
 Information Theory-Based Functional Complexity Measures

IWSM/MetriKon 2004 1

Information Theory-based Functional Complexity Measures and
Functional Size with COSMIC-FFP

Alain Abran*, Olga Ormandjieva**, Manar Abu Talib**
*École de Technologie Supérieure - ETS

1100 Notre-Dame Ouest, Montréal, Canada H3C 1K3

**Concordia University

1455 de Maisonneuve Blvd. W. Montreal, Quebec H3G 1M8, Canada

aabran@ele.etsmtl.ca , ormandj@cse.concordia.ca , m_abutal@cse.concordial.ca

Abstract:

This paper presents an exploratory study of related concepts across information
theory-based measures and functional size measures. Information theory-based
software measurement has been used in the design of an entropy-based measure
of functional complexity in terms of an amount of information based on some
abstraction of the interactions among software components. As a functional size
measurement method, COSMIC-FFP, adopted in 2003 as the ISO/IEC 19761
standard, measures software functionality in terms of the data movements across
and within the software boundary. In this paper, we explore some of the links
between the two types of measures, and, in particular, the similarities (and
differences) between their generic model of software functionality, their detailed
model components taken into account in their respective measurement processes
and, finally, their measurement function. Some further investigation avenues
are also identified for extending the use of functional size measures for
reliability estimation purposes and for scenario-based black-box testing.

Keywords

Software Complexity, Functional Complexity, Information Theory, Entropy,
Functional Size Measurements, COSMIC-FFP, ISO 19761

1 Introduction

The functional size measurement method was developed by the Common
Software Measurement International Consortium (COSMIC). COSMIC-FFP
focuses on the “user view” of functional requirements and is applicable
throughout the development life cycle, right from the requirements phase to the
implementation and maintenance phases. This measurement method has been
designed to measure the functional size of management information systems, real-
time software and multilayer systems. Since the software systems targeted by the
COSMIC-FFP method are large-scale and inherently complex, feedback on this

A.Abran, O.Ormandjieva & M.Abu Talib

2 Software Measurement Conference

complexity would permit their effective management throughout the software life
cycle. The mechanism for obtaining feedback on software characteristics is the
software measurement. This paper proposes a new measure for obtaining
feedback on software functional complexity in the context of COSMIC-FFP. In
order to provide objective, reliable and consistent feedback, software
measurement requires a clear definition of the characteristic to be measured,
namely, functional complexity.
 Software complexity is an essential characteristic of the software
process/product, and is a multifaceted notion the definition of which depends on
the context [10] [13] [4] [22] [20]. Similar to the classification given by Whitmire
[20], we view the complexity of a software system in different dimensions,
namely computational, representational, structural and functional. Computational
complexity quantifies the time and resources required to complete the process,
and is covered by the study of algorithmic efficiency. Representational
complexity considers the tradeoffs between graphical and textual notations for
unambiguous representations of system model, system interactions and system
behavior. Structural complexity is viewed in terms of coupling and cohesion,
without considering the individual complexity of the components.
Functional complexity characterizes the dynamic performance of the system seen
as a sequence of events required to fulfil a certain functionality of the system. For
the purposes of functional complexity measurement in the COSMIC-FFP
context, we consider the different types of events to which the system must
respond in some time interval, as specified in the scenarios of usages of the
software. Intuitively, the greater the variety and number of these events, the more
complex the functionality. Functional complexity is quantified in terms of the
entropy of an amount of information handled by the events in one usage of the
system, and is aimed at complementing the COSMIC-FFP functional size
method.
There is almost no cross-referencing in the software engineering literature
between these two fields of knowledge, that is, functional size measurement and
measurement of entropy, from the field of information theory. With the recent
publication of work on the measurement of functional complexity based on
entropy concepts, there is now an opportunity to investigate the candidate
linkages, and candidate contributions, across the two fields. In this paper, section
2 presents the key elements of entropy measurement, and section 3 the key
elements of COSMIC-FFP. Section 4 discusses the mapping of concepts
across both measures, and, finally, section 5 identifies research directions
including the use of both types of measures for scenario-based black-box testing
and reliability estimation purposes.

 Information Theory-Based Functional Complexity Measures

IWSM/MetriKon 2004 3

2 Entropy Measurement

Information theory-based software measurement [18] [12] is used to quantify
functional complexity in terms of an amount of information based on some
abstraction of the interactions between software components [14]. However,
what does information mean in this context? Shannon, the father of information
theory, has stated that information causes change, and if it doesn’t it isn’t
information [17]. In other words, we say that we have gained information when
we know something now that we didn't know before, when ‘what we know’ has
been changed. Under the assumption that the complexity of the product is
associated with the information content of the software product, the
quantification of the amount of information will be used to assess the functional
complexity of the software system and the required quality improvement[2]. The
average amount of information is quantified by the entropy of a set of events
happening in one usage of the software. Below, the notion of entropy and its
applicability to the functional complexity measurement are introduced.

2.1 Entropy

Entropy is one concept in information theory, and it was introduced by Shannon
[17] as a quantitative measurement of the uncertainty associated with random
phenomena. It is said that one phenomenon represents less uncertainty than a
second one if we are more sure about the result of experimentation associated
with the first phenomenon than we are about the result of experimentation
associated with the second one. A random phenomenon must be described as a
mathematical model, referred to as a probability space, in order to use
mathematical reasoning to investigate questions about the phenomenon. For
example, in throwing a die, the probability of the appearance of 1, 2, 3, 4, 5 or 6
is 1/6 for each. Much uncertainty is associated with throwing a die, since the
expected outcome of the experiment is uncertain. Considering any set of n events
and their probability distribution { 1p , …, np }, the quantification of this
uncertainty quantity is calculated using the following entropy formula:

∑
=

=
n

i
ii ppH

1
2log- . …… (1)

2.2 Entropy Measurement in Software Engineering

In software engineering, Hamming has introduced entropy as a measure of the
average information rate of a message or language [9]. A message means a string
of symbols drawn from an alphabet of symbols 1s , …, qs . The field of
information theory deals with the measure of the amount of information contained

A.Abran, O.Ormandjieva & M.Abu Talib

4 Software Measurement Conference

in a message [5]. Information, in this context, is finding out something you did
not already know; that is, when a symbol occurs that we were not expecting, we
have more information than if a symbol we were expecting occurred. Rate, in this
context, means the frequency of occurrence of each symbol [5].
Thus, the amount of information conveyed by a single symbol in a message is
related to its probability of occurring: ii pI 2log = …… (2).

Hartley (1928) was the first to propose the use of logarithms. The logarithm
guarantees that the amount of information increases as the number of symbols
increases.
Information is additive [5]; that is, the amount of information conveyed by two
symbols is the sum of their individual information contents. It follows then that
an entire alphabet of symbols 1s , …, qs would on average provide the amount of
information calculated in formula (1), with a bit as the unit of information per
symbol. It can be shown that the maximum amount of information per symbol is
provided by an alphabet with symbols that all occur with an equal probability.
The average amount of information conveyed by each symbol in such an
alphabet is q2log for an alphabet having q symbols, each with an equal
probability of occurring. The minimum amount of information is conveyed by an
alphabet in which one symbol occurs with a probability of one, and all others
occur with a probability of zero. Such an alphabet is said to have a language
entropy of zero.

2.3 Entropy-based functional complexity

In this paper, we propose a new method for quantifying functional complexity
from a software behavior description. Our functional complexity measure
characterizes the performance of the system as specified in the scenarios.
Functional complexity is quantified in terms of the entropy of an amount of
information based on an abstraction of the interactions among software
components. Assuming that each message represents an event, therefore,
entropy-based software measurement is used to quantify the complexity of
interactions between the software and its environment and within the software
(between software classes) in terms of the information content of the interactions,
based on some abstraction of the interactions [17], [6], [10].
In OO development, the only vehicle for information interchange between the
software and the environment, and within software modules (classes or
packages), is the event, also called message. The environment is communicating
with the OO software via external messages: input (to communicate a request
from the environment for a service/usage) and output (to communicate the
answer from the software to the environment). In order to fulfil the requested
functionality, the objects are collaborating via message interchange. In the

 Information Theory-Based Functional Complexity Measures

IWSM/MetriKon 2004 5

Rational Unified Process (RUP) [11] for OO software development, the
interactions (interchange of messages, that is, events, between the environment
and the modules, and between the modules) are described as scenarios – written
stories of a system’s functionality related to one specific usage. In UML, the
scenarios are modeled using interaction diagrams. Therefore, each scenario can
be abstracted as a sequence of events.
For the purpose of measuring functional complexity, each scenario is mapped to
a timed sequence of events, where each event is considered as a unit of
information. The scenario described in Figure 1 has the sequence of events
(messages) e1.e2.e3.e2.e5. To quantify the amount of information contained in
this scenario, we can apply the entropy formula (1). We need, therefore, the set
of events (that is {e1, e2, e3, e5}) and their probabilities {1/5, 2/5, 1/5, 1/5}.

Figure 1: Scenario example

The functional complexity for system implementation [2] is defined as an amount
of work output performed in a time slice by the system. The amount of work
performed, in this context, means the quantity of information processed in that
period of time, and the number of functions necessary to perform the work. The
events represent the functions necessary to perform the work in one usage of the
system, i.e. in one scenario.
The concepts of information theory [2] are applied to measure the amount of
work output performed in a time slice by the system in terms of the amount of
information in the event sequence. That measure is based on an empirical
distribution of events within a sequence.
The probability of the i-th most frequently occurring event is equal to the
percentage of the total number of event occurrences it contributes and is
calculated as ip = if / NE, where if is the number of occurrences of the i-th event

e5

e2
e3

e2
e1

User C1 C2 C3

A.Abran, O.Ormandjieva & M.Abu Talib

6 Software Measurement Conference

and NE is the total number of events in the sequence. The classical entropy
calculation quantifies the average amount of information contributed by each
event. Therefore, the functional complexity in a time slice is defined in [2] as an
average amount of information in the corresponding sequence of events and is
computed as follows:

)/(log)/(-
1

2 NEfNEfFC
n

i
ii∑

=

= . …… (3)

Functional complexity (FC) is the quantification for the amount of information
interchanged in a given interaction (scenario). The functional complexity in a
period of time with a higher average information content should, on the whole, be
more complex than another with a lower average information content. That is, the
FC measure is intended to order the usages of system in a time period in relation
to their functional complexity.

3 COSMIC-FFP Measurement Method

3.1 COSMIC-FFP Overview

The functional size measurement method developed by the Common Software
Measurement International Consortium (COSMIC) has now been adopted as an
international standard (ISO 19761 [8]) and is referred to as the COSMIC-FFP
method [1]. This measurement method has been designed to measure the
functional size of management information systems, real-time software and multi-
layer systems. Its design conforms to all ISO requirements (ISO 14143-1 [7]) for
functional size measurement methods, and was developed to address some of
the major weaknesses of the earlier methods – like FPA [3], the design of which
dates back almost 30 when software was much smaller and much less varied.
COSMIC-FFP focuses on the “user view” of functional requirements and is
applicable throughout the development life cycle, right from the requirements
phase to the implementation and maintenance phases.
In the measurement of software functional size using the COSMIC-FFP method,
the software functional processes and their triggering events must be identified
[1] [8].
In COSMIC-FFP, the unit of measurement is a data movement, which is a base
functional component which moves one or more data attributes belonging to a
single data group. Data movements can be of four types: Entry, Exit, Read or
Write. The functional process is an elementary component of a set of user
requirements triggered by one or more triggering events either directly or
indirectly via an actor. The triggering event is an event occurring outside the

 Information Theory-Based Functional Complexity Measures

IWSM/MetriKon 2004 7

boundary of the measured software and initiates one or more functional
processes. The sub processes of each functional process are sequences of
events, and comprise at least two data movement types: an Entry plus at least
either an Exit or a Write. An Entry moves a data group, which is a set of data
attributes, from a user across the boundary into the functional process, while an
Exit moves a data group from a functional process across the boundary to the
user requiring it. A Write moves a data group lying inside the functional process
to persistent storage, and a Read moves a data group from persistent storage to
the functional process. See Figure [2] for an illustration of the generic flow of
data attributes through software from a functional perspective.

Figure 2: Generic flow of data attributes through software from a functional

perspective

3.2 COSMIC-FFP and Functional Size

A general procedure for measuring software functional size with the COSMIC-
FFP method is proposed, as in Figure 3. The measuring process is performed
through five steps. First, the boundary of the software to be measured is
identified by the measurer based on the requirements and the specifications of the
interaction between the hardware and software. Secondly, the measurer identifies
all possible functional processes, triggering events and data groups from the
requirements. These are considered as candidate items at this stage. Thirdly, the
candidate items (i.e. functional processes, triggering events and data groups) are

or

Engineered
Devices

Storage Hardware

SOFTWARE

ENTRIES

EXITS

« Front

end »

USERS

READS

WRITES

« Back

end »

EXITS

ENTRIES

I/O Hardware

B
O
U
N
D
A
R
Y

A.Abran, O.Ormandjieva & M.Abu Talib

8 Software Measurement Conference

mapped into the COSMIC-FFP software context model (Figure 3) based on
COSMIC-FFP rules. In this mapping, each functional process must be
associated with a triggering event and to the data group(s) manipulated by it. This
mapping also allows identifying layers. Fourthly, COSMIC-FFP subprocesses
(i.e. data movements of the following types: Entry, Exit, Read and Write) will be
identified within each functional process. The COSMIC-FFP measurement
function will be applied to the identified sub processes to determine their
respective COSMIC-FFP Cfsu size measure. Finally, the measurer will compute
an aggregate of the measurement results to obtain the total functional size of the
software being measured.

Functional User
Requirements

(FURs)

Identify
Application’s

Boundary

Identify
Candidate
Functional
Processes

Identify
Candidate

Data Groups

Identify
Candidate
Triggering

Events

Map candidate
items into Model

Apply Measurement
Function

Aggregate Measurement
Results

Cfsu

STEP 1

STEP 2

STEP 3

STEP 4

STEP 5

Figure 3: General procedure for measuring software size with the COSMIC-

FFP method – ISO 19761

4 Analysis of Similarities and Differences across Measures

The method used to analyze the compatibility between Functional Complexity-
based Entropy and COSMIC-FFP consists of comparing the generic software
models, their software model components and their software measurement
processes [16]. For such a comparison, it is necessary to identify the concepts
behind the terms used in both measures: in fields that are not yet mature and
where the terminology is not fully standardized, such as software engineering,
different terms will sometimes refer to the same concepts, and at others, the same
term will refer to different concepts.

 Information Theory-Based Functional Complexity Measures

IWSM/MetriKon 2004 9

4.1 Models of Software Comparison

In their generic view of software from a functional perspective, the two measures
share a similar generic modeling of how to recognize the functionality of
software.
Information theory-based software measurement quantifies functional complexity
in terms of an amount of information based on some abstraction of the
interactions between software modules, and more specifically the complexity of
interactions between the software and its environment and within the software in
terms of the information content of the interactions.
COSMIC-FFP shares a similar generic model of software functionality, which is
defined as the interactions between the software and its environment and within
the software, as illustrated in Figure 2. In COSMIC-FFP, the environment is
represented by the users interacting with the software, such software users being
either humans, engineering devices or other software applications. Within the
software, the interactions deal with the data read or send them to persistent data
storage.

4.2 Models of Software Component Comparison

The second step consists in identifying and comparing the software model
components used by each method required for the instantiation of the generic
software model of functionality. In the RUP context, the functional processes
used in COSMIC-FFP can represent the set of scenarios for the software. For
example, in the Hotel Reservation System [RURA1 & RURA2 in 23], the user
can create a reservation. This process of allowing the user to add a new
reservation is considered as a functional process, and is triggered by selecting the
user for this option. Similarly, creating the reservation is a scenario containing a
sequence of events between the user and the system, and this scenario contains a
sequence of events within the system. Therefore, for each functional process, its
sub processes and its triggering events are sequences of events (events).
Within the same RUP context for functional complexity measurement, the
entropy formula can likewise be calculated on one process (scenario), as
described above.
See Figure 4 for the functional process for creating a reservation that can be the
scenario of a set of events interchanged between software components. The set
of alphabets (events) comprises {1: select “create”, 2: display, 3: type required
information, 4: store information, 5: display error message if it occurs} and their
probabilities: {1/5, 1/5, 1/5, 1/5, 1/5}.

A.Abran, O.Ormandjieva & M.Abu Talib

10 Software Measurement Conference

Figure 4: Create reservation sequence diagram

It is to be noted next that the measurement unit defined in COSMIC-FFP is a
data movement, that is, a base functional component which moves one or more
data attributes belonging to a single data group. It can now be observed that an
event as the unit of Functional Complexity based-Entropy has the same meaning
as the data movement, the unit of COSMIC-FFP.
A summary of the terms used in both COSMIC-FFP and Functional Complexity
based-Entropy having similar meanings is presented in Table 1. This table shows
the same conceptual level for both COSMIC-FFP and Functional Complexity-
based Entropy; however, the terms used in the data movements of COSMIC-
FFP and in the interactions of Functional Complexity-based Entropy have
different labels. For example, in COSMIC-FFP, data movements are classified
into four categories. The term corresponding to the data movements and its
categories that is used in Functional Complexity-based Entropy is the event, but
without classification. In addition, other terms used in both measurement
methods, such as those interacting with the software, the software boundary and
the set of user requirements, have the same meaning even though some have
different labels. For example, software users are actors while at the same time
they are interacting with the software. As a result of Table 1, the models of
software of these measures are compatible. The question mark that appears in the
table for Functional Complexity-based Entropy means that it is not yet known
what the measurement unit is and what its symbol is. This can be analyzed more
extensively in future papers dealing with scale type issue.

5: display error message if it occurs

3: type required information

: display
1 : select create

Agent :
Hotel System Reservation

4: store
information

 Information Theory-Based Functional Complexity Measures

IWSM/MetriKon 2004 11

Concepts COSMIC-FFP (Data
Movement) terms

 Functional Complexity-
based Entropy

(Interactions) terms

Humans or things
interacting with the

software

Software users Actors

Between the
environment and the

software

Software boundary Software boundary

Set of User
Requirements

Functional Process Scenario (Sequence of
Events)

Data which are part
of the interaction

Data groups Set of data attributes

External Input
(From Environment)

Triggering event

Event

External Input
(From Environment)

Entry data movement Event

Output (to the
environment)

Exit data movement Event

Entity being taken
into account in the

measurement

Data movement Event

Measurement Unit 1 data movement ?

Measurement unit
symbol

Cfsu ?

Table 1: Similarities of concepts between COSMIC -FFP & Functional Complexity-based

Entropy

4.3 Software Measurement Process Comparison

Even though each type of measure takes into account similar concepts (with
different terms) for the model of the software to be measured, each type of

A.Abran, O.Ormandjieva & M.Abu Talib

12 Software Measurement Conference

measure, when its measurement processes are compared, defines different
measurement functions (e.g. formula) to combine the information into a
‘measure’ for purposes which are obviously different. For example, the
COSMIC-FFP formula is used to measure the functional size of software, that is,
the amount of functionality of the software through the addition of data
movements. COSMIC-FFP recognizes only data movement type sub processes,
and it contains an approximation assumption that each data movement is
associated with an average amount of data transformation.
By contrast, Functional Complexity measurement based on Entropy is used to
measure the amount of information in the interactions between the software and
the environment, and within the software modules; this formula associates the
functional complexity of software to the frequency of function occurrences
through a logarithmic function of probability distribution of the events (see
formula 3). It can be easily observed that Functional Complexity-based Entropy
extracts more information than does COSMIC-FFP about the events, their
frequencies and their probabilities.

For illustrative purposes, let us consider two events: e1 and e2. In Figure 5, if
either e1or e2 is certain (p1 =1 or p2 = 1), then FC is zero. The same thing will
happen when p = 0 for either event. However, when p1 = 0.5 or p2= 0.5, both
events are just as probable and FC is 1, which is the maximum. Therefore, FC is
maximum if all probabilities are equal, and it is minimum if one event has a
probability equal to 1. However, in COSMIC-FFP, when two different data
movement types are required to perform the functional process, then the number
of Cfsu is 2. The Cfsu number is also the same when one data movement is
required twice and the same data group is accessed in order to execute the
functional process. It is to be noted that two functional processes may end up
with the same functional size regardless of the type of data movement.

Figure 5: Functional Complexity-based Entropy

 Information Theory-Based Functional Complexity Measures

IWSM/MetriKon 2004 13

5 Discussion and Next Steps

COSMIC-FFP and Functional Complexity-based Entropy are both measures of
software functionality, but their purposes are different, one being to measure size,
and the other the complexity of one usage (functionality) of the software. This
paper has explored the similarities and differences between the two measures.
Even though both measures use significantly different terminology, a comparative
analysis of the concepts behind these distinct terminologies reveals important
similarities in how they view and represent software from a functional
perspective. Findings include, in particular, significant similarities in the way both
measures view software, and in their generic model of software functionality
when they consider the interactions of the software with its environment, and
interactions within the software itself. There are also important similarities, but
not full equivalence, within the software components they take into account in
their respective measurement processes. Finally, each measure obviously has
different measurement functions (that is, the formula for transforming the
information into numbers): while COSMIC-FFP is strictly an additive aggregation
of data movements, the functional complexity measure is much more complex
and is based on the concept of entropy, itself derived from information theory.

Further research is required to investigate in greater detail the similarities of
concepts within the elements handled within each of these measures. Such an
investigation will be useful for cross-fertilizing the two types of measurement
method.
On the one hand, COSMIC-FFP measurement concepts and procedures are well
documented and, through the method’s international acceptance as an ISO
standard, it has achieved international recognition as a measurement method
supported by the international community specializing in measurement of any
kind. However, the field of software functional size itself has very limited depth
in terms of research and theoretical support to draw upon. Its use is therefore
fairly limited, extending only to productivity studies and estimation, with almost
no reported use in quality and reliability analysis.
On the other hand, entropy has been used extensively in many fields, including
entropy-based measures which have been used, for instance, for performance
[19] and reliability estimation [15], both with very strong theoretical and empirical
support. For instance, the reliability of the software can be estimated following
some input reliability model on a certain input domain.
Of particular interest would be to investigate the use of COSMIC-FFP in both
testing effort and reliability estimation, the COSMIC-FFP method being
applicable at the early development phase where we only know about the
specifications of the software: for instance, it would be of interest to use the
COSMIC-FFP measurement details in the scenario -based black-box testing

A.Abran, O.Ormandjieva & M.Abu Talib

14 Software Measurement Conference

strategy [21], [11], and to investigate the applicability of entropy measurement in
COSMIC-FFP for reliability estimation purposes.

Another research topic which needs to be looked at and analyzed is the scale
types of these two measurement methods, in order to add new depth to other
areas in the software measurement field.

References

1. A. Abran, J.-M. Desharnais, S. Oligny, D. St-Pierre and Symons, C. COSMIC-FFP -
Manuel de mesures - Version 2.2, Université du Québec à Montréal, Montréal, 2001.

2. Alagar, V.S., Ormandjieva, O. and Zheng, M., Managing Complexity in Real-Time
Reactive Systems. in the Sixth IEEE International Conference on Engineering of
Complex Computer Systems, (Tokyo, Japan, 2000).

3. Albrecht, A.J. and Gaffney, J.E. Software Function, Source Lines of Code, and
Development Effort Prediction: A Software Science Validation. IEEE Trans. Software
Eng.

4. B. Henderson-Sellers Object Oriented Metrics: Measures of Complexity . Prentice-
Hall, New Jersey, 1996.

5. Hamming, R. Coding and Information Theory. NJ: Prentice-Hall, Englewood Cliffs,
1980.

6. Harrison, W. An Entropy-Based Measure of Software Complexity. IEEE
Transactions on Software Engineering , 18 (11).

7. ISO 14143-1. Functional size measurement - Definitions of concepts. in,
International Organization for Standardization - ISO, Geneva, 1988.

8. ISO/IEC 19761. Software Engineering - COSMIC-FFP - A functional size
measurement method. in, International Organization for Standardization - ISO, Geneva,
2003.

9. J. F. Peters and Pedrycz;, W. "Software Measures" in Software Engineering: An
Engineering Approach . J. WILEY, 2000.

10. John Stephen Davis and Leblanc;, R.J. A Study of the Applicability of Complexity
Measures. IEEE Transactions on Software Engineering, 14 (9). 1366-1372.

11. Larman, C. UML and Patterns: An introduction to Object Oriented Analysis and
Design and the Unified Process . Prentice Hall, 2002.

12. N. F. G. Martin and England, J.W. Mathematical Theory of Entropy . Addison-Wesley
Pub. Co., 1981.

13. Norman E. Fenton and Pfleeger;, S.L. Software Metrics: A Rigorous and Practical
Approach. PWS Publishing, 1998.

14. O. Ormandjieva. Deriving New Measurement for Real Time Reactive Systems
Department of Computer Science & Software Engineering, Concordia University,
Montreal, 2002.

 Information Theory-Based Functional Complexity Measures

IWSM/MetriKon 2004 15

15. S. N. Weiss and Weyuker;, E.J. An Extended Domain-Based Model of Software
Reliability. IEEE Trans. Software Eng., 14 (10). 1512-1524.

16. Serge Oligny and Abran;, A., On The Compatibility Between Full Function Points And
IFPUG Function Points. in 10th European Software Control and Metrics Conference
(ESCOM SCOPE 99), (Herstmonceux Castle, England, 1999), 23.

17. Shannon, Claude E., Weaver and Warren The Mathematical Theory of
Communication. the University of Illinois Press, Urbana, Chicago, 1969.

18. Taghi M. Khoshgoftaar and Allen;, E.B. Applications of information theory to
software engineering measurement. Software Quality Journal , 3 (2). 79-103.

19. V.S.Alagar, O.Ormadjieva and J.Shen;, Scenario-Based Performance Modeling and
Validation in Real-Time Reactive Systems. in the First Software Measurement
European Forum, (Rome, Italy, 2004).

20. Whitmire, S.A. Object Oriented Design Measurement. John Wiley & Sons, 1997.

21. X. Bai, W. T. Tsai, K. Feng and Yu;, L., Scenario-based Modeling and Its Applications
to Object Oriented Analysis Design and Testing. in IEEE Words, (2002).

22. Zuse, H. Software Complexity Measures and Methods. Walter de Gruyter, Berlin

New York, 1991.

