Detailed Interaction Scripts (DIS). DIS are scenario-based templates
that describe the information of each activity of the current process by means of its
preconditions, postconditions, triggering events, and a list of the actions undertaken in
the activity. For each action, it specifies the actor that initiates the action (initiator),
the name of the action, the resource involved (differentiating if is produced, provided,
or consumed by the initiator) and the actor to which the action is addressed
(addressee). PRiM does not enforce any scenario-based technique for filling the DIS
templates and so, it is possible to apply use cases or any other scenario-based
technique for documenting the current process as long as it follows the structure
proposed. The reason behind is that the PRiM method provides precise rules that
allows to transform the information on the DIS to the Operational i* Model, which
can be done automatically with appropriate tool support (i.e. J-PRiM [8]).

COSMIC-FFP also analyses the functional processes, and differentiates its
subprocesses in order to identify the data movement implied in each. It distinguishes
three types of actors: users or engineered devices, software belonging to the boundary
of the system, and persistent storages. Depending on the direction of the data
movement it also distinguishes between an entry, exit, read and write. Table 1
presents the definitions for this concepts and establishes and analogy with the i*
framework. We remark that in order to establish this analogy, we assume that it is
possible to classify the i* actors as belonging to User, Boundary or Persistent Storage.
The COSMIC-FFP functional size is calculated by assigning to each data movement,
a single unit of measure which is, by convention, equal to 1 cfsu (cosmic functional
size unit). Therefore, the total size of the software being measured corresponds to the
addition of all data movements recognized by the COSMIC-FFP method.

From the information on Table 1, we observe some similarites between the
COSMIC-FFP measurement process model and PRiM. Thus, in Fig. 3, we have
established a set of mapping relationships between the concepts needed in the
Functional User Requirements (FUR) of the COSMIC-FFP generic software model,

Proceedings of the IWSM - Mensura 2007113

5

the information documented in the DIS tables of PRiM and the i* concepts. At the left
of Fig. 3, we observe that COSMIC-FFP is based upon a Functional Process which
has a Triggering Event and several Subprocesses associated to it. Each Subprocess
has a Data Group that can be of the type: entry (E), exit (X), read (R) or write (W). In
the DIS, each Functional Process is represented by an Activity; the Triggering Event
is part of the Conditions associated to the Activity; and, each Subprocess is

Table 1. Mapping of the COSMIC-FFP concepts to the i* Concepts

COSMIC-FFP concept (from [1]) i* Concept
User Any person that specifies Functional

User Requirements and/or interacts
with the software.

Actor that represents one or more human
roles that have functional dependencies
over the software under study.

Boundary A Conceptual interface between the
software under study and its users.

Actor that represents the different pieces of
software under study.

Persistent
Storage

Storage which enables a functional
process to store or retrieve data.

Actor that represents the entities that
manage data in a persistent way.

Data
movement

Component of a functional process
that moves one or more data attributes
belonging to a single data group.

Any dependency where the dependum is a
resource.

Entry (E) Data movement type that moves a
data group from a user across the
boundary into the functional process
where it is required. An Entry does
not update the data it moves.

Dependum: Resource (data group)
Depender: Boundary (functional process)
Dependee: User

Exit (X) Data movement type that moves a
data group from a functional process
across the boundary to the user that
requires it. An Exit does not read the
data it moves.

Dependum: Resource (data group)
Depender: User
Dependee: Boundary (functional process)

Read (R) Data movement type that moves a
data group from persistent storage
within reach of the functional process
which requires it.

Dependum: Resource (data group)
Depender: Boundary (functional process)
Dependee: Persistent Storage

Write (W) Data movement type that moves a
data group lying inside a functional
process to persistent storage.

Dependum: Recource (data group)
Dependee: Persistent Storage
Dependee: Boundary (functional process)

Type: {pr, c, pv}

Triggering Event

Functional Process

Subprocess

Data Group

Condition

Activity

Action

Resource

Actor

Goal Dependency

SR Element

Actor

Resource Dependency

2..m

1..m

1..m

1..m

1..m

1..m2..m

1..m

1

1..m

1..m

1

1..m

11..m

2

Functional User

Requirements (FUR)

Detailled Interaction

Script (DIS)
i*Model

Type: { U, B, PS }

Type: { E, X, R, W }

1

1..m

1

1..m
1..4

1

Fig. 3. Mapping across the different metamodels

Proceedings of the IWSM - Mensura 2007114

6

represented by the concept of an Action. There is a correspondence between the
concepts of Data Group and Resource, although the distinction between the Data
Group types is implicit in the DIS information because it depends on the Actors that
participate in the action. As we have already mentioned, PRiM proposes a set of
automatic rules to transform DIS into i* Models (see [7] for details), where
Conditions are transformed into Goal Dependencies, Activities and Actions are
represented into SR elements, and Resource Dependencies are established between
the different Actors. In order to help the evaluation of the i* Model with COSMIC, we
propose a classification of the i* actors into the following types: user (U), boundary
(B), and persistent storage (PS).

The PRiM method proposes structural metrics for evaluating the i* models and, in
order to apply COSMIC-FFP, the numerical assignment rules are defined using the
formulas and concepts proposed in [6], [7] which differentiate between actor-based
and dependency-based functions. As in COSMIC-FFP the unit of measurement are
the Data Groups, and in i* Data Groups are represented as dependencies. We are
interested in dependency-based functions, which can be defined as follows.

Given a property P and an i* SD model that represents a system model M = (A, D),
where A is the set of the actors and D the dependencies among them, a
dependency-based architectural metric for P over M is of the form:

Σd: d(a,b) ∈D: filterM(d)×correctionFactorM(a,b) P(M) =
limitP(D)

being filterM: D[0,1] a function that assigns a weight to the every dependum
(e.g., if the dependum is goal, resource, task, softgoal if it is from a specific kind),
and correctionFactorM: A[0,1] a function that correct the weight accordingly to
the kind of actor that the depender and the dependee are, respectively. Finally,
limitP(D): A [1, ||A||] is a function that normalizes the result obtained.

In order to measure the functional size, we have adjusted these factors according to
the criteria established in Table 1. As we are interested in counting the total amount of
cfsu, we do not apply the normalization value and limitP(D) = 1. Therefore, we define
the metric as:

Functional Size (M) = Σd: d∈D: functional_size(d)
Where,

1, if d є Resource filterM(d) = 0, otherwise

1, if a є Boundary and b є User
1, if a є User and b є Software
1, if a є Boundary and b є Persistent Storage
1, if a є Persistent Storage and b є Boundary

correctionFactorM (a,b) =

0, otherwise

limitP(D) = 1

4 Measurement Phase: Evaluating COSMIC-FFP with PRiM

Once the measurement method has been designed, the measurement process presented
in [12] proposes three steps for its application: 1) software documentation gathering

Proceedings of the IWSM - Mensura 2007115

7

and construction of the software model; 2) application of the numerical assignment
rules; and 3) measurement result analysis and exploitation of the result.

As the final purpose of the measurement phase is to ensure that the defined
mapping rules and the numerical assignment rules allow a reliable calculation of the
functional size, we have apply the method to the three case studies presented at [5],
and compliant to ISO 19761 [11]. For doing it, we have introduced the case studies in
our tool J-PRiM [8], and we have obtained positive results with all of them. To
illustrate the process, we present the C-Registration Case Study [13].

For the software documentation gathering, we have used the information provided
in the case study (that is, the problem statement and the rules provided by COSMIC-
FFP for establishing the Application Boundary, the Data Groups and the Functional
Processes) in order to ensure that we were working with the same elements of the case
study. Therefore, based on the provided Functional Processes we have established the
activities of PRiM and, for each activity, we have described its actions by filling the
DIS template. We remark that, in order to be compliant with the method, when
describing the actions we have made explicit those actions that involve storing or
retrieving information from the Persistent Storage. Although this was not considered
in PRiM, it has been possible to introduce this information correctly from the problem
statement provided. Fig. 4 shows the screenshot of J-PRiM when defining the
activities for the C-Registration System. At the top we have the defined activities (at
the left, the list of the activities and, at the right, its individual information). At the
bottom we have the DIS template showing, for each action, the actor initiator, the
resource involved (which can be consumed, produced or provided), and the actor
addressee. At the left of Fig. 4 it is possible to see the representation of the
Operational i* Model for the C-Registration System, which is generated automatically
from the introduced information.

Once the Operational i* Model has been generated, we have applied the COSMIC-
FFP dependency-based metric as defined in the previous section. Fig. 5 presents the
screenshot of the graphical interface that we have added in PRiM to facilitate the
application of COSMIC-FFP. At the top-left side we show the different alternatives
that can be evaluated, as the Operational i* Model contains all the information for
calculating the functional size it is the one that has been selected. However, we
remark that other Alternative i* Models could be generated according to the
guidelines proposed in the PRiM method [7]. At the top-right side we have three
boxes for classifying the actors according to the boundaries of the system (Users,
Application Boundary, and Persistent Storage). Finally, at the bottom, we can see the
evaluation of each activity (or functional process), whilst the overall result is
presented at the end of the list.

Once the result has been calculated, we have checked it with the result obtained in
the case study. We have to mention that the first results were different from expected.
In the first execution the reason was that, as we wanted to avoid copying the
functional process data movements, we have generated our own action description. In
this description we considered the command introduced by the user as a triggering
event, whilst in some functional processes of the case study this is considered as a
data movement. We have added these data movements and we have regenerated the
Operational i* Model. In the second execution, the final result is 107 cfsu, one unit

Proceedings of the IWSM - Mensura 2007116

8

Fig 4. Screenshot of J-PRiM: Activity definition and action description using the DIS template

Fig 5. Screenshot of J-PRiM: Evaluation of COSMIC-FFP for the selected Operational i* Model

Proceedings of the IWSM - Mensura 2007117

9

higher than expected, which is due to a miscalculation on the final results presented in
the C-Registration case study which scores 106 cfsu.

5 Non-functional Measurements with PRiM

As we have previously mentioned, PRiM is a reengineering method that supports the
generation and evaluation of alternatives. In PRiM the generation of alternatives is
done based on the i* model of the current process (namely the Operational i* Model)
and by reallocating the responsibilities between its actors. For instance, in the C-
Registration Case Study, we can consider two different alternatives: A) In the current
situation as described in the C-Registration Case Study, the responsibility of
modifying the student and the professor information falls on the Registrar actor. In
the this alternative we reallocate the responsibility of modify the student information
onto the Student actor, and the one of modify the professor data onto the Professor
actor; B) Also in the current situation, the responsibility of accessing the system falls
to different actors. As an alternative, we can make it completely fall onto the
Registrar and, so, we consider that the student and the professor always request him
for introducing their data.

The PRiM method supports the generation of alternatives and their evaluation
using structural metrics. The metrics proposed in PRiM can be organizational (dealing
with non-functional properties of the organization) or architectural (dealing with non-
functional properties of the software). For instance, in Table 2 the Operational i*
Model and the two alternatives proposed are evaluated regarding to the organizational
properties: Ease of communication and Process agility, as they are defined in [7].
When defining Ease of communication, we consider that the communication is easier
when the two interacting actors are human, and it is damaged when it involves the
software system. Under these premises, the results obtained for the C-Registration
System are as expected because the value of Ease of communication increases when
the Registrar gets more responsibilities and the Professor and the Student have first to
communicate with him to access the system. On the other hand, for Process agility we
consider that software actors are more agile than human actors and, thus, its value
decreases as the Professor and the Student depends on the Registrar, as this human
intermediate actor makes the process less agile. Therefore, despite the three
alternatives score the same functional size, they provide different non-functional
properties. We remark that, although this is not the case in the example, alternatives
showing different ways of interacting with the software boundary could lead to
different results of cfsu.

Table 2. Evaluation of the Alternatives

Alternative Cfsu Ease of Communication Process Agility
Operational i* Model 107 0.2824 0.7903
Alternative A 107 0.2796 0.8040
Alternative B 107 0.3761 0.6351

Proceedings of the IWSM - Mensura 2007118

10

6 Conclusions and Future Work

PRiM is a process reengineering method that aims at assessing non-functional
properties of the system using an i* requirements model. In order to provide PRiM
with functional size measurement capabilities, we have adapted the COSMIC-FFP
measurement process model to PRiM, and we have checked that the measurement
results are correct by replicating existing case studies. We have also used these case
studies to generate alternatives and evaluate their non-functional properties with the
structural metrics proposed in PRiM.

Based on the results obtained so far, we argue that both methods benefit from this
process. On the one hand, COSMIC-FFP provides PRiM with a standardized
measurement process for evaluating the functional size, that has been already
validated and it is currently used in a wide variety of situations and domains [4].
Because of that, COSMIC-FFP also provides knowledge and experience for
calculating the functional size. For instance, the questions for validating that a
candidate process is a COSMIC-FFP functional process [1], or the guidelines for the
identification of the entry data movement type provided in [3].

On the other hand, PRiM provides COSMIC-FFP with the possibility of using a
unique i* requirements model for representing both functional and non-functional
requirements, as well as techniques for gathering the requirements. It also provides
guidelines for generating alternatives and structural metrics for evaluating non-
functional properties. All these activities can be undertaken by using i* models, which
avoid having more than one representation, and can be integrated into the
development process because it is possible to generate the use cases specification of
the information system from the resulting i* model.

According to the usability of our proposal, the i* classification that we present,
indicating which actor is a user, belongs to the boundary or represents the persistent
storage, makes implicit which dependencies are an entry, an exit, a read or a write,
facilitating the implicit classification of the Data Groups. Finally, as we have included
COSMIC-FFP in the tool J-PRiM, we already have tool-support for generating and
evaluating the models, making possible to define variations over the COSMIC-FFP
evaluation formula with little effort.

As future work we will address other metrics based on the functional size, such as
the ones for assessing software product lines. As Data Groups are often obtained from
class diagrams, we plan to study how to get the class diagrams in addition to the use
cases in PRiM.

Acknowledgements. This work has been partially supported by the CICYT
programme project TIN2004-07461-C02-01. Gemma Grau work is supported by an
UPC research scholarship.

References

1. Abran, A., Desharnais, J.M., Oligny, S., St-Pierre, D., Symons, C.: “COSMIC-FFP
Measurement Manual (The COSMIC Implementation Guide for ISO/IEC 19761:2003)”.

Proceedings of the IWSM - Mensura 2007119

11

Version 2.2, Common Software Measurement International Consortium, 2003. Available
at: http://www.lrgl.uqam.ca/cosmic-ffp/.

2. Condori-Fernández, N., Abrahão, S., Pastor, O.: “Towards a Functional Size Measure for
Object-Oriented Systems from Requirements Specifications”. In Proceedings of the 4th
International Conference on Quality Software, QSIC 2004. pp. 94-101.

3. Condori-Fernández, N., Pastor, O.: “Evaluating the Productivity and Reproducibility of a
Measurement Procedure”. In Proceedings of the 2nd International Workshop on Quality of
Information Systems, QoIS 2006. pp: 352-361.

4. The COSMIC-FFP at: http://www.cosmicon.com. Last visited: September 2007.
5. The COSMIC-FFP at: http://www.lrgl.uqam.ca/cosmic-ffp/. Last visited: September 2007.
6. Franch, X., Grau, G., Quer, C.: “A Framework for the Definition of Metrics for Actor-

Dependency Models”. In Proceedings of the 12th IEEE International Conference on
Requirements Engineering, RE 2004. pp: 348-349.

7. Grau, G., Franch, X., Maiden, N.A.M.: "PRiM: an i*-based process reengineering method
for information systems specification". To appear in Information and Software
Technology.

8. Grau, G., Franch, X.: “ReeF: Defining a Customizable Reengineering Framework”. To
appear in Proceedings of the 19th International Conference on Advanced Information
Systems Engineering, CAiSE 2007. Springer-Verlag, LNCS 4495. pp. 485-500.

9. Grau, G., Franch, X., Ávila, S.: "J-PRiM: A Java Tool for a Process Reengineering i*
Methodology". In Proceedings of the 14th IEEE International Conference on Requirements
Engineering, RE 2006. pp. 352-353.

10. Habela, P., Glowacki E., Serafinski T., Subieta K.: “Adapting Use Case Model for
COSMIC-FFP Based Measurement”. In Proceedings of the 15th International Workshop
on SoftwareMeasurement, IWSM 2005. pp. 195-207.

11. ISO/IEC 19761:2003. “Software Engineering – COSMIC-FFP – A functional size
measurement method”, International Organization for standarization, 2203.

12. Jacquet, J.P., Abran, A.: “From Software Metrics to Software Measurement Methods: A
Process Models”. In Proceedings of the 3rd International Software Engineering Standards
Symposium, ISESS’97. pp. 128-135.

13. Khelifi, A., Abran, A., Symons, C., Desharnais, J.M., Machado, F., Jayakumar, J.,
Leterthuis, A.: “The C-Registration System Case Study with ISO 19761 (2003)”.
Available at: http://www.gelog.etsmtl.ca/cosmic-ffp/casestudies/. Last visited: September
2007.

14. Yu, E.: Modelling Strategic Relationships for Process Reengineering. PhD. thesis,
University of Toronto, 1995.

Proceedings of the IWSM - Mensura 2007120

