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Abstract 
A functional size measurement method, COSMIC-FFP, which was adopted in 2003 as the 

ISO/IEC 19761 standard, measures software functionality in terms of the data movements 
across and within the software boundary. It focuses on the functional user requirements of 
the software and is applicable throughout the development life cycle, from the requirements 
phase up and including to the implementation and maintenance phases. This paper extends 
the use of COSMIC-FFP for testing purposes by combining the functions measured by the 
COSMIC-FFP measurement procedure with the black box testing strategy. It leverages the 
advantage of COSMIC-FFP, which is its applicability during the early development phase 
once the specifications have been documented. This paper also investigates the applicability 
of Entropy measurement in terms of its use with COSMIC-FFP for assigning priorities to test 
cases.  
 

1. Introduction 
Testing represents a major effort within the whole of the software development cycle. The Guide 

to the Software Engineering Body of Knowledge (SWEBOK) [7] provides an overview, including 
references, of the basic and generally accepted notions underlying the Software Testing Knowledge 
Area. It describes testing as an activity performed for evaluating product quality, and for improving 
it, by identifying defects and problems. The definition of testing provided in [7] is as follows: 
“Software testing consists of the dynamic verification of the behaviour of a program on a 
finite set of test cases, suitably selected from the usually infinite executions domain, against 
the specified expected behaviour.” 

The underlined terms are key concerns in software testing and we must explain them briefly prior 
to introducing COSMIC-FFP [1] into the testing context.  

The term dynamic means that, when we want to test a program, we can execute it with 
differently valued inputs. The valued input not only means the input value alone, but also the specified 
input state. The input value alone is not sufficient to determine the outcome of a test. For example, a 
non deterministic system may react to the same input with different behaviors, depending on the 
system state. The non deterministic system described in Figure 1 may go from state S2 to either state 
S3 or S4 while reading a as an input value. The input state is also necessary in order for the system 
to decide where to go. However, this is a design issue and outside the scope of this paper. 

Figure 1: Example of a Non Deterministic System  
 

Finite means having a test set (which includes test cases) while testing the system. In practice, an 
exhaustive test set can generally be considered infinite, even in simple programs. For example, a 
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small program comparing two integers and returning the smaller number may require that the set of 
integers constitute the infinite test set. This is what makes testing a long and expensive and process. 
Testing implies a trade-off between limited resources and schedules, and inherently unlimited test 
requirements. As a result, we need a finite test set with which enough testing is conducted to obtain 
reasonable assurance of acceptable behavior. 

The term selected refers to the way in which the finite test set has been chosen. The most difficult 
problem in generating the test cases is finding a test selection strategy that is both valid and reliable 
[8]. The power of a test case generation technique for detecting faults in an implementation is 
referred to as fault coverage [10]. Many different test methods exist (e.g. formal methods based on 
Finite State Machines (FSMs) and Extended Finite State Machines (EFSMs) [6]), which are all 
assumed to generate test suites containing test cases especially likely to reveal failures. These test 
methods can be compared according to their respective fault coverage. One method is considered 
more powerful than the other if it has better fault coverage.  

Finally, to make the testing process useful, it must be possible, even though not always easy, to 
decide whether or not the observed outcomes or observed outputs of program execution are 
acceptable. This describes the term expected in the testing definition. It must be possible to 
determine whether or not the observed behavior is in conformity with user expectations, 
specifications, anticipated behavior requirements or reasonable expectations. The test pass/fail 
decision is, in the testing literature, commonly referred to as the “oracle problem” [6], [7] (see 
Figure 2).  
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Figure 2: Oracle Methodology 

 
In this paper, we investigate the use of the COSMIC-FFP method in the context of black-box 

use-case-driven testing using the Oracle methodology. In section 2, related work on scenario-based 
black-box testing is reviewed. Section 3 introduces the COSMIC-FFP method, and links it to the 
use-case technique.  Our testing approach is introduced in section 4.  The conclusions and directions 
for future work are outlined in section 5.  



 

 

2. Related Work on Scenario-based Testing 
There are three main testing strategies available: white-box testing, black-box testing and grey-box 
testing. In white-box testing, the test suite is generated from the implemented structures. In black-
box testing, the structure of the implementation is not known, and the test cases are generated and 
executed from the specification of the required functionality at defined interfaces. In grey-box testing, 
the modular structure of the implementation is known, but the details of the programs within each 
component are not. 

Scenario -based testing is a typical black box testing methodology at the system level, in which 
the scenarios depict the sequence of executions of the system, and the test cases can be derived 
from the use-case model and its corresponding UML diagrams [4, 5]. UML is the de facto industrial 
standard for modeling object-oriented software systems [13]. UML has 12 kinds of diagrams in 3 
categories: structural diagrams (including class diagrams), behavioral diagrams (including use-case 
diagrams, interaction diagrams (e.g. Figure 5), activity diagrams, collaboration diagrams and state-
chart diagrams) and model management diagrams.  

In [4], a use case is defined as a collection of related scenarios describing actors and operations 
in a system, and these use cases can be organized hierarchically. Specifically, the root of the tree is 
the main use-case diagram, the middle branches are the low-level use-case diagrams, and the leaves 
are the sequence diagrams for each use case in the low-level use-case diagram. However, the main 
use cases may be at too abstract level to derive test cases. The authors propose transforming a use 
case into scenarios, then from a scenario into thin threads, and, finally, from thin threads into test 
cases – Figure 3. 

 
Figure 3: Testing with UML 

 
A scenario is a specific sequence of actions and interactions between actors and the system [4]. 

A thin thread is a minimum-usage scenario in a software system. It is a complete data/message trace 
using a minimally representative sample of external input data transformed through an interconnected 
set of the system (architecture) to produce a minimally representative sample of external output data. 
The execution of a thin thread demonstrates that a method performs a specified function [4]. 

Our scenario-based  testing approach differs from the related work in important ways, and is 
aimed at creating an optimal set of test cases in the context of the COSMIC-FFP method 
introduced in section 3. 
 

3. COSMIC-FFP – ISO 19761 
A functional size measurement method, COSMIC-FFP, which was adopted in 2003 as the 

ISO/IEC 19761 standard, measures software functionality in terms of the data movements across 
and within the software boundary. It focuses on the functional user requirements of the software and 
is applicable throughout the development life cycle, from the requirements phase up to and including 
the implementation and maintenance phases. 

 
3.1. COSMIC-FFP overview 

Use cases Scenarios Thin threads Test cases  



 

A key aspect of COSMIC-FFP [1] is the establishment of what is considered to be part of the 
software and what is considered to be part of the software’s operating environment. Figure 4 below 
illustrates the generic flow of data from a functional perspective from which the following 
observations can be made [1]: 
•  Software is bounded by hardware in the “front-end” and “back-end” directions. In the first, or 

front-end, direction, the software used by a human user is bounded by I/O hardware such as 
mouse, keyboard, printer or display, or by engineered devices such as sensors or relays. In the 
second, or back-end, direction, the software is bounded by storage hardware like a hard disk 
and RAM and ROM memory. 

• Four distinct types of movement can characterize the functional flow of data attributes. In the 
front-end direction, two types of movement (ENTRIES and EXITS) allow the exchange of data 
with the users across a “boundary”. In the back-end direction, two types of movement (READS 
and WRITES) allow the exchange of data attributes with the storage hardware. 

 
Figure 4: Generic flow of Data Attributes through software from a functional perspective [1]  
 

3.2. COSMIC-FFP and scenarios 
As with all functional size measurement methods, the design and rules for these methods are 

independent of technologies and development approaches. When measuring the functional size of 
software documented using a specific notation such as UML, it is necessary to establish how the 
generic measurement concepts are mapped into any notation. The mapping of COSMIC-FFP 
concepts into UML has been documented in [12]. Six COSMIC-FFP concepts (boundary, user, 
functional process, data movement, data group and data attribute) have direct UML equivalents 
(use-case diagram, actor, use case, operation, class and data attribute) – see Table 1. 
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COSMIC-FFP Concepts UML Equivalents 
Boundary Use-case diagram 
User Actor 
Functional process Use case 
Data movement Operation (message) 
Data group Class 
Data attribute Class attribute 

Table 1 : COSMIC-FFP concepts and their UML equivalents 
  
In measuring software functional size using the COSMIC-FFP method, the software functional 

processes and their triggering events must be identified [1, 11]. The functional process is an 
elementary component of a set of user requirements that is triggered by one or more triggering 
events, either directly or indirectly, via an actor. As also discussed in [2], one functional process 
corresponds to a scenario (an instance of a use case) which has a set of events. For example, in 
Figure 5, the functional process includes the set of the following events {e2, e3, e4, e4.1, e4.2, e6}. 
The functional process is initiated by triggering events. A triggering event is an event that occurs 
outside the boundary of the measured software and initiates one or more functional processes. 
According to Figure 5, two events are triggered by the user which are outside the boundary of the 
software and initiate the above-mentioned functional process.  

In COSMIC-FFP, the unit of measurement is a data movement, which is a base functional 
component moving one or more data attributes belonging to a single data group. Data movements 
can be of four types: Entry, Exit, Read or Write. The sub processes of each functional process are 
sequences of events, and the functional process comprises at least two data movement types: an 
Entry plus at least either an Exit or a Write. An Entry moves a data group, which is a set of data 
attributes, from a user across the boundary into the functional process, where an Exit moves a data 
group from a functional process across the boundary to the user requiring it. A Write moves a data 
group lying inside the functional process to persistent storage, and a Read moves a data group from 
persistent storage to the functional process. In Figure 5, the sub process for the functional process in 
this scenario is the set of the events. 

 
Figure 5: COSMIC-FFP overview  
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In black-box testing, the details concerning the way in which the data are transformed and 

manipulated in the scenarios are dropped, since this is a detail design issue (in design phase, the 
detailed information related to how the data are transformed corresponds to the data structures and 
algorithms). This data transformation information is equivalent to the data transformation information 
in COSMIC-FFP. The COSMIC-FFP measurement method recognizes only the data movement 
type of sub process and includes an approximation assumption whereby each data movement is 
associated with an average quantity of data transformed (and whereby its true value does not 
deviate significantly from such an average).   
 
4. Our Testing Approach 

One of the greatest benefits of the use-case technique is that it provides testers with a set of 
assets which can directly drive the testing process. An instance of a use case – a scenario – can be 
seen as a use-case execution that can be tested. Therefore, use cases are sources of potential test 
cases.  
4.1. Test Case generation 

The procedure for generating test cases takes the use-case model as an input. For  each scenario 
identified in the use-case model, we derive a test case through mapping the scenarios to a sequence 
of events in time(or data movements in COSMIC-FFP), as described in the scenarios. Next, the 
specific conditions that would cause the test case to execute are identified, and real data values are 
supplied.  

One of the most significant challenges with system testing is the large number of specific scenarios 
that must be tested to ensure that the system behaves in accordance with its requirements. Our 
testing approach targets this problem through reducing the number of test cases while keeping the 
highest test coverage within given budgetary constraints. 

Effective management of the test coverage is the biggest challenge in the testing activity. For the 
application domains to which the COSMIC-FFP method is applicable, such as real-time, 
embedded and MIS software, the use cases can drive a significant number of test cases, testing all 
of which may not be feasible. In this paper, we propose to manage the test coverage by partitioning 
the generated set of test cases into equivalent classes, prioritizing the test cases within the 
equivalence classes based on the amount of information they process, and selecting the most critical 
test cases based on a balance between cost and priority. 
 

4.2. Related work  
    Weiss & Weyuker [14] have partitioned the input domain into some equivalence classes with 

respect to the behavior of the system under test. This approach mainly reduces the number of test 
cases with respect to the input domain.   

Davis & LeBlanc [9] have discussed partitioning of the input domain applying  entropy-based 
software measures at a higher level by considering chunks of code. For example, a single statement, 
a block of code or a module itself can be considered as a chunk of code. Groups of chunks may 
form an equivalence class if they have the same number of in-degrees and out-degrees. In Figure 6, 
A and C belong to the same equivalence class. The entropy is therefore computed with respect to 
the chunks that are in the same equivalence class, as follows (FC being the Entropy-based functional 
complexity measure): FC = FC1 +FC2 + … + FCp. 



 

   
Figure 6: Example of an equivalence class 

 
 In the following subsections, we explain in detail our strategy for selecting the optimal set of test 
cases, given certain resource restrictions, characterized by the highest test coverage. 
 
4.3. Partitioning into Equivalence Classes 

One of the problems that accompanies the identification of equivalence classes in COSMIC-FFP 
is how to organize the scenarios into equivalence classes where each equivalence class is 
characterized by a distinct functionality. Determination of the equivalences classes themselves can be 
a tedious and rather time-consuming process. We propose an automatic extraction of equivalence 
classes from the scenario descriptions. The following research problems have been targeted by our 
approach: 

1. Defining criteria for partitioning the set of scenarios into equivalence classes of test cases 
based on their similarity; 

2. Determining the partitioning of the input domain into equivalence classes by the sets of input 
events corresponding to the set of scenarios in the equivalence classes iE ; 

3. Prioritizing, within each equivalent class, the corresponding test cases based on their 
functional complexity values (in descending order) – see section 4.3 to calculate the 
functional complexity measurement. 

  
 
Partitioning algorithm. We have adopted a strategy similar to that used in [3] with some changes. 
Our approach is summarized in Figure 7. This approach would allow the use of a metric-based 
algorithm to partition the set of generated test cases STC from the test selection domain V. Before 
applying such an algorithm, the test set STC is generated from V by using the test case generation 
algorithm. This algorithm is simply applied so that each scenario constitutes one test case, as 
described above.  

B A C 
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Figure 7: Test Set Partitioning Strategy 
 
Next, in order to select the subset of test cases to be included in one equivalence class, the 

following constraint must be satisfied to execute the second algorithm:  
The distance ε  between any two selected test cases should not be greater than a given constant 

value ε max . 
 The  metric-based test set partitioning algorithm described in Figure 8  will be executed to create 

the equivalence classes until STC = ∅. This algorithm divides STC into equivalent classes, where 
each equivalent class TSi will include test cases with similar functionality and based on having short 
distances between test cases in one equivalence class. Every time the algorithm is executed, one 
equivalence class TSi will be created. We stop executing the algorithm when STC contains no more 
test cases. It should be noted that we do not choose the final set of test cases here, we only partition 
STC. 

 



 

 
 
 
 
 
 

Figure 8: Metric-based Test Case Partitioning Algorithm 
 

Now, we have to explain how the distance between the two test cases, t1 and t2, is calculated. 
The same formula that was used in [3] will also be used here: 

td ( t1, t2) = similarity (t1 , t2) * dissimilarity (t1 , t2) *  e ^ l 
 

Remember that t2 is the test case that will be chosen for the second algorithm. l can be calculated 
as follows: -(length (t1)/length (ts)).  

The similarity (t1 , t2) = 2  (- length (LCP  ( t1, t2) ), where LCP is the longest common prefix of the two 
test cases. The range of the similarity measure is between 0 and 1.  

The dissimilarity measure between the two test cases, t1 and t2, is calculated as the number of 
elementary transformations minimally needed to transform the string (t1/LCP ( t1, t2)) into the string 
(t2/ (LCP ( t1, t2)). For example, the distance between the following two test cases: 
e1.e2.e3.e4.e1 and e1.e1.e1.e2.e1 = ½ * 3 * e ^ -1. The distance formula td ( t1, t2)  indicates 
that the more distance there is between two test cases, the more they will differ. 
 

4.4. Priority of Test Cases  
For large systems, there may be a very large number of test cases, and  a priority has to be 

assigned to them to help increase the testing coverage within the given budgetary constraints. 
Prioritization of test cases is an important issue in software engineering because of the limited testing 
budget, and is usually performed manually. 

In our approach, the Functional Complexity (FC) measure is used to prioritize test cases [2]. 
Intuitively, more, and diverse, functionality of the system would lead to a bigger portion of the 
system being involved in that usage. The entropy calculated on a sequence of events abstracting a 

Precondition :{   
STC ≠ ∅ ∧ 
εmax > 0 ∧  
∀ i • TSi  = ∅ } 

- sets εmax (predefined value based on experimental work) 
 
While STC  ≠ ∅ 
      { 

- selects the longest test case t in set STC  
-  
- sets ε to 0 

- moves t from the set STC to the set TSi  
While ( STC ≠ ∅ ∧ (  ε < εmax)         { 

- chooses a test case t in set STC whose distance to the set TSi is minimal in order 
to put similar test cases into one equivalence class sets ε to the distance between 
t and TSi 

- if ε < εmax  then t is moved from STC to set TSi 
     } // equivalence class  TSi is created 
i=i+1; 

     } 
 



 

scenario quantifies the average information interchange for a given usage of the system. Therefore, it 
should correlate with the error spans during testing. The formula used to calculate functional 
complexity is as follows [2]: 

)/(log)/( -  
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The probability of the ith most frequently occurring event is equal to the percentage of total event 
occurrences it contributes, and is calculated as ip = if / NE, where if  is the number of occurrences 
of the ith event and NE is the total number of events in the sequence.  

The priority assignment should be done automatically.  
 

4.5. Test Selection Algorithm 
It is to be noted that total testing process resource consumption is directly proportional to the 

number of the test cases selected. As a result, the total cost of the test set is calculated by multiplying 
the number of selected test cases with C, where C is a positive constant scalar denoting the cost of 
one test case. In order to select the optimal subset of test cases that will be characterized by the 
highest test coverage, we balance the budget and the priority of the test cases as follows: 

  
For all non-empty equivalent classes TSi 
  
 Step 1. Choose the highest-priority test case from the equivalence class TSi; 

 Step 2. Add the chosen test case to the Optimal Set and remove it from the equivalence class TSi 
 Step 3. Increase the total testing cost in C  
 
  If  (The total testing cost exceeds a given budget Cmax) 
       End the algorithm 
 
 End For 

 

5. Conclusion and Directions for Future Work  
The paper has explored an interesting linkage between the 2nd functional size measurement 

method, namely “COSMIC-FFP”, and testing.  It has described the development of a model for 
scenario-based black-box testing, in whic h the scenarios are derived using the COSMIC-FFP 
method for identifying functionality. Based on that model, the mechanisms of both test-case 
generation and their prioritization are elaborated to ensure high level fault coverage in black-box 
testing. First, the set of scenarios in the COSMIC-FFP context represents the set of test cases 
required to form the generated test set. Second, that set of test cases is partitioned into equivalence 
classes.  Third, the test selection algorithm is run on the set of non-empty equivalence classes. The 
result is a set of selected test cases affording the best possible coverage (i.e. the test case with the 
highest FC value, from each equivalence class). However, we cannot claim the full fault coverage 
since this algorithm is maximizing the test coverage within the limits of a given budget.   

The partitioning of the input domain into equivalence classes would also open up a new direction 
in the future towards enabling the reliability estimation of software. With each equivalence class 
comes its operational profile, that is, the probability that the inputs will really derive from normal 
operation of the system. By using the input reliability model, which stems from a functional view of 
software as operating on a certain input domain (sequences of events in our case) and producing 
results within a given output domain where we realize the software failures, we can select test cases 
over the input domain, perform software testing and then compute the reliability estimation. 



 

In a future paper, it would be also be of interest to apply our testing strategy as described in this 
paper to real case studies in order to validate and verify the results of the strategy. Rational Unified 
Process (RUP) [15] case studies would serve as a good choice to begin with, since they provide a 
clear description of some software specifications and the detailed use cases and scenarios that 
correspond to them.  
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