
International Workshop on Software Measurement (IWSM’99) – September 8-10, 1999
Lac Supérieur, Canada

MULTIPLE VIEWPOINTS IN FUNCTIONAL SIZE MEASUREMENT

Christopher Lokan
School of Computer Science

University of New South Wales
Australian Defence Force Academy

Canberra ACT 2600, Australia
+61 2 6268 8060

c-lokan@adfa.edu.au

Alain Abran
Université du Québec à Montréal

Département d'informatique
C.P. 8888, Succ. Centre-ville

Montréal (Québec), Canada H3C 3P8
+1 514 987 3000 (8900)
abran.alain@uqam.ca

ABSTRACT

Although there is broad agreement on the sorts of
things to take into account when measuring
functional size, there is a variety of opinion about
how to do it. This is partly because several
different views of functionality are addressed in
functional size measurement. Some are better
understood than others. In particular, the “general
systems characteristics” (GSC’s) and “value
adjustment factor” (VAF) are poorly understood.
Our aim is to provide a foundation for research
that may improve this aspect of functional size
measurement.

A survey of the evolution and state of practice of
the GSC's and VAF leads us to identify various
aspects of software that are important in
functional size measurement. We relate these
aspects of software to different views of
functionality. A spectrum of viewpoints is seen,
with core functionality at one end, effort
estimation at the other, and different user
viewpoints in between. By noting how the GSC’s
and VAF contribute to these viewpoints, we see
how value may be gained from them, and we
identify directions for future research.

1. INTRODUCTION

Albrecht proposed Function Point Analysis (FPA)
in 1979 [4], as a measurement method for
software functional size. Albrecht labelled the
output of this measurement method as Function
Points. His aim was to define a measure of work
product that could be used to understand
productivity. Function points are computed as a
sum of five weighted function types. Albrecht
chose the weights to reflect an intuitive concept
that he referred to as "value to the user," but
which he did not define precisely.

Since function points can be computed from a
specification document, and are based on things
that are important in a user's view of functionality,

they are widely accepted as a measure of
functional size. They are most successful in data-
strong systems.

Function points are used now for several
purposes. One is as a normalizing factor. Hours
per function point is used as a measure of
productivity, as Albrecht intended. Defects per
function point is another measure that is used.
Second, many people have noted that size in
function points is related to development effort.
This means that rules of thumb – and even
environment-specific prediction systems – can be
developed that assist in predicting the effort and
cost of a project. Third, Albrecht himself was the
first to note relationships between size in function
points and program length in lines of code, based
on a documented data set [5]. Similarly, Jones
has published a large table of multipliers [16], with
which functional size of software can be
approximated from its physical program size in
different languages, and vice versa (although
these tables are not supported by documented
evidence).

The need for measures of functional size is clear.
Practitioners, especially the International Function
Point Users Group (IFPUG), have driven their
refinement as measurement methods. The most
widely used definition of Function Points is given
in the IFPUG Counting Practices Manual [12].
The international standard on functional size
measurement concepts and definitions is
documented in ISO/IEC standard 14143-1 [13].

Structurally, two models are involved in function
points [1]. In the Function Point Measurement
Model (FPMM), many items are counted that are
related to functionality. These include the
numbers of data and record elements in each
data file referenced by the system, and the
numbers of data elements and file types
referenced in each input, output, and inquiry. In
the Function Point Productivity Model (FPPM),
the elements from the FPMM are classified,

122

weighted, and combined to produce the overall
“unadjusted FP” (UFP) value.

The adjustment phase of Function Point Analysis
can be seen in the same light. A measurement
model defines a collection of “General System
Characteristics” (GSC's) and how to measure
them. A second model combines the
measurements to produce a single “Value
Adjustment Factor” (VAF). It is not clear whether
this second model is a measurement model or a
productivity model; it could be argued either way,
depending on the viewpoint selected for the
interpretation of the results. The unadjusted FP
value is multiplied by the VAF to give the final
“adjusted FP” (AFP) value.

Several modifications to the Function Point model
have been proposed, in attempts to correct
perceived weaknesses. Some extend the set of
items counted in the FPMM; examples are
Feature Points [15], 3D Function Points [25], and
Full Function Points [2, 22]. Others, such as Mark
II Function Points [23, 24] define a different set of
items to count in the FPMM, concentrating on
logical transactions (rather than classifying
transactions separately according to the IFPUG
definitions of inputs, outputs, inquiries), and not
taking into account the files. Others, such as Full
Function Points, consider a lower level of
granularity to take into account internal
functionality of sub-processes. The FPPM is also
different in Mark II Function Points. Mark II
Function Points define a different set of GSC's,
while retaining the general method for computing
the VAF. Jones [16] reduces the set of items to
count in the FPMM, replaces the IFPUG GSC's
with a different formulation, and modifies the
FPPM.

Despite broad agreement on the sorts of things
that should be taken into account when measuring
functional size, opinion varies on how to do it.
What should be measured and how, and what
structures should be used to combine or interpret
the elementary measurements? Models, methods,
and techniques for the measurement of functional
size are still evolving.

The theme of this position paper is that several
different views of functionality are addressed in
functional size measurement. Some are better
understood than others. In particular, the GSC's
and VAF are poorly understood. They are
generally seen as important, but not very
successful. Our aim is to provide a foundation for
research that may improve this aspect of

functional size measurement. To do this we need
to look at the GSC's themselves – how they are
structured, how they are used in practice, where
they succeed, and where they fail – and at how
they relate to other aspects of functional size
measurement.

Section 2 surveys and comments on research
observations about the GSC's and VAF, and what
others have said about them. Section 3
characterizes the GSC’s and other aspects of
software that have been or perhaps should be
considered in functional size measurement.
Section 4 relates these different aspects of
software to different views of functionality.
Section 5 discusses what value may be gained
from the GSC's and VAF, even though they may
be imperfect in their current formulation. Section
6 presents conclusions, and suggests directions
for future research.

2. THE ADJUSTMENT PHASE IN FPA

Albrecht and Gaffney [5] motivated function
points this way: “The thesis of this work is that
the amount of function to be provided by the
application (program) can be estimated from an
itemization of the major components of data to be
used or provided by it. Furthermore, this estimate
of function should be correlated to both the
amount of ‘SLOC’ to be developed and the
development effort needed.”

There have always been two phases in function
point calculation. The first deals with the
“itemization of the major components of data,"
giving unadjusted function points. The second
applies “some general application characteristics
to adjust the standard processing measure for
processing complexity” [5].

The adjustment phase may be seen in two ways.
The general characteristics are intended to
measure important things about software that are
not part of UFP; these are still aspects of size.
The resulting adjustment, which raises UFP for
“more complex” software and lowers it for “less
complex” software, is presumably done to support
the correlation between the estimate of function
and the development effort needed.

The description of the adjustment phase has
always concentrated on allowing for complexity. It
appears that the adjustment factor is the end, and
the general systems characteristics are the means
to the end.

123

This section surveys the different proposals for
GSC’s and the VAF. Section 2.1 traces their
evolution, as people have described them when
proposing new forms of FPA. Section 2.2 looks at
how researchers and practitioners have seen
them. A summary is presented in Section 2.3.

2.1 Evolution of FPA adjustments

Albrecht’s initial formulation

When Albrecht first proposed function points in
1979 [4], the adjustment phase allowed for a
variation of ± 25% for complexity. It involved
making subjective estimates of the degree of
influence of ten factors, and allowing a 5% effect
for each.

The ten factors were backup and recovery
provisions, data communications, distributed
processing, performance considerations, heavily
used operational configuration, on-line data entry,
conversational dialogues for data entry, on-line
updates, complex elements (inputs, outputs, files,
inquiries), and complex internal processing.

Criticisms of the initial formulation were that the
process was too subjective, and that ± 25% was
not enough variation [16].

1984 Albrecht revision of FPA

Albrecht revised FPA in 1984 [11]. The revised
form became the foundation of the IFPUG
approach to FPA, which dominates today as a de
facto standard.

The handling of complexity was changed in two
ways. First, element complexity is no longer
treated as a single pervasive attribute. Instead, it
is shifted to the elements that make up the
specific countable functionality of the system.
Each input, output, inquiry, and file is assessed
separately for complexity. (In this context
“complexity” is a misnomer, since it suggests
difficulty of understanding or implementation.
Here it is assessed according to the number of
data and record element types, so it is really
“magnitude” rather than “difficulty” that is
measured.)

Second, the number of characteristics was
extended from 10 to 14, and consequently the
range of potential variation extended to ± 35%.

The things considered to be GSC’s changed a lot
from 1979 to 1984. Six of the original ten were
retained: data communications, distributed

processing, performance considerations, heavily
used operational configuration, on-line data entry,
and complex internal processing. One (element
complexity) was shifted to the UFP stage, as
noted above. Two were combined: backup was
merged into on-line update. One was dropped:
interactive dialogues no longer count as a
separate GSC. Seven new characteristics were
added: transaction rate, end user efficiency,
reusability, ease of installation, ease of operation,
use at multiple sites, and facilitating change.

IFPUG FPA Standard

IFPUG has not altered the structure of the
adjustment process.

Assessing the degree of influence of each factor
in the adjustment process has become less
subjective. IFPUG’s Counting Practices Manual
[12] provides guidelines on how to assess the
degree of influence of each factor, making this
process more objective and repeatable.

Symons – Mark II Function Points

With Mark II Function Points [23, 24], Symons
aimed explicitly to strengthen the relationship
between function points and effort. He expected
the calculation of function points to change as
technology changed, rather than being a fixed
property of any given system. Symons’ approach
gains value for estimation, while reducing the
value and practicability of comparing software
from different environments or different
technological generations.

Besides altering the counting of basic functional
elements, and how to combine those counts,
Symons altered the adjustment process. He felt
that 14 GSC’s were not enough, and the particular
14 were not likely to remain the most important
characteristics as time passed. He also thought it
inappropriate to give each characteristic the same
weight when computing the adjustment factor.

He added five more GSC’s (interaction with other
systems, security, access by third parties,
documentation, special training needs), and made
provision for the addition of further
characteristics. He also proposed that the weights
should be calibrated to reflect their appropriate
values in a given technology.

Symons also altered the name of the adjustment
factors, from “general system characteristics” to
“technical complexity factors," and gave an
important definition [23]:

124

“A TCF component is a system
requirement other than those
concerned with information content,
intrinsic to and affecting the size of
the task, but not arising from the
project environment."

Jones

Jones has put forward a variant of function points,
simplifying their calculation [16].

Jones’ method has much in common with
Albrecht’s initial proposal. File and transaction
elements are counted, with no separate
assessment of complexity. The treatment of
complexity is moved back to the adjustment
phase.

Three things are assessed for complexity:
problem complexity, data complexity, code
complexity (the third is not considered in pre-
development estimation). Calculation of the
adjustment factor takes the same form as the
earlier proposals. Because a coefficient is higher
in the adjustment formula (0.1, rather than
Albrecht’s 0.01 and Symons’ 0.005) the range of
possible adjustments is wider.

Other approaches to FPA

Several other approaches to functional size
measurement have been proposed, including
feature points [15], 3D function points [25], Full
Function Points [2, 22]. In each of these, either
the adjustment process is not described, or the
IFPUG GSC/VAF formulation is adopted. From
the point of view of this paper on GSC’s and VAF,
they have nothing to add.

ISO Standard for Functional Size
Measurement

In the ISO standard on Functional Size
Measurement [13], the focus is strictly on specific
itemized functionality, based on functional user
requirements. The General System
Characteristics and Value Adjustment Factor are
excluded from functional size measurement. It
was agreed unanimously at the international level
not to include the VAF within an ISO-recognized
measurement method for functional software size.

2.2 Reactions from researchers and
practitioners

Research and commentary on the GSC’s and
VAF have focused sometimes on the GSC’s,

more often on the VAF, and sometimes on both.
The questions considered are which
characteristics to measure, how to measure them,
how to combine the measurements to produce the
VAF, and the effect of applying the VAF.

2.2.1 The set of General System
Characteristics

Symons has suggested that an open-ended
approach is needed to the GSC’s [23]. Symons
feels that more than 14 seem necessary – he has
extended it to 19 – and the particular set of GSC’s
may need to vary over time. In criticizing Symons’
proposal, Jones has asked why stop at 19 –
perhaps over 100 factors might be relevant [16].
Jones prefers to stick with the original 14, for the
sake of conforming with “the assumptions of the
original IBM assertions” – or presumably to use
his own formula in which only problem and data
complexity are considered.

Conversely, some researchers suggest that 14
characteristics are too many. Kitchenham et al.
suggest that general relationships exist between
the adjustment factors, that are not due to specific
characteristics of a given data set [19].
Kitchenham [18] and Lokan [20] found
independently that there is common variation
within the GSC’s; in each of these studies, only 5
or 6 underlying factors seemed to be involved,
rather than 14. Benyhaia et al [6] found in a
substantial data set that it is very difficult to
distinguish the 14 factors statistically. Either there
is not enough data – many of the data points are
missing – or there is not enough dispersion
among their values. Only seven of the 14 factors
were significant in their sample.

Garmus and Herron [10] and Lokan [20] have
noted that patterns can be observed in the GSC’s
for different types of software.

Several authors have identified GSC’s that might
benefit from being redefined. Symons noted that
performance, heavily used configuration, and
transaction rates (all essentially performance
constraints) were hard to differentiate; so were on-
line entry, on-line update, and end user efficiency
(all to do with interactive use of the system) [23].
Garmus and Herron [10] and Lokan [20] both note
that communications and interactivity have
become so pervasive nowadays that the
associated GSC’s have lost their discriminative
value.

Kitchenham [18] comments that several of the
GSC’s resemble cost drivers, rather than size

125

drivers (even though few have a statistically
significant relationship with productivity). She
warns that “if adjusted function points are used to
assess product size and are then put into a cost
model that applies cost drivers to its effort
prediction there is a real danger of applying an
adjustment for certain factors twice.”

2.2.2 Measurement of the GSC’s (VAF
measurement process model)

Abran [1, 3] has investigated the measurement
operations within the VAF, as defined in
Albrecht’s 1984 version of the VAF and still in use
in the 1999 IFPUG version. The measurement
process within the VAF transforms the unadjusted
function points into adjusted function points, using
a linear transformation on the 14 general
characteristics of the application:

• Each of the 14 characteristics is subdivided
into six ranks;

• Each rank is ordered, from the smallest to the
greatest;

• Each rank is assigned an integer value in the
range 0 to 5;

• The resulting value is multiplied by 0.01,
giving a result in the range 0.0 to 0.05.

In this set of transformations, there are serious
methodological weaknesses from the point of
view of measurement systems.

First, ranking a characteristic constitutes
measurement on a strictly ordinal scale, in an
increasing order. But for most characteristics, the
criteria for determining the classes do not
represent steps of the same magnitude, even
within a single characteristic. This means that
when each ordered rank is labeled from 0 to 5,
the link made between the rank order of the
classification and the numerical value of its
indicator is not appropriate. From a
methodological point of view, the measurement is
transformed improperly from an ordinal scale (that
serves only to rank objects or attributes), through
an interval scale type of unequal magnitude, to a
ratio scale type (which serves normally to
determine the difference between two numbers,
when the ranking labels of 0 to 5 are interpreted
as integers from 0 to 5).

Second, each interval for each characteristic is
interpreted as though equal in the 0 to 5 integer
value range. The same weight of 0.01 is always

applied, even though each interval may be
unique, potentially distinctly spaced, and could
have a different impact on overall size depending
on its rank. Further, this is assumed to hold
equally for all 14 characteristics, whatever their
nature.

2.2.3 Computing the VAF (VAF productivity
process model)

In contrast with Boehm’s COCOMO model [7], in
which 15 productivity factors were identified that
apply to the production process rather than to the
software to be delivered, Albrecht's original
contribution in FPA was to identify 14 general
system characteristics that apply “to the software
itself”. Unlike Boehm’s model, each of the 14
factors has the same importance (statistical
influence), in the same six point scale, with the
same weight of 0.01.

Several authors have questioned the
appropriateness of always giving the same weight
[3, 6, 23].

Benyhaia et al [6] pointed out another problem.
From the statistical point of view, the 14
adjustment factors should not be added, because
they influence one another. They suggested that
the factors should instead be multiplied.

2.2.4 Applying the VAF

Nobody that has investigated the VAF seems very
happy with it.

Several researchers have found that the VAF
makes no difference to the accuracy of effort
estimates. The relationship between adjusted
function points and development effort is no
stronger than that between unadjusted function
points and development effort [1, 6, 14, 17, 20].
This is probably because in most systems the
VAF ends up very close to 1.0 [20, 24].

Lokan noted that the VAF is not reliable even as a
simple indicator of whether effort is likely to be
more or less than “average” for a given UFP [20].
Kitchenham found it to work in the opposite way
to what might be expected [19]:

“It is also interesting to note that the
projects with high levels of these
factors are those that exhibited
higher productivity than projects
with low levels of the factors, so the
use of a function point adjustment
factor would make the increased

126

productivity of those projects
appear even greater.”

2.3 Discussion

From the beginning, there has been a separation
of the detailed functionality of the system (the
“specific countable functionality” [12]) from other
things that are seen as attributes of the system as
a whole.

Garmus and Herron describe these other things
as “pervasive general factors that are not
sufficiently represented by the countable
transactions and data functions” [10]. IFPUG calls
them indicators of the “general functionality of the
application” [12]. Symons notes that they should
be “system requirement[s] other than those
concerned with information content, intrinsic to
and affecting the size of the task” [23].

There is clear agreement that the GSC’s should
be things that are “intrinsic” to the application.

How many GSC’s there should be, and precisely
what they should be, is not clear. Opinions range
from two factors, to 14, to 19, to perhaps over
100. Empirical research on the usual 14 GSC’s
suggests that 5 to 7 factors are sufficient.
Several suggestions have been made for
rationalizing or redefining some of the 14 GSC’s.

Methods for combining the GSC’s to compute a
Value Adjustment Factor have not changed much
since Albrecht’s original proposal. That approach,
still present in the IFPUG standard, was based
mostly on intuition. It did not benefit from any
theory, and there is no mention of any statistical
foundation for this part of the Function Point
model.

Although the number of terms and the coefficients
have changed in later proposals, and there is
significant disquiet at the GSC’s all having the
same weight, the nature of the formula has stayed
essentially the same. The only significant
exception is Benyhaia et al’s suggestion that the
adjustment process should operate as a series of
multiplications [6], but this approach has not taken
off yet.

The GSC’s have not been used in an open-ended
way. This is presumably for the sake of
conformance with IFPUG’s de facto standard.
Rather, as things have been identified as
important in functional size measurement, the
emphasis has been on devising ways to
accommodate them in the usual 14 GSC’s. An

example is the way graphical user interfaces, on-
line help, and error messages are addressed in
FPA: since they are not part of “specific countable
functionality”, they are handled within the GSC’s
[12].

The notion that the GSC’s are a part of size
measurement seems to be lost as soon as people
think about the adjustment factor. The value of
the adjustment phase is generally judged by
whether or not it improves the explanatory
relationship between size and effort. When the
VAF does not help in this context – as it seems
not to – the whole adjustment process is
sometimes abandoned, GSC’s and all.

At the time of writing, IFPUG is conducting its
own study into the usage and perceived value of
the GSC’s within the VAF. The GSC’s and VAF
are excluded from the ISO standard on functional
size measurement. Researchers have dismissed
the VAF, although some see potential value in the
GSC’s from which it is constructed. Among
practitioners, many (particularly in the USA) use
the adjustment process as IFPUG describes it.
This at least means that the FPA counting
process is applied consistently, enabling
comparisons between organizations. It should be
pointed out that similar consistency is achieved if
comparisons are made using unadjusted function
points, without the VAF being taken into account.

A growing number of practitioners do not use the
adjustment phase at all. The GSC’s are either
ignored, or are taken into account as cost drivers
in effort estimation.

3. ASPECTS OF SOFTWARE TO CONSIDER IN
FUNCTIONAL SIZE MEASUREMENT

Functional size measurement is all about
measuring the size of a software product from the
user’s point of view.

The product to be delivered by a software
development project is defined in a software
requirements specification. Most requirements,
but not all, relate to the tasks to be performed by
the software application.

Requirements can be grouped into several
classes. For example, Pfleeger [21] suggests the
following categories: physical environment,
interfaces, users and human factors, functionality
(including performance constraints), data,
resources, security, quality assurance. Many of
these affect users directly.

127

The question is which things ought to be
addressed in functional size measurement, and
how.

We approach this question here by constructing a
list of things which typically appear in a software
requirements specification, or which are included
in any of the mainstream FPA proposals, or both.
The list is presented in Figure 1. (Items shown in
italics in Figure 1 are included in existing methods
of functional size measurement. Most other items
have been the subject of debate on whether or
how they should be treated in functional size
measurement.)

All of the software aspects listed in Figure 1 are
likely to appear in a requirements specification.
All are related to the product itself, rather than the
project that delivers the product. Each could be
varied separately while the others are held fixed.
Thus they can be seen as separate dimensions of
a software product, which are candidates for
inclusion in measurements of the product.

By classifying these aspects of software, we can
gain some insight that helps us to understand and
explain the different views of FPA and its
components. In Figure 1, the items are first
classified into categories (shown in bold type).
The categories are then classified on two criteria:

• Are they concerned with real purpose of the
system or not; and

• Are they concerned with functional or non-
functional aspects of the system. (By
“functional” we mean the tasks performed by
the system – what a user can do with the
system. “Non-functional” aspects are not part
of the tasks of the system, but affect how it
does those tasks, or constraints that must be
satisfied.)

Observations that follow from this classification
are presented in the next section.

128

Related to system purpose Not related to system purpose

Functionality: IFPUG UFP, Interface: GUI, etc
Mark II UFP,
3D FP, User support: Help, error handling
Full FFP, End user efficiency
ISO 14143-1, Facilitate change

Functional … Third party access
requirements Training

Operation: Ease of installation
Ease of operation
Security
Backup and recovery

Interaction: On-line entry
On-line update
Other systems

Constraints: Performance Constraints: Heavily used config
Transaction rate
etc. Complexity: Inherent complexity

Non-
functional Reusability: Reusability

requirements
Quality: Maintainability,

Code standards, …

Architecture: Distributed system
Data communications
Multiple sites

Documents: Documentation

Figure 1 – Classification of software aspects

4. FPA ELEMENTS AND FPA VIEWPOINTS

As noted above, the question is which things
ought to be addressed in functional size
measurement, and how.

Different authors have given different answers,
according to their views on what should be
handled in detail and what should be regarded as
general characteristics; and according to whether
the basic aim is to measure “functionality”, or to
measure “value to the user”, or to relate size to
development effort.

Several observations can be made, with
reference to Figure 1, that help us to understand
the differences between these points of view.

4.1 A spectrum of views

Beginning with the top-left quadrant of Figure 1,
and adding the other quadrants progressively, we
see a spectrum of views. At one end, we start with
the “functional size of the problem” – the core
functionality, captured by unadjusted function
points. At the other end, we see the full set of
product-related factors that influence the
relationship with development effort, which
Albrecht expected to see and Symons aims for
explicitly. In between we have the “size of the
application” from the user’s point of view, and the
set of factors which influence “value to the user”.

129

Functional size of the problem

Everybody agrees on the top left quadrant: tasks
done by the system that are related to its real
purpose are at the heart of functional size.
Nothing outside this quadrant is recognized by
ISO as part of functional size measurement. This
quadrant might be described as capturing the
“functional size of the problem” from the user’s
point of view. It represents the smallest common
denominator across all current measurement
methods for functional size. Research continues
on the best forms of FPMM and FPPM with which
to measure it; they are not the topic of this paper.

Two things are “intrinsic” to the problem: the top
left quadrant, and the “inherent complexity” of the
problem (Fenton calls inherent complexity a third
dimension of size, along with functionality and
physical size [9]). Everything else is related to the
product that solves the problem.

“Inherent complexity” is only one of the usual
GSC’s – it means is the calculation hard or easy.
In its aim to adjust for inherent complexity, the
current VAF casts a far broader net; Jones [16]
limits the adjustment much more closely to
inherent complexity.

User’s view of functional size

The top two quadrants describe things that affect
what the user can do with the system. This row
might be described as capturing the “functional
size of the application” from the user’s point of
view.

This is still counted from the specification, with
the user in mind. It is distinct from the physical
size of the implementation of the application.

Value to the user

Three quadrants – all except the bottom right –
contain things that are visible to the user. If the
intention is to measure “value to the user”,
everything except the bottom right quadrant
should be taken into account.

Relating size to effort

All four quadrants in Figure 1 need to be taken
into account when estimating or explaining the
nature and effort of the task of developing the
product.

4.2 Other comparisons

Detail vs general

Only the top left quadrant is counted in detail, by
measuring each of the “functions” in the system
individually. Everything else is assessed as a
characteristic of the application as a whole, not of
individual pieces of the application.

Cost drivers vs size drivers

Things listed in the bottom row affect the difficulty
of implementing the software. They are better
regarded as cost drivers, not size drivers.

User view vs developer view

Things listed in the bottom right quadrant are of
no concern to the user. If the intention is to
measure software from the user’s point of view,
these things do not belong in functional size
measurement.

From the developer’s point of view, everything in
Figure 1 affects the implementation, and the
eventual physical size.

Product vs project

Nothing in Figure 1 is “consequent on the
environment” (to use Symons’ words) – eg
language, people, team size, etc. Those things
are project attributes, not product attributes. They
clearly influence work effort, but they have no role
per se in functional size measurement.

5. OBTAINING VALUE FROM THE VALUE
ADJUSTMENT FACTORS

Multiple constraints and limitations on both the
VAF process and the general systems
characteristics have been highlighted and
discussed in the previous sections.

5.1 Value Adjustment Factor process

The VAF process, as currently structured, has
less potential than the individual GSC’s.

From a measurement perspective, it is unsound.
From a practical viewpoint, empirical studies
indicate that it brings no contribution to
productivity and estimation models. Fortunately, it
does not hurt much either.

Its structure needs a major overhaul. Proper
treatment of the detailed measures of its
constituent components (the GSC’s) is a must.

130

No result computed by combining measurements
of the GSC’s can be expected to make any
practical contribution, unless it is constructed with
sound mathematical transformations.

No research papers have yet been published
tackling this issue.

5.2 General Systems Characteristics

Just because the VAF does not seem to work for
its main purpose, does not mean that the GSC’s
need to be abandoned. They may still be useful
for measuring things that matter to users.

As long as a measurement process manipulates
numbers that clearly measure aspects of
functionality, it can at least be argued that a
measure of functional size is the result. Files and
transactions are clearly aspects of functionality;
this is the basis on which unadjusted function
points are used as a measure of functional size. It
is not so clear that all of the GSC’s measure
aspects of functionality. For example,
“functionality” does not change because the
programming happens to be more or less
complex, or worries more or less about heavily
used configurations

Clearly, some of the GSC’s are cost drivers.
Those that are listed in the bottom row of Figure 1
should be removed from functional size
measurement. They should still be measured, but
they should be handled as cost drivers for project
estimation, rather than built into size
measurement or estimation.

Many of the GSC’s measure things that do matter
to users. These aspects should be measured
somehow, when assessing software from the
user’s viewpoint, so the concept of the GSC’s is
worth retaining.

The best use for those GSC’s that are not cost
drivers is for classifying projects. Different types
of software use the GSC’s in characteristic ways
[10, 20]. This means that projects can be grouped
according to their GSC values, probably into not
very many groups. This supports comparisons
between similar projects, and helps in finding
groups of projects that might be treated together
for effort estimation.

Some GSC’s would benefit from being redefined.
Two (on-line entry, data communications) have
lost their discriminative value, since almost all
projects give them the maximum score [20]. One
(on-line update) seems to combine two different

things (backup and recovery, and on-line
operation) [20]; it should perhaps be split up.
Symons’ note [23] that performance, heavily used
configuration, and transaction rates are hard to
differentiate, as are on-line entry, on-line update,
and end user efficiency, might also be addressed.
Note that several of these are identified above as
cost drivers; their re-definition should view them
accordingly, and not try to fit them back within
functional size measurement.

The UFP’s and GSC’s measure different aspects
of an application (functionality, interface,
interaction, etc). It may be better to regard size as
having multiple different dimensions, rather than
trying to combine them all into a single number.

6. CONCLUSIONS

Functional size measurement has been
approached from several different points of view.
At one extreme, function points are seen as
measuring core application functionality and
nothing else; from the other extreme, function
point analysis includes so many factors that are
related to the difficulty of implementing a system
that function points are regarded by some as a
surrogate measure for effort. In between come
some other points of view, which include to
varying degrees the things that matter to a user of
a software application.

By reviewing the history of the GSC’s in various
function point proposals, and then classifying the
GSC’s and other aspects of software according to
these viewpoints, we have seen which
characteristics support which points of view. This
has enabled us to make some recommendations
on which characteristics to include in functional
size measurement, and which to exclude.

Many directions for future research present
themselves. How many factors should be included
in functional size measurement, and which should
they be? How should they be identified – by
theoretical proposal, or by empirical research?
How should they best be measured – on a 0–5
scale still, or something else? How should the
measurements be combined, and then how
should they affect the unadjusted size? How
should change be accommodated – by extending
the measurement process, or replacing old
elements of it with new ones, or devising ways to
fit new elements into an existing structure? How
should measurements of core functionality be
combined with other measurements – by
combining them to give a single number (and if

131

so, with what relative weights), or treating them as
different dimensions of a vector?

The answers to questions such as these will come
partly from proposals based on theory, partly from
empirical research, and partly from practical
experience. Value to practitioners must be kept in
mind.

ACKNOWLEDGMENTS

We wish to thank the Australian Defence Force
Academy, Bell Canada, and the Natural Sciences
and Engineering Research Council of Canada for
research funding. The opinions expressed in this
paper are solely those of the authors.

REFERENCES

1. Abran, A. Analyse du processus de mesure
des points de fonction. PhD thesis, École
Polytechnique de Montréal, Montréal, March
1994.

2. Abran, A., Maya, M., Desharnais, J.-M., and
St-Pierre, D., Adapting Function Points to
Real-Time Software, American Programmer,
10(11): 32–43, November 1997.

3. Abran, A. and Robillard, P.N. Function points:
A study of their measurement processes and
scale transformations, Journal of Systems
and Software, 25(2): 171–184, May 1994.

4. Albrecht, A.J. Measuring Application
Development Productivity. Proc. IBM
Applications Development Symposium,
GUIDE Int. and SHARE Inc., IBM
Corporation, Monterey CA, October 1979, p.
83–92.

5. Albrecht, A.J. and Gaffney, J.E. Jr. Software
Function, Source Lines of Code, and
Development Effort Prediction: a Software
Science Validation. IEEE Transactions on
Software Engineering, SE-9(6): 639–648,
November 1983.

6. Benyhaia, H., Desharnais, J.-M., Hudon, G.
and Martin, C. Adjustment model for Function
Points scope factors – a statistical study.
IFPUG Spring Conference, Florida, April
1990.

7. Boehm, B. Software Engineering Economics.
Prentice-Hall, 1981.

8. Desharnais, J.-M. Analyse statistique de la
productivité des projets de développement en
informatique à partir de la technique des
points de fonction. Masters thesis. Université
du Québec à Montréal. December 1988.

9. Fenton, N.E. Software Metrics: a Rigorous
Approach. Chapman and Hall, London, 1991.

10. Garmus, D. and Herron, D. Measuring the
Software Process: a practical guide to
functional measurements. Prentice-Hall,
Upper Saddle River NJ, 1996.

11. IBM Corporate Information Systems and
Administration. AD/M Productivity
Measurement and Estimate Validation. CIS&A
Guideline 313, IBM, Purchase NY, November
1984.

12. International Function Point Users Group.
Function Point Counting Practices Manual,
Release4.0. IFPUG, Westerville OH, 1994.

13. International Organization for
Standardization. Information technology –
Software measurement – Functional size
measurement – Part 1: Definition of concepts.
ISO/IEC 14143-1:1998.

14. Jeffery, D.R. and Stathis, J. Function point
sizing: Structure, validity and applicability.
Journal of Empirical Software Engineering,
1(1): 11–30, 1996.

15. Jones, C. Feature Points (Function Point
Logic for Real Time and System Software).
IFPUG Fall Conference, Montréal, October
1988.

16. Jones, C. Applied Software Measurement
(2nd edition). McGraw-Hill, New York, 1996.

17. Kemerer, C.F. An empirical validation of
software cost estimation models. CACM,
30(5): 416–429, May 1987.

18. Kitchenham, B.A. Empirical studies of
assumptions that underlie software cost-
estimation models. Information and Software
Technology, 34(4): 211–218, April 1992.

19. Kitchenham, B.A. and Kirakowski, J. 2nd

analysis of MERMAID Data, ESPRIT Project
P2046, Deliverable D3.3B, Oct. 7 1991.

20. Lokan, C.J. An Empirical Analysis of Function
Point Adjustment Factors. Technical Report

132

CS03/98, Australian Defence Force
Academy, December 1998.

21. Pfleeger, S.L. Software Engineering: Theory
and Practice, Prentice-Hall, Upper Saddle
River NJ, 1998.

22. St.-Pierre, D., Maya, M., Abran, A., and
Desharnais, J.-M., Full Function Points:
Function Points Extension for Real-Time
Software - Concepts and Definitions,
Technical Report no. LRGL-1997-03,
Université du Québec à Montréal, Montreal,
March 1997.

23. Symons, C.R. Function Point Analysis:
Difficulties and Improvements. IEEE
Transactions on Software Engineering, 14(1):
2–11, January 1988.

24. Symons, C.R. Software Sizing and
Estimating: Mk II FPA. Wiley, Chichester UK,
1991.

25. Whitmire, S.A. 3D Function Points: Scientific
and Real-Time Extensions for Function
Points. Proc. Pacific Northwest Software
Quality Conference, 1992.

