
  

COSMIC-FFP OVERVIEW 

COSMIC, the COmmon Software Measurement International Consortium, is a voluntary 

initiative of a truly international group of software measurement experts, both 

practitioners and academics, from Asia/Pacific, Europe and North America.  The 

principles of the COSMIC-FFP method of measuring the functional size of software were 

first laid down in 1999. Field trials were successfully conducted in 2000/01 with several 

international companies and academic institutions. The process of developing an 

International Standard for the COSMIC-FFP method was started in 2001 and adopted and 

published by ISO in 2003. For further information about COSMIC visit 

www.cosmicon.com, or www.gelog.etsmtl.ca/cosmic-ffp, including for a free download 

of the COSMIC Implementation Guide to ISO 19761:2003, measurement bulletin 

updates, case studies, certification, etc. 

The COSMIC-FFP measurement method is designed to be applicable to software from 

the following domains: 

• Business application software which is typically needed in support of business 

administration, such as banking, insurance, accounting, personnel, purchasing, 

distribution or manufacturing.  Such software is often characterized as “data rich”, as 

its complexity is dominated largely by the need to manage large amounts of data 

about events in the real world. 

• Real-time software, the task of which is to keep up with or control events happening 

in the real world.  Examples would be software for telephone exchanges and message 

switching, software embedded in devices to control machines such as domestic 

appliances, lifts and car engines, for process control and automatic data acquisition, 

and within the operating system of computers. 

• Hybrids of the above, as in real-time reservation systems for airlines or hotels for 

example. 

For software, which: 

• are characterized by complex mathematical algorithms or other specialized and 

complex rules, such as may be found in expert systems, simulation software, self-

learning software, weather forecasting systems, etc. 

• process continuous variables such as audio sounds or video images, such as found, for 

instance, in computer game software, musical instruments and the like. 

it is possible, to define local extensions to the COSMIC-FFP measurement method  

COSMIC-FFP Measurement Process Model  

The derivation of functional size of the software being measured is independent of the 

effort required to develop or maintain the software, of the method used to develop or 

maintain the software and of any physical or technological components of the software. 



  

The COSMIC-FFP measurement method is also designed to be independent of the 

implementation decisions embedded in the operational artifacts of the software to be 

measured.  To achieve this characteristic, measurement is applied to the Functional User 

Requirements (or ‘FUR’) of the software to be measured   -  Figure 1. 

Figure 1 – COSMIC-FFP measurement process model – Version 2.2 (January 2003) 

Extracting functional users requirements  

The functionality delivered by software to its users is described through the Functional 

User Requirements (FUR).  These state ‘what’ the software must do for the users and 

exclude any technical or quality requirements that say ‘how’ the software must perform.  

In practice, FUR sometimes exist in the form of a specific document (requirements 

specifications, for instance), but often they have to be derived from other software 

engineering artifacts. As illustrated in Figure 2, FUR can be derived from software 

engineering artifacts that are produced before the software exists (typically from 

architecture and design artifacts).  Thus, the functional size of software can be measured 

prior to its implementation on a computer system. 

 
 

Figure 2 – COSMIC-FFP pre-implementation model 

In other circumstances, software might be used without there being any, or with only a 

few, architecture or design artifacts available, and the FUR might not be documented 

(legacy software, for instance).  In such circumstances, it is still possible to derive the 

software FUR from the artifacts installed on the computer system even after it has been 

implemented, as illustrated in Figure 3. 

Requirements
definition artifacts

Data
analysis / modelling

artifacts

Artifacts from
functional decomposition

of requirements

Functional User Requirements (‘FUR’) in the
artifacts of the software to be measured

Measurement
Phase

Measurement
Phase Rules

& Method

 

FUR in the form of

the COSMIC FFP

generic software model

Mapping Phase
Rules &
Method

 
 

Functional Size of

the generic

software  model

Mapping

Phase

FUR in the

artifacts of the software

to be measured

COSMIC FFP Measurement Manual

Measurement
Context and
COMIC-FFP

Software
Models

Chapter 4Chapter 3Chapter 2



  

  

Figure 3 – COSMIC-FFP post-implementation model 

COSMIC-FFP Mapping phase  

The COSMIC-FFP mapping phase takes as input a statement of Functional User 

Requirements of a piece of software and, using a defined set of rules and procedures, 

produces a specific software model suitable for measuring functional size.  The software 

model produced corresponds to the set of the FUR to be included in the specific FSM 

measurement exercise, as determined by the Purpose, Scope and Measurement Viewpoint 

of the measurement.   

A key aspect of software Functional Size Measurement is the establishment of what is 

considered to be part of the software and what is considered to be part of the software’s 

operating environment.  Figure 4 illustrates the generic flow of data from a functional 

perspective from which the following can be observed: 

 

• Software is bounded by hardware.  In the so-called “front-end” direction, software 

used by a human user is bounded by I/O hardware such as a mouse, a keyboard, a 

printer or a display, or by engineered devices such as sensors or relays.  In the so-

called “back-end” direction, software is bounded by persistent storage hardware like a 

hard disk and RAM and ROM memory. 

 

• The functional flow of data attributes can be characterized by four distinct types of 

movement.  In the “front end” direction, two types of movement (ENTRIES and 

EXITS) allow the exchange of data with the users across a ‘boundary’.  In the “back 

end” direction, two types of movement (READS and WRITES) allow the exchange of 

data attributes with the persistent storage hardware. 

 

• Different abstractions are typically used for different measurement purposes.  For 

business application software, the abstraction commonly assumes that the users are 

one or more humans who interact directly with the business application software 

across the boundary; the ‘I/O hardware’ is ignored.  In contrast for real-time software, 

the users are typically the engineered devices that interact directly with the software, 

that is the users ARE the ‘I/O hardware’. 

 

Physical
programs

Software
operations
manual and
procedures

Physical
data storage

artifacts

Functional User Requirements (‘FUR’) in the
artifacts of the software to be measured



  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4 – Generic flow of data through software from a functional perspective 

Figure 5 illustrates the generic software model proposed by the COSMIC-FFP 

measurement method.  According to this model, software functional user requirements 

can be decomposed into a set of functional processes.  Each of these functional processes 

is a unique set of sub-processes performing either a data movement or a data 

manipulation.  

or

Engineered
Devices

S
to
ra
g
e
 H
a
rd
w
a
re

SOFTWARE

ENTRIES

EXITS

« Front

end »
USERS

READS

WRITES

« Back

end »

EXITS

ENTRIES

I/
O
 H
a
rd
w
a
re

B
O
U
N
D
A
R
Y



  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5 – A generic software model for measuring functional size 

The generic COSMIC-FFP software model asserts that all software Functional User 

Requirements can be expressed in terms of ‘functional processes’, each triggered by an 

event in the world of the user. (See below for more on functional processes). The model 

further distinguishes four types of data movement: entry, exit, read and write, as defined 

by this measurement method.  All data movements move data contained in exactly one 

data group.  Entries move data from the users across the boundary to inside the functional 

process; exits move data from inside the functional process across the boundary to the 

users; reads and writes move data from and to persistent storage.  These relationships are 

illustrated in Figure 6. Of course, as shown in Figure 5, software manipulates data as well 

as moving it.  However, given that: 

i) the COSMIC-FFP method is aimed at software from domains that are data movement-

rich, rather than algorithm-rich and 

ii) that how to measure the functional size of data manipulation is not al all clear, the 

method makes the simplifying assumption that each data movement type also accounts 

for the data manipulation associated with it.  
 
 

 

 

 

 

 

 

 

 

 

 

Figure 6 – The data movement types and some of their relationships  

COSMIC-FFP measurement phase 

Functional User

Requirements

Data Movement

type

Data Manipulat ion

type

Sub-process types

Software

Functional

Process type

Manipulation

Boundary

Entry Exit

WriteRead

: Data movement type 
  sub-processes

Functional
process

Users

Storage



  

The COSMIC-FFP measurement phase takes as input an instance of the COSMIC-FFP 

generic software model and, using a defined set of rules and procedures, produces a size 

based on the following principle: The functional size of software is directly proportional 

to the number of its Data Movements. Therefore:  

• Each instance of a data movement is assigned 1 Cfsu (Cosmic functional size 

unit). 

• The functional size of a functional process is defined as the arithmetic sum of the 

values of the measurement function, as applied to each of its data movements.  

• The functional size of any required functional change to a piece of software is by 

convention the arithmetic sum of the functional sizes of all the added, changed 

and deleted functional data movements of that piece of software. 

There is no upper limit to the functional size of a piece of software and, notably, there is 

no upper limit to the functional size of any of its functional processes. 

Functional Size Measurement context 

Before starting a measurement using the COSMIC-FFP method it is imperative to 

carefully define the Purpose, the Scope and the Measurement Viewpoint.  This may be 

considered as the first step of the measurement process 

There are many reasons to measure the functional size of software, just as there are many 

reasons to measure the surface areas of a house.  In a particular context, it might be 

necessary to measure the functional size of software prior to its development, just as it 

might be necessary to measure the surface areas of a house prior to its construction.  In a 

different context, it will be useful to measure the functional size of software some time 

after it has been put into production, just as it might be useful to measure the surface 

areas of a house after it had been delivered and the owner has moved in.   

Likewise, measuring the functional size of software after it has been put into production 

entails a somewhat different measurement procedure when the required dimensions are 

extracted from the various artifacts.  Although the nature of these artifacts differs, the 

dimensions, the unit of measure and the measurement principles remain the same. 

Equally, it is important to define the Scope of the measurement, which is derived from 

the Purpose, before commencing a particular measurement exercise.  Example: if the 

purpose is to measure the functional size of software delivered by a particular project 

team, it will first be necessary to define the Functional User Requirements of all the 

various components to be delivered by the team.  These might include the FUR of 

software which was used once only to convert data from software which is being 

replaced.  If then the purpose is changed to measure the size which the users have 

available once the new software is operational, this would be smaller, as the FUR of the 

software used for conversion would not be included in the scope of the measured size. 

Finally, it is essential to define the Measurement Viewpoint, which again may follow 

from the Purpose.  The Measurement Viewpoint, in general terms, determines the level of 



  

detail that can be seen and therefore measured, within the Scope.  The Measurement 

Viewpoint is highly significant, because in general measurements taken from different 

Measurement Viewpoints cannot meaningfully be compared or added together. 

Purpose of a Measurement.  Examples: 

• To measure the size of the FUR as they evolve, as input to an estimating process 

• To measure the size of changes to the FUR after they have been initially agreed, in 

order to manage project ‘scope creep’ 

• To measure the size of the FUR of the total software delivered, and also the size of 

the FUR of the software which was developed, in order to obtain a measure of 

functional re-use 

• To measure the size of the FUR of the existing software as input to the measurement 

of the performance of those responsible for maintaining and supporting the software. 

The Purpose helps the Measurer to determine: 

• the Scope to be measured and hence the artifacts which will be needed for the 

measurement 

• the Measurement Viewpoint to be used for the measurement 

• the point in time in the project life-cycle when the measurement will take place 

• the required accuracy of the measurement, and hence whether the COSMIC-FFP 

measurement method should be used, or whether a locally-derived approximation 

version of the COSMIC-FFP method should be used (e.g. early in a project’s life-

cycle, before the FUR are fully elaborated) 

Scope of a Measurement.  Examples: 

• A contractually-agreed statement of FUR 

• A Project Team’s delivered work-output (i.e. including that obtained by exploiting 

existing software parameters and re-usable code, software used for data conversion 

and subsequently discarded, and utilities and testing software developed specifically 

for this project) 

• A Project Team’s developed work-output (i.e. including software used for data 

conversion and subsequently discarded, and utilities and testing software developed 

specifically for this project, but excluding all new functionality obtained by changing 

parameters and exploiting re-usable code) 

• A Layer  

• A Re-usable Object 

• A Software Package 

• An Application 

• An Enterprise Portfolio 

Specific Measurement Viewpoints.   

As outlined above, for consistent measurement, measurers need to define and use 

consistently a very limited number of Measurement Viewpoints.  The two Measurement 

Viewpoints that most obviously need to be standardized are the Measurement Viewpoint 



  

of the ‘End Users’ of an item of application software and the Measurement Viewpoint of 

the Developer of the software to be provided to meet the FUR.  

End User Measurement Viewpoint: A Measurement Viewpoint that reveals only the 

functionality of application software that has to be developed and/or delivered to meet a 

particular statement of FUR. It is the viewpoint of Users who are either humans who are 

aware only of the application functionality that they can interact with, or of peer 

application software that is required to exchange or share data with the software being 

measured.  It ignores the functionality of all other software needed to enable these Users 

to interact with the application software being measured. 

Developer Measurement Viewpoint:A Measurement Viewpoint that reveals all the 

functionality of each separate part of the software that has to be developed and/or 

delivered to meet a particular statement of FUR. 

The Developer may see that a statement of FUR implies that more than one separate 

‘major component’ has to be developed and/or delivered. This can arise if, due to the 

requirements, parts of the software have to be developed using different technologies, 

and/or will execute on different processors and/or belong to different layers of a given 

architecture, and/or are to be realized as separate peer items in the same layer'. 

IDENTIFYING SOFTWARE LAYERS 

Functional User Requirements may state explicitly, may imply, or the measurement 

analyst may infer, that the FURs apply to software in different layers or peer items. 

Alternatively, the measurement analyst may be faced with sizing existing software which 

appears to be in different layers or peer items.  In both cases, let us assume that the 

Purpose, Scope and Measurement Viewpoint indicate that these layers must be measured 

separately.  For example, the Purpose is estimating, where the layers will be developed 

using different technologies.  We then need guidance to help decide if the FUR or the 

software comprises one or more layers or peer items. Layers may be identified according 

to the following definitions and principles. A layer is the result of the functional 

partitioning of the software environment such that all included functional processes 

perform at the same level of abstraction. 

 

In a multi-layer software environment, software in one layer exchanges data with 

software in another layer through their respective functional processes.  These 

interactions are hierarchical in nature; when considered in pairs, one layer is subordinate 

to the other.  Software in a subordinate layer provides functional services to software in 

other layers using its services.  The Measurement Method defines “peer-to-peer” 

exchanges as two items of software in the same layer exchanging data. 
 
 

Layer identification is an iterative process:  
The concept of software layers is a tool to help differentiate Functional User 

Requirements allocated at different levels of functional abstraction. There are many 

software architecture models in use. The layered model is used here to provide a 

functional view of the software.  Other models could be used if they provide a functional 

view of the software, fully or partly. 



  

IDENTIFYING SOFTWARE BOUNDARIES 

This step consists in identifying the boundary of each piece of software (depending on 

the Measurement Viewpoint, e.g. each layer or each peer item within a layer if the 

‘Developer’ Measurement Viewpoint) to be measured. The boundary is defined as a 

conceptual interface between the software under study and its users. The boundary of a 

piece of software is the conceptual frontier between this piece and the environment in 

which it operates, as it is perceived externally from the perspective of its users.  The 

boundary allows the measurer to distinguish, without ambiguity, what is included inside 

the measured software from what is part of the measured software’s operating 

environment. 

A User is defined as any person or thing that communicates or interacts with the software 

(being measured) at any time. Users can be human beings, software or engineered 

devices. 

 

Once identified, the candidate boundary must comply with the following principle: By 

definition, there is a boundary between each identified pair of layers where one layer is 

the user of another, and the latter is to be measured.  Similarly, there is a boundary 

between any two distinct pieces of software in the same layer if they exchange data in 

‘peer-to-peer’ communications; in this case each piece can be a user of its peer. 

The following rules might be useful to confirm the status of a candidate boundary:  

a) Identify triggering events, then identify the functional processes enabled by those 

events.  The boundary lies between the triggering events and those functional 

processes.  

b) For real-time or technical software, use the concept of layers to assist in the 

identification of the boundary (section 3.1). 
 

IDENTIFYING FUNCTIONAL PROCESSES 

This step consists in identifying the set of functional processes of the software to be 

measured, from its Functional User Requirements. A functional process is an elementary 

component of a set of Functional User Requirements comprising a unique cohesive and 

independently executable set of data movements. It is triggered by one or more 

triggering events either directly, or indirectly via an ‘actor’. It is complete when it has 

executed all that it is required to be done in response to the triggering event (-type). An 

‘actor’ is a User of the system being measured, acting as an intermediary to convey data 

about a triggering event to the functional process that has to respond to that event. 

 

A triggering event is an event(-type) that occurs outside the boundary of the measured 

software and initiates one or more functional processes. In a set of Functional User 

Requirements, each event(-type) which triggers a functional process is indivisible for that 

set of FUR. (Clock and timing events can be triggering events; As far as software is 

concerned, an event has either happened, or it has not; it is instantaneous. 
 

Once identified, candidate functional processes must comply with the following 

principles: 



  

a) A functional process is derived from at least one identifiable Functional User 

Requirement, 

b) A functional process is performed when an identifiable triggering event occurs, 

c) A functional process comprises at least two data movements, an entry plus either an 

exit or a write, 

d) A functional process belongs to one, and only one, layer, 

e) A functional process terminates when a point of asynchronous timing is reached.  A 

point of asynchronous timing is reached when the final (terminating) data movement 

in a sequence of data movements is not synchronized with any other data movement. 

IDENTIFYING DATA GROUPS 

This step consists in identifying the data groups referenced by the software to be 

measured. A data group is a distinct, non empty, non ordered and non redundant set of 

data attributes where each included data attribute describes a complementary aspect of the 

same object of interest.  A data group is characterised by its persistence. 

Data persistence is a characteristic used to help distinguish between the four types of 

sub-processes.  Once identified, each candidate data group must comply with the 

following principles:  

a) A data group must be materialized within the computer system supporting the 

software. 

b) Each identified data group must be unique and distinguishable through its unique 

collection of data attributes.  

c) Each data group must be directly related to one Object of interest described in the 

software’s Functional User Requirements. 

The data group definition and principles are intentionally broad in order to be applicable 

to the widest possible range of software.  This quality has a drawback in the fact that their 

application to the measurement of a specific piece of software might be difficult.  

Therefore, the following rules, drawn from Functional Size Measurement practice, might 

assist in the application of the principles to specific cases. 

APPLICATION TO BUSINESS APPLICATION SOFTWARE: Measurement 

practice has established that, in business application software, a data group is identified 

for each ‘entity-type’  In COSMIC-FFP, we use the term ‘Object of interest’ instead of 

‘entity-type’ or ‘TNF relation’ in order to avoid using terms related to specific software 

engineering methods. 

 

Examples: in the domain of management information software, an Object of interest 

could be ‘employee’  (physical) or ‘order’ (conceptual) – the software is required to 

store data about employees or orders. 

 

Furthermore, data groups showing transient persistence are formed whenever there is an 

ad hoc enquiry which asks for data about some ‘thing’ about which data is not stored 

with indefinite persistence, but which can be derived from data stored with indefinite 

persistence.  In such cases the transient Object of interest is the subject of the entry data 

movement in the ad hoc enquiry (the selection parameters to derive the required data) 



  

and of the exit data movement containing the desired attributes of the transient Object of 

interest.   

 

Example: we form an ad hoc enquiry against a personnel database to extract a list of 

names of all employees aged over 35.  This group is a transient Object of interest.  The 

entry is a data group containing the selection parameters.  The exit is a data group 

containing the list of names. 

 

APPLICATION TO REAL-TIME SOFTWARE. Real-time software 

measurement practice has established that data groups for this type of software often 

take the following forms: 

• Data movements which are Entries from physical devices typically contain data 

about the state of a single Object of interest, such as whether a valve is open or 

closed, or indicate a time at which data in short-term, volatile storage is valid or 

invalid, or contain data that indicates a critical event has occurred and which 

causes an interrupt. 

• A message-switch may receive a message data group as an Entry and route it 

forward unchanged as an Exit.  The attributes of the message data group could 

be, for example, ‘sender, recipient, route_code and message_content’, and its 

Object of interest is ‘Message’. 

 

• Common data structure, representing Objects of interest that are mentioned in the 

Functional User Requirements, which are held in volatile memory and 

accessible to most of the functional processes found in the measured software, 

• Reference data structure, representing graphs or tables of values found in the 

Functional User Requirements, which are held in permanent memory (ROM 

memory, for instance) and accessible to most of the functional processes found 

in the measured software, 

• Files, commonly designated as “flat files”, representing Objects of interest 

mentioned in the Functional User Requirements, which are held in a persistent 

storage device. 

IDENTIFYING THE DATA MOVEMENTS 

This step consists in identifying the data movements (Entry Exit Read and Write-types) of 

each functional process.  A COSMIC-FFP data movement is a component of a functional 

process that moves one or more data attributes belonging to a single data group. A 

COSMIC-FFP data movement occurs during the execution of a functional process 

APPLYING THE MEASUREMENT FUNCTION 

This step consists in applying the COSMIC-FFP measurement standard to each of the 

data movements identified in each functional process. The COSMIC-FFP measurement 

standard, 1 Cfsu (Cosmic Functional Size Unit) is defined as the size of one elementary 

data movement. 



  

According to this measurement function, each instance of a data movement (entry, exit, 

read or write) receives a numerical size of 1 Cfsu. The last step consists in aggregating 

the results of the measurement function, as applied to all identified data movements, into 

a single functional size value:   

For each functional process, the functional sizes of individual data movements are 

aggregated into a single functional size value by arithmetically adding them together. 

 

SizeCfsu (functional processi) = ∑ size(entriesi) + ∑ size(exitsi) + ∑ size(readsi) 

                                            + ∑ size(writesi) 

Note that the minimum size of a functional process is 2 Cfsu (There must always be 

one Entry and either a Write or an Exit) and theere is no upper limit to the size of 

any one fucntional process. 

 

For any functional process, the functional size of changes to the Functional User 

Requirements is aggregated from the sizes of the corresponding modified data 

movements according to the following formula. 

SizeCfsu (Change(functional processi)) = ∑ size(added data movements) +  

∑ size(modified data movements) + 

∑ size(deleted data movements) 

 

The size of each piece of software to be measured within a layer shall be obtained by 

aggregating the size of the new and any changed functional processes within the 

identified FUR for each piece 

 

Sizes of layers or of pieces of software within layers may be added together only if 

measured from the same Measurement Viewpoint. 

Furthermore, sizes of pieces of software within any one layer or from different layers may 

be added together only if it makes sense to do so, for the Purpose of the measurement.  

(For example, if various major components are developed using different technologies, by 

different project sub-teams, then there may be no practical value in adding their sizes 

together.) 

An example: A requested change to a piece of software might be: “add one new 

Functional Process of size 6 Cfsu, and in another Functional Process add one Data 

Movement, make changes to three other Data Movements and delete two Data 

Movements.”  The total size of the requested change is 6 + 1 + 3 + 2 = 12 Cfsu.  

LOCAL EXTENSIONS 

The COSMIC-FFP Measurement Method is currently not designed to provide a standard 

way of accounting for the size of certain types of Functional User Requirements, notably 

complex mathematical algorithms or complex sequences of rules as found in expert 

systems.  However, it may be that within the local environment of an organization using 

the COSMIC-FFP Measurement Method, it would be possible to account for this 

functionality in a way which is meaningful as a local standard. 



  

For this reason, the COSMIC-FFP Measurement Method has provision for local 

extensions.  In any functional process where there is an abnormally complex data 

manipulation functional sub-process, the measurer is free to assign his or her own locally-

determined functional size units for this exceptional functionality.  An example of a local 

extension standard could be: 

In our organization, we assign one Local FSU for mathematical algorithms such as (list 

of locally meaningful and well-understood examples…).  We assign two Local FSU's for 

(another list of examples), etc. 

USING COSMIC-FFP EARLY IN THE LIFE CYCLE 

It may be necessary in practice to determine a COSMIC-FFP size early in a project life-

cycle before all detailed information has become available to produce a size according to 

the detailed rules given in the Measurement Manual. 

In these circumstances we can use a locally-calibrated approximate version of the 

COSMIC-FFP method to obtain the early size estimate.  Any approximate COSMIC-FFP 

method relies on finding a concept at a higher level of abstraction than the Data 

Movement, that can be assigned a size in Cfsu. 

The first higher level concept above the Data Movement is the Functional Process.  The 

simplest process for obtaining an approximate size of a new piece of software is therefore 

as follows.  For the new piece of software: 

1. Identify a sample of other pieces of software with similar characteristics to the new 

piece 

2. Identify their functional processes 

3. Measure the sizes of the functional processes of these other pieces with COSMIC-

FFP 

4. Determine the average size, in Cfsu, of the functional processes of these other pieces 

(e.g. = 8 Cfsu) 

5. Identify all the functional processes of the new piece of software (e.g. = 40) 

6. Based on the sample the early estimated size of the new piece of software is 8 x 40 = 

320 Cfsu. 

Such a process can be refined to give a more accurate result if instead, before step 4 

above, the functional processes are sorted into categories giving equal contributions to the 

total size.  In a real example for one component of a major real-time avionics system, it 

was decided to divide the functional processes into four quartiles of equal contribution to 

size.  The average size of the functional processes in each quartile (and the names given 

to these quartiles) was: 

‘Small’  3.9 Cfsu 

‘Medium’ 6.9 Cfsu 



  

‘Large’ 10.5 Cfsu 

‘Very Large’ 23.7 Cfsu 

(To interpret these figures, for example, 25% of the total size of the component was 

accounted for by ‘Small’ functional processes whose average size was 3.9 Cfsu, another 

25% of the total size by ‘Medium’ functional processes of average size 6.9 Cfsu, etc.) 

In step 5 of the above process, the functional processes of the new piece of software are 

identified and also classified as ‘Small’, ‘Medium’, ‘Large’ or ‘Very Large’. 

In step 6, the average sizes listed above are then used to multiply the number of 

functional processes of the new piece of software, in each quartile respectively to get the 

total early estimated size. 

N.B. Anyone wishing to adopt this process is strongly advised to calibrate their average 

sizes with local data relevant to the piece of software to be sized (and NOT to use the 

above averages).  Much further research and measurement is needed before it will be 

possible to give ‘industry-average’ sizes of functional processes for various 

circumstances. 

Measurement worksheet example 

The matrix next can be used as a repository to hold each identified component of the 

generic software model to be measured.  It is designed to facilitate the use of the 

measurement process. 



  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

� Each identified data group is registered in a column, 

� Each functional process is registered on a specific line, grouped by identified layer. 

� For each identified functional process, the identified data movements are noted in the 

corresponding cell using the following convention: “E” for an entry, “X” for an exit, 

“R” for a read and “W” for a write; 

� For each identified functional process, the data movements are then summed up by 

type and each total is registered in the appropriate column at the far right of the 

matrix; 

� The measurement summary can then be calculated and registered in the boxed cells of 

each layer, on the “TOTAL” line. 

 

DATA GROUPS

LAYERS FUNCTIONAL PROCESSES D
a

ta
 G

ro
u

p
 1

… … … … … … D
a

ta
 G

ro
u

p
 n

E
N

T
R

Y
 (

E
)

E
X

IT
 (

X
)

R
E

A
D

 (
R

)

W
R

IT
E

 (
W

)

LAYER "A"

Functional process a

Functional process b

Functional process c

Functional process d

Functional process e

TOTAL - Layer A

LAYER "B"

Functional process f

Functional process g

Functional process h

TOTAL - Layer B


