Measuring the functional size of real-time software

MarcelaMaya, Alain Abran, Serge Oligny, Denis St-Pierre, Jean-Marc Desharnais

Abstract

Function Point Analysis (FPA) is a technique designed to measure the functional size of
software products. The technique measures product size from the user’s point of view rather
than from a technical perspective. FPA is now widely used in the MIS domain, where it has
become the “de facto” standard. However, FPA has not enjoyed the same degree of
acceptance in other domains, such as real-time software. This paper reports on work carried
out to adapt FPA to the specific functional characteristics of real-time software. The
extension proposed, called Full Function Points (FFP), is described and the results of field
tests are discussed.

1. Introduction

Due to the important role played by software in today's organizations, the use of measures
to control software development processes and products is recognized as an essential element
in effective software management. One important measure is the size of the software product.
There are basically two kinds of software size measures. technical measures and functional
measures. Technical measures, like the number of lines of code, size software products from
the developer's point of view. They are useful for conducting efficiency analysis, for instance.
Functional measures size software products from the user's point of view. Being independent
of technical development and implementation decisions, they are useful for performing
productivity analysis and for building estimation models.

Function Point Analysis (FPA), first introduced by Allan Albrecht in 1979 [1], is an
example of a functiona size measure. FPA measures the size of a software product in terms
of the functionality it delivers to the users, taking into account objects such as inputs, outputs
and files. FPA is now widely used in the MIS domain, where it is becoming the de facto
standard. FPA is being used extensively, among other things, to analyze productivity and to
estimate software costs. However, FPA has not enjoyed the same degree of acceptance in the
domain of real-time software. In fact, a literature review has shown that the data sets used in
most publications originate from MIS software applications. Several authors concur that when
FPA is applied to real-time software, the results do not constitute an adequate size
measurement [3], [6], [11], [15]. Currently, there is no FPA-equivalent technique for the real-
time domain.

Six previous attempts to adapt FPA to rea-time software have been identified in the
literature: Feature Points [6], Mark 11 [14], Asset-R [11], 3D Function Points [15],
Application Features [10] and IFPUG Case Study 4 - Draft version [5]. These attempts can
be classified into five types of solutions: introducing new components to be measured in
addition to those already proposed by FPA (Feature Points, Asset-R, 3D Function Points);
adjusting the final function point count (Asset-R); estimating the final function point count
(Application Features); continuous adjustment of the matrices used to assign points to the
different components (Mark-11) and the orthodox approach (IFPUG Case Study 4 - Draft
version). However, it seems that none of these approaches has succeeded in gaining market
acceptance, even though some of them were proposed a decade ago.

This paper presents the results of aresearch project carried out at the Software Engineering
Management Research Laboratory at the Université du Québec a Montréal in cooperation

with the Software Engineering Laboratory in Applied Metrics (SELAM) to extend FPA to
take into account the specific functional characteristics of real-time software. The extension
proposed, called Full Function Points (FFP) [12], is based on the observation that rea-time
software has the following specific transactional and data characteristics:

Transactional characteristics: The number of sub-processes of a real-time process varies
substantially. By contrast, processes in the MIS domain display a more stable number of
Sub-processes.

Data characteristics. There are usually a large number of single-occurrence control
variables in a real-time software product. These variables are characterized by the fact that
there is only one occurrence of them in the whole application (for example, the status of a
physical device).

To take into account these characteristics, FFP introduce six new components to be
measured in addition to the five aready defined in FPA: four new components to take into
account the transactional characteristics and two new components to take into account the
data characteristics. FFP define detailed procedures and rules to identify and weight these new
components.

Furthermore, FFP were designed to retain the actua FPA quality characteristics from a
measurement perspective, including:

Relevance: Practitioners perceive that the measurement technique adequately measures the
functional size of their applications.

Instrumentation: Instrumentation means the transformation of the preliminary
specifications of a measurement technique into a set of well-documented procedures. These
procedures will ensure the application of the measurement technique in a consistent manner
across contexts, culture and time, and independently of the designers of the technique. An
example of instrumentation is the FPA Counting Practices Manual [4]. Instrumentation is
an essentia factor in achieving repetitiveness, which means that different individuals, in
different contexts and at different times and following the same measurement procedures,
will obtain measurement results that are relatively similar, have been obtained with minimal
judgment and can be audited.

Practicality and applicability: The measurement technique is based on current software
design practices, as observed in the industry, and on the content of the documentation of
user requirements from a functional perspective.

Transferability: The measure should alow transferability to a standards-setting and
monitoring body.

FFP were field-tested in different organizations. The feedback obtained from these
organizations was positive [8] [9] [13]: FFP results represent for them a more relevant
measure of the functiona size of their real-time software than do FPA results. They believe
that the functional size was measured objectively, precisely and in an auditable manner.
Furthermore, they believe that someone else with the same set of rules would come up with
the same results. The concepts, counting rules and procedures in the FFP counting manual
were deemed relatively clear and easy to understand. The effort required to measure an
application with FFP was judged to be similar to that required using FPA, even though more
function types have to be counted, the reason being that the new components are easily and
quickly identified.

In this paper, the key concepts of FFP are described and the results of field tests conducted
arediscussed. Section 2 describes the limits of the current version of FPA for the functional
Size measurement of real-time software. Section 3 introduces the basic concepts of FFP.

Section 4 describes the field tests conducted and highlights the main results. The final section
presents some observations and topics for further research.

2. FPA in areal-time environment

To measure the functional size of a software product, the current version of FPA considers
two types of components or function types as described in [4]: the transactional function type
and the data function type (readers unfamiliar with FPA are referred to Box A at the end of
this paper for an overview of basic FPA concepts). However, the following transactional and
data characteristics specific to real-time software were identified as not being well captured by
the current FPA function types.

2.1. Transactional function type characteristics

Transactional function types in FPA are based on the concept of the elementary process'.
For instance, a process that generates data to be sent to the user could have the following four
steps. (1) receive the request from the user, (2) read the information needed, (3) make
calculations, and (4) send the results back to the user. According to FPA rules, these four
steps or sub-processes are considered a unique elementary process. This means that the four
sub-processes are counted as a unique function type (Input, Output or Inquiry). In FPA, the
number and nature of the sub-processes required to execute an elementary process are not
taken into account.

According to empirical observations [8] [9], MIS processes of the same type have a
relatively stable number of sub-processes. Therefore, in a typica MIS environment, the
number of sub-processes does not add any important information to the functional size of a
given process since it is relatively constant across all processes of the same type. By contrast,
real-time software shows a varying number of sub-processes per elementary process. To
illustrate this, consider the following two control processes:

Example 1 - An engine temperature control process. The main purpose of this processisto
turn on the cooling system of the engine when necessary. A sensor supplies the
temperature to the application (sub-process 1). The temperature is compared to the
overheating threshold temperature (sub-process 2). Finally, a turn-on message can be sent
to the cooling system if needed (sub-process 3). The application is not in a consistent state
until all three sub-processes are completed. The temperature control process therefore has
3 sub-processes. According to FPA rules, only one transactional function type would be
identified, because there is only one elementary process.

Example 2 - An engine diagnostic process. The main purpose of this process is to turn on
an engine alarm when necessary. Fifteen different engine sensors send data to the diagnostic
process (15 sub-processes, one unique sub-process for each kind of sensor). For each
sensor, the set of external data received is compared to threshold values read from an
internal file, with one unique file for each kind of sensor (15 other sub-processes, one
unique sub-process for each kind of sensor). Depending on a number of conditions, an
alarm may be turned on in the dashboard (1 sub-process). In this example, the engine
diagnostic process consists of 31 sub-processes. The application is not in a consistent state
until al sub-processes of the diagnostic process are completed. According to FPA rules,
only a minimum number of transactional points would be counted. Therefore, when FPA
rules are used, examples 1 and 2 would have approximately the same number of

! Elementary process: The smallest unit of activity that is meaningful to the end-user of the business. It must be
self-contained and leave the business of the application being counted in a consistent state [4].

transactional points even though the real-time community would strongly disagree on the
fact that these two processes have similar functional sizes.

There is a strong case to be made that an adequate functional measure of real-time software
should take into account the fact that some processes have only a few sub-processes, while
others have alarge number of sub-processes.

2.2.Data function type characteristics

Typica MIS logica files have the following data structure: multiple occurrences of a
record, each record having one or more fields. In real-time applications, this type of structure
is aso used. An engine control application, for instance, could have a group of data containing
information on each cylinder (cylinder number, ignition timing, pressure, etc.). The cylinder
record is repeated more than once. This kind of grouped data, called a multiple-occurrence
group of data here, has the same typica structure as that of an Internal Logical File (ILF) or
an Externa Interface File (EIF) in FPA.

However, real-time software also contains a large number of single-occurrence control
data. These data are characterized by the fact that there is only one occurrence of the data in
the whole application. For example, the navigational system of an airplane calculates the
airplane’s position periodically according to data received from external signals. These data
are then used to control the airplane's position. The airplane’s position is a single control
datum with only one occurrence in the whole application, assuming that the system does not
store previous positions. The number of single control data in real-time software can be very
important. However, these kinds of data are very difficult to group into FPA ILFs and EIFs.
An extension of the ILF/EIF rules is therefore necessary to adequately measure single-
occurrence control data.

3. FPA Real-time Extension: Full Function Points

To measure these specific functional characteristics of real-time software adequately, it is
thus necessary to consider both the sub-processes performed by a control process and the
single-occurrence control data. The proposed FPA extension, caled Full Function Points
(FFP), introduces new data and transactional function types accordingly:

New data function types:

- Updated control group: A group of control data updated by the application being
measured. Control data means data used by the application to control, directly or
indirectly, the behavior of an application or of a mechanical device.

- Read-only control group: A group of control data used, but not updated, by the
application being counted.

New transactional function types:

- Entry: A sub-process that receives control data coming from outside the application’s
boundary. In example 2, section 2.1, 15 different sensors send data to the application
(control data cross the application boundary). Each sub-process receiving data coming
from one sensor is considered an Entry.

- Exit: A sub-process that sends control data outside the application boundary. In
example 2 above, the sub-process that sends a message to the dashboard (control data
sent outside the application boundary) is an Exit.

- Read: A sub-process that reads a group of control data. In example 2, each of the 15
sub-processes that reads a threshold value is counted as a Read.

- Write: A sub-process that writes a group of control data.

Unlike FPA transactional function types, the new FFP transactiona function types are
identified at the sub-process level instead of at the process level, as shown in Figure 1. It can
be said that FFP take into account a finer level of granularity, the sub-process level, while FPA
only considers the process level. A finer level of granularity isimportant in real-time software
since, unlike MIS processes, real-time processes display a variable number of sub-processes.

FPA FFP
| Elementary Process | | Control Process |
is classified as is composed of
| Input | | Output | | Inquiry | | Entries | | Exits | | Reads | | Writes |
Elementary Process = Input or Output or Inquiry Control Process = Entries + Exits + Reads + Wrties

Figure 1. FPA transactional function types vs. FFP transactional function types

The new function types are only used to measure real-time control data and processes. The
other types of data and processes, caled management data and processes in FFP, are
measured using the standard FPA rules. Thus, the identification of the new transactional
function types of an application includes the following major steps [12]:

1. Identify the different processes performed by an application from a functional perspective;

2. Determine if each process is a management process (used to support the user in managing
information, particularly business and administrative information) or a control process (used
to control, directly or indirectly, the behavior of an application or a mechanical device). If it
is a management process, identify the traditional FPA transactional function types using

FPA counting procedures and rules. If it is a control process, perform the following

additional steps:

a) From a functional perspective, identify the different sub-processes performed by the

process;

b) For each sub-process, determine whether to count it as an Entry, Exit, Read or Write

function type, according to their definitions and counting rules,

¢) Assign the corresponding points.

The complete set of FFP concepts, definitions, counting procedures and rules, as well as a
counting example, can be found in the FFP Counting Practices Manual [12].

4. FFP field tests

Three real-time applications (telecommunications and power supply domains) were
measured using FFP and FPA between December 1996 and March 1997. Due to industria
constraints, mainly the availability of the application specidists, participating organizations
were asked to select one small application or a self-contained portion of a medium or large
application (x 25.000 LOC). Each counting session lasted two full days. At least three people
participated in each counting session: an application specialist and two certified function point
specialists who participated in the design of FFP. A fourth field test was conducted by one of
the project’s industrial partners without the assistance of the FFP specialists (automotive
domain), using only the FFP documentation.

Table 1 presents the measurement results of the transactional function types for the three
applications measured with the assistance of FFP experts [8] [9]. In order to compare FFP
with FPA results, each application was measured twice: first using FFP (top part of the table)

and then using FPA (bottom part of the table). The FFP and FPA results correspond to the
measurement of the same set of processes. It is important to note that all three applications
were real-time applications containing only control processes. As a result, no management
processes were identified using FFP.

Table 1 - FPP and FPA measurement results for the transactional function types

Application
A B C
Function Type Occurrences | Points | Occurrences | Points | Occurrences | Points

Full Function Points (FFP)

- Entries 123 123 10 10 67 69

- Exits 93 97 8 10 136 139

- Reads 395 403 14 18 100 103

- Writes 142 154 8 8 165 168
Total: 753 777 40 46 468 479
Function Point Analysis (FPA)

- Inputs 40 202 6 21 15 50

- Outputs 2 14 2 11 17 73

- Inquiries 12 40 1 6 0 0
Total: 54 256 9 38 32 123

Comparing the results of the two methods, it can be observed that, in the presence of
multiple sub-processes of a single process, FFP generate larger counts than FPA. Infact, ina
real-time environment, FPA have been criticized for generating low function point counts
which do not seem to be related to the work product measured (Jones, 1991; Galea, 1995),
that is, which do not correspond with the perception of the application speciaists about the
functional size of their applications (important elements regarding the functional size of real-
time applications are not taken into consideration, like functions with no data crossing the
boundary of the application, for instance). Since FFP takes into account the sub-processes
integrated within a unique control process by identifying the different groups of data received,
sent, read and written, they should generate more points than FPA, asis the case here. During
the field tests, the real-time practitioners strongly agreed that a functional size measure that
does not take into account user requested sub-processes (as FPA does not) cannot be a “good
enough” functional size measure of their applications. Therefore, FFP measurement results
represent, for them, a more adequate measure of the functional size of their applications.

It can also be seen in Table 1 that, for FFP, the number of occurrences of each function
type is very similar to the total number of points of the given function type. This is explained
by the fact that the magjority of occurrences of the function types were located in the first range
of the table used to assign points according to the number of fields used by the function type
(fewer than 20 fields) [12].

The measurement results al'so confirmed the observation that the number of sub-processes
of a real-time process varies a great deal. For instance, in application A, some processes
embedded only 3 sub-processes and other processes embedded more than 50 sub-processes.

Results of the fourth field test conducted independently of the research team by one of the
project’ sindustrial partners can be summarized as follows [13]:

Concepts and counting procedures in the FFP Counting Manual were deemed relatively
clear and easy to understand. It was not difficult to count without the assistance of an FFP
specidist.

FFP counted 79 processes out of the 81 they expected to be counted with an adequate
functional size measure. At the end of the field test, they concluded that FFP failed to take

into account 2 of the 81 processes because the current design of FFP does not take into
account processes containing only internal agorithms. The FFP measurement coverage
rate was therefore 97% of the optimal coverage target.

From the measurement sessions and the measurement process, the following observations
were also made.

Ease of understanding: One criticism often made about FPA is that the set of definitions
and procedures is complex and time-consuming, and that it takes a FPA expert to produce
an accurate FPA count [6] [7]. The new FFP function types were designed with the
objective of making them simple to learn and master. This was confirmed during the field
test counting sessions: once the application specialists understood the definition of the new
function types, they had no problem identifying them. Indeed, after a full day of FFP
counting, they were able to count with little assistance. According to the application
specialists participating in the counting sessions, this was mostly due to the fact that it is
much easier to identify function types that only refer to one type of action (receiving data,
for example) as in FPP, than to identify function types that potentially refer to more than
one action asin FPA (for example, receiving and updating data in the Input function types).
Furthermore, if the software is almost entirely rea-time (with no MIS-type functions), the
specialists do not even need to know about the more complex IFPUG FPA rules.

In addition, application specidists reported that the definitions, counting procedures and
rules were clear and detailed enough so that different individuals would be able to come up
with relatively similar results. They were also of the opinion that the proposed concepts,
measurement procedures and rules were based on current practices as to what is currently
and effectively being documented.

Counting effort: Counting sessions showed that FFP and FPA counting efforts are similar.
Even though more function types have to be counted with FFP, it seems that they can be
identified more quickly. Indeed, as pointed out earlier, application speciaists seemed to
require less counting assistance from function point experts when counting with FPP than
with FPA, so the identification of more function types seems not to increase the counting
effort.

Attribution of points: The measurement results showed that the total number of points
assigned to a particular function type is aimost the same as the number of occurrences of
the given function type. One can therefore question the usefulness of the attribution of
points with three levels. It is important to note that the weights assigned to a particular
function were chosen with the purpose of making the size of the new function types as
aligned as possible with FPA. The weights may need to be calibrated, but, to do so, more
empirical data are needed to verify the appropriateness of the weights.

5. Conclusion

This paper presented an approach to adapting FPA to the specific functional characteristics
of rea-time software, called Full Function Points (FFP). The development of this FPA
extenson was a challenge. It had to take into account not only the specific functional
characteristics of real-time software in an adequate way, but aso to retain the quality
characteristics of FPA as a measurement technique and to consider current industry practices
in the design and documentation of this type of software.

Feedback from the industrial partners of the project indicates that the research purpose was
achieved to a sufficient degree. They believe FFP has met its stated objective of measuring
user-functional requirements and that it would meet their current, and foreseeable, needs.
They believe that the measurement of the functional size of their applications has been done

objectively, precisely and in an auditable manner, and that someone else with the same set of
rules would come up with the same results. They also believe FFP counting procedures and
rules are based on current practices as to what is currently and effectively being documented.
We are confident that FFP will expand the domain of applicability of FPA and increase its
relevance to industry.

This paper presented the first version of FFP, and the authors recognize that there is room
for improvement. Among other things, more field-testing needs to be done, which would
provide more valuable feedback to improve the proposed approach as well as the counting
procedures and rules. This field-testing will also permit accumulation of enough empirical
data to support the development of meaningful productivity and estimation models.

As mentioned in section 5, the weights assigned to the new function types may need to be
calibrated. As in FP, these weights were derived from empirical observations. Empirical data
collected with more field tests will help analyze the relevance of the weights and calibrate them
inaformal way, using statistical analysis for instance.

The FFP Counting Practices Manual is a public document and can be found at the following
Web Sites: http://saturne.info.ugam.ca/Labo_Recherche/Irgl.html and http://www.Imagl.qc.ca
Other documents about FFP in English, French and Japanese are also available at these
addresses.

6. Acknowledgements
We wish to thank Nortel, Bell Canada, Hydro-Québec and JECS System Research (Japan)
for providing project funds, industrial data and valuable feedback from real-time software

practitioners.

Box A.
FPA Overview

F;mction Point Analysis (FPA) measures the

unctional size of a software product in terms

of its delivered functionality, measuring such
objects as inputs, outputs and files. The first step in
calculating FPA isto identify the counting boundary,
that is, the border between the application being
measured, and the external applications, or the user
domain. A boundary establishes what functions are
included in the function point count.

The next step consists in determining the
Unadjusted Function Point (UFP) count, which
reflects the specific countable functionality provided
to the user by the application. Calculation of the
UFP begins with the identification of five
components or function types of the application. Two
function types are related to the data used by the
application and the other three are related to the
transactions handled by the application:

- Datafunction types:
- Files: Logical files (as the user might conceive of
them, not physica files) updated by the
application.

- Interfaces: Logical files accessed by the

application but not updated by it.
- Transactional function types:

- Inputs: eg. transactions to create, modify or
delete recordsin logical files.

- Outputs: e.g. report types.

- Inquiries: e.g. on-line inquiries supported by the
application.

Once the number of occurrences of each category
of function types has been identified, their
complexity is classified as low, average or high,
according to a set of prescriptive standards. After
making this classification for each occurrence of the
five function types, the UFP is computed using
predefined weights for each function type.

The last step involves assessing the environment
and processing complexity of the application as a
whole. This is carried out through a set of fourteen
general systems characteristics (GSC). The impact
of each of these fourteen general systems
characteristicsis rated on ascale of 0 to 5 in terms of
their likely effect on the project or application. We
thus obtain the value adjustment factor (VAF) that
will adjust the UFP by a maximum of £35% to
produce the Adjusted Function Points (AFP).

A complete description of FPA, including
definitions, procedures, counting rules and examples,

can be found in the FPA Counting Practices Manual [4].

7. References

[1] Albrecht, A. J., “Measuring Application Development Productivity”, Proceedings of Joint Share,
Guide and IBM Application Development Symposium, October 1979, pp. 83-92.

[2] Albrecht, A. J. and Gaffney, J. E., “ Software Function, Source Lines of Code, and Development
Effort Prediction: A Software Science Validation”, |[EEE Transactions on Software Engineering
Vol. SE-9, No. 6, November 1983, pp. 639-648.

[3] Gdea S., “The Boeing Company: 3D Function Point Extensions, V2.0, Release 1.0”, Sedttle,
WA: Boeing Information and Support Services, Research and Technology Software Engineering,
June 1995.

[4] 1FPUG, “Function Point Counting Practices Manual, Release 4.0”, International Function Point
Users Group - IFPUG, Westerville, Ohio, 1994.

[5] IFPUG, “IFPUG Case Study 4 (Draft)”, International Function Point Users Group - IFPUG,
Westerville, Ohio, 1997.

[6] Jones, C., “Applied Software Measurement - Assuring Productivity and Quality, McGraw-Hill,
New York, 1991, 493 pages.

[7] Kemerer, C. F., “Rdiability of Function Points Measurement”, Communications of the ACM, Vol
36, No. 2, February 1993, pp. 85-97.

[8] Maya, M., St-Pierre, D., Abran, A. and Desharnais, JM, “Full Function Points. Function Points
Extension for Red-Time Software - Counting Experiments at Nortel”, Confidential Reports,
Université du Québec aMontréal, March and May, 1997.

[9] Maya, M., St-Pierre, D., Abran, A., and Desharnais, JM, “Mesure de la taille fonctionnelle des
logiciels temps réel - Comptage chez Hydro Quebec”, Confidential Report, Université du Québec a
Montréal, Avril, 1997.

[10] Mukhopadhyay, T. and Kekre, S, “Software Effort Models for Early Estimation of Process
Control Applications’, |IEEE Transactions on Software Engineering, Vol. 18, No. 10, October
1992, pp. 915-924.

[11] Reifer, D. J,, “Asset-R: A Function Point Sizing Tool for Scientific and Real-Time Systems’,
Journal of Systems and Software, Vol. 11, No. 3, March 1990, pp. 159-171.

[12] St-Pierre, D., Maya, M., Abran, A. et Desharnais, JM, “Full Function Points - Counting
Practices Manual”, Technical Report 1997-04, Software Engineering Management Research
Laboratory, Université du Québec a Montréal (UQAM), September 1997, 49 pages.

[13] St-Pierre, D., Abran, A., Araki, M., and Desharnais, J-M, Adapting Function Points to Real-Time
Software”, presented at IFPUG 1997 Fall Conference, International Function Point Users Group,
Scottsdale, Arizona, September, 1997.

[14] Symons, C.R., “Function Point Anaysis: Difficulties and Improvements’, |EEE Transactions on
Software Engineering, Vol. 14, No. 1, January 1988.

[15] Whitmire, S. A., “3-D Function Points: Scientific and Real-Time Extensions to Function Points’,
Proceedings of the 1992 Pacific Northwest Software Quality Conference, Portland, OR, 1992.

About the Authors

MarcelaMaya, M.Sc.A., C.F.P.S.

Software Engineering Management Research Laboratory
Département d'informatique - Université du Québec a Montréal
C.P. 8888 succursale centre-ville

Montreal (Quebec), Canada - H3C 3P8

E-mail: mayamarcela@ugam.ca

Alain Abran Ph.D.

Software Engineering Management Research Laboratory
Département d'informatique - Université du Québec a Montréal
C.P. 8888 succursale centre-ville

Montreal (Quebec), Canada - H3C 3P8

E-mail: abran.alain@ugam.ca

Serge Oligny, M.Sc.

Software Engineering Management Research Laboratory
Département d'informatique - Université du Québec a Montréal
C.P. 8888 succursale centre-ville

Montreal (Quebec), Canada - H3C 3P8

E-mail: oligny.serge@ugam.ca

Denis St-Pierre M .Sc., C.F.P.S.

Software Engineering Laboratory in Applied Metrics
7415 Beaubien Eat, suite 509

Anjou (Quebec), Canada - HIM 3R5

E-mail: Denis.St-Pierre@CRIM.CA

Jean-Marc DesharnaisM.Sc.A., C.F.P.S.
Software Engineering Laboratory in Applied Metrics
7415 Beaubien Eat, suite 509

Anjou (Quebec), Canada - HIM 3R5

E-mail: desharnais.jean-marc@ugam.ca

