
On the Impact of the Types Conversion in Java onto the Coupling Measurement

Miguel Lopez1, Alain Abran3 , Grégory Seront1,Naji Habra2

1 CETIC asbl

Rue Clément Ader, 8
B-6041 Gosselies, Belgium

malm@cetic.be, gs@cetic.be

2 Faculty of Computer Science
Namur University – FUNDP

Namur, Belgium
nha@info.fundp.ac.be

3 Ecole de Technologie Supérieure

Montréal,Québec;
Canada

aabran@ele.etsmtl.ca

Abstract
 Software measurement represents an important
topic heavily discussed within the software
engineering community. Since thirty years, software
measurement has become an important domain
where interesting debates have occurred.
Internal measurements of software do not necessitate
any execution. Since these measurements are
automated, it is commonly accepted that during such
measurements errors cannot occur. Indeed, such
measurements have no random or probabilistic
aspect.
The current paper aims at showing that other
sources of error or uncertainty exist in the software
measurement. Sources of uncertainty can appear
before the measurement itself, that is, at the
measurement design level. Indeed, mistakes related
to the design of measurement can occur, and
therefore affect the measurement results when
executing the measures.
The current paper extends the notion of uncertainty
to the measurement design level, and highlights the
impact of the design uncertainty onto the
measurement result.

Keywords: uncertainty, measurement design,

typecasting

1. Introduction
Software measurement represents an important topic
heavily discussed within the software engineering
community. Since thirty years, software measurement
has become an important domain where interesting
debates have occurred.
During last decades, a type of measurement played an
important role in the development and the progress
within the software measurement field, that is, internal
software measurement.
Measurement of internal characteristics of software is
defined as measurement of software without
executing it
According to (ISO 9126), the internal metrics may be
applied to a non-executable software product during
its development stages (such as request for
proposal, requirements definition, design
specification or source code). Internal metrics
provide the users with the ability to measure the

Formatted: English (U.S.)

Formatted: English (U.S.)

quality of the intermediate deliverables and thereby
predict the quality of the final product.
Such measurements have met a great success, since
they can be automated, and therefore are considered
as low-cost means to assess the software quality.

Examples of internal of measurement are McCabe
cyclomatic number or fan-out coupling measurement.

Internal measurements of software are often source
code-based methods. Indeed, the measuring
instrument analyses the source code in order to
extract the countable elements related to a given
internal measurement. For instance, the McCabe
cyclomatic complexity number counts the number of
decision nodes, that is, the tokens if, for, while,
switch for Java.

Source code analysis is a deterministic phenomenon.
Deterministic refers to events that have no random or
probabilistic aspects but proceed in a fixed
predictable fashion. In other words, a given element
(such as an if token) within the measurement of the
McCabe number of a given source code will always
be detected by the measuring instrument. Repeating
(without changing the measurement conditions) or
reproducing this measurement will not affect the
measurement result in the sense that the i f token will
always be detected.

Since the source code analysis is a deterministic
operation, the internal measurement is never related to
any notion of errors or uncertainty. Indeed, no doubts
can be associated with the results of internal
measurement. Errors due to incorrect source code
analysis are considered as bugs in the source code
analyzer, but not as an error of the measurement.
Nevertheless, other sources of uncertainty exist in the
metrology literature. These sources of uncertainty are
not only found in the measuring tool itself, that is, the
source code analyzer.

The object of the current paper is to show that even
thought source code analysis is a deterministic
process; internal measurements can be affected by
uncertainty through other sources of errors. We take
here as an example the measurement of coupling.
Coupling is a measurement which is often used by the
software measurement community. The current paper
treats the impact of the type conversion in Java for
the coupling measurement.

2. Coupling Measurement

Coupling measurement has become an increasingly
popular research area (Briand 1999) . A number of
proposals about coupling attribute definitions and
coupling measures can be found in the literature.
However, as there is no consensus on coupling
related terminology and formalisms, many measures
are expressed in an ambiguous manner (Briand 1999):
for instance, the counting rules are embedded within
the definitions of the coupling measures, without
explicit design rationale for the selected numerical
assignment rules selected. .
Moreover, some coupling mechanisms (type
conversion) are not taken into account, and of course
impact the measurement result.

An important step in the design of a measurement
method is the definition of the attribute to be
measured that is here, the coupling concept.
As previously said, many definitions are available in
the state of the art. Three of them are given in the
following paragraphs.
In (Pressman 1999), coupling is defined as a measure
of interconnection among modules in a software
structure. In (Yourdon 1978), coupling is the degree of
interdependence between modules. In (Chidamber
1994), a definition of coupling applied to the OO
paradigm is given: two objects are coupled if and only
if at least one of them acts upon the other, X is said to
act upon Y if the history of Y is affected by X, where
history is defined as the chronologically ordered
states that a thing traverses in a time.
An important concept is shared by these three
definitions (and also by most of the definitions), that
is, connection.
Briand et al. highlight the different types of
connections involved in coupling. Based on three
frameworks of coupling measurement (Eder 1994),
(Hitz 1995), (Briand 1999) , nine connection
mechanisms between classes have been described.
1. Methods share data (public attributes etc.)

2. Method references attribute

3. Method of a class A invokes method of another
class B

4. Method receives pointer to method

5. Class is type of a class’ attribute (aggregation)

6. Class is type of a method’s parameter or return
type

7. Class is type of a method’s local variable

8. Class is type of a parameter of a method invoked
from within another method

9. Class is ancestor of another class

Many connection mechanisms deal with the type of
the class (i.e. mechanisms 5 to 9). It could be of
interest to probe further these type-based
mechanisms. In other words, can the type of a given
class be modified? Are there means in Java that allow
types modification?

Unfortunately, such type modifications can occur,
and are called types conversion. Indeed, it is possible
to convert the type of a given class into another type
within a specific context. Fortunately, there are strong
limitations on type conversion. However, the
conversion of types can affect the above connections
mechanisms, and therefore can affect coupling.

The following sections develop the notion of type as
well as the type conversions that exist in the Java
programming language.

3. Brief History of Typing

Types represent an important issue in programming
languages. Indeed, types limit the values that a
variable can hold or that an expression can produce,
limit the operations supported on those values, and
determine the meaning of the operations.
Languages whose types are checked at compile-time
are called strongly typed. Examples of such languages
are Java, Ada, C++.
By contrast, languages where all checking is deferred
to run time are called weakly typed. Examples of
weakly typed languages are PHP and Python.
During the short history of Computer Science, the
types within the programming languages have
evolved and the following paragraphs provide an
overview of this evolution.

According to (Cardelli 1985), in early programming
languages, computation was identified with
numerical computation and values could be viewed
as having a single arithmetic type. However, as early
as 1954, Fortran found it convenient to distinguish
between integers and floating-point numbers, in part
because differences in hardware representation
made integer computation more economical and in
part because the use of integers for iteration and
array computation was logically different from the

use of floating point numbers for numerical
computation.

Thereafter, Algol 60 (Cardelli 1985) included an
explicit concept of type and associated requirements
for compile time type checking. Algol 60 block-
structure requirements allowed not only the type but
also the scope (visibility) of variables to be checked
at compile time.

Since Algol 60, programming languages evolve in
order to implement better type checking and inference
mechanisms. For instance, Simula is the first object-
oriented language to include a concept of type which
includes classes. Indeed, Simula types, as in most
object-oriented languages, are actually all classes,
and vice-versa.

In the early 1970’s (Cardelli 1985) , Ken Thompson
and Dennis Ritchie developed the C programming
language for use on the UNIX operating system. C
has a type system similar to that of other ALGOL
descendants such as Pascal. There are types for
integers of various sizes, both signed and unsigned,
floating-point numbers, characters, enumerated types
(enums), and records (structs).

In the early 1980’s, ADA became an ANSI standard
(ANSI/MIL-STD 1815). Ada has only a very small set
of predefined types, while new types are defined
according to domain specific needs. Thus Ada is
more like PL/I where data types are described in terms
of what is needed, and not chosen from a predefined
set. Type checking mechanisms implemented in Ada
are known as very efficient mechanisms in the sense
that objects of different types in Ada are
incompatible, i.e. may not be assigned or mixed, even
if they have matching value ranges.

In mid-1990’s, another well-known programming
language was developed by Sun, that is, Java. Java
holds a types checking mechanism similar to that of
Ada types checking, but nevertheless the Java type
checking prevent dangerous types conversion. For
instance, let us look at the two following class
definitions:

class PayCheck {
int Salary;
int MonthsOfWork;
}

class EngineControl {
int Gear;
int Speed;
}

At a representation level, both classes are compatible
in the sense that an instance object will hold the same
memory space and that each attribute will be decoded
the same way at the machine level. Nevertheless, it is
obvious that if we try to assign for some obscure
reason an instance of PayCheck to an instance of
EngineControl, we are heading toward some serious
problems. Fortunately, this type of assignation is
forbidden in Java.

The brief history of the evolution of types in
programming languages previously explained shows
an important trend in order to better check and ensure
types. Indeed, it is often accepted that languages with
strong types checking mechanisms like Ada or Java
allow making safer and more understandable software.

However, using so strongly typed languages
decreases the programmer productivity due to a lack
of flexibility within the types. For instance, in Java we
have the method “clone” which is a member of the
class Object from which all classes descend. This
method as we can guess from its name clones an
object to create a new one. Since this method belongs
to the class “Object”, its return type is of type
“Object”. Let us look at the following code sample:

…
Rectangle r = new Rectangle;
Rectangle c;

Object o = r.clone(); // Clone rectangle
C = (Rectangle) o; // Cast it back to Rectangle type

Without type casting, we could not cast back the
object created by “clone” to its original type. This will
prevent us to create methods as generic as “clone”,
and thus lead to a decrease in productivity.

In this context, some mechanisms are therefore
available within the language in order to overcome
some of the loss of flexibility.

4. Types Conversion in Java

In Java, as in many other languages, the type
conversion and promotion are mechanisms that allow
certain flexibility with types.

According to (Sun Java, 2004), the types of the Java
programming language are divided into two
categories: primitive types and reference types. The
primitive types are the boolean type and the numeric
types.
The numeric types are the integral types byte, short,
int, long, and char, and the floating-point types float
and double.

The reference types are class types, interface types,
and array types. There is also a special null type. An
object is a dynamically created instance of a class
type or a dynamically created array.

Primitive type conversions are also possible in Java.
However, connections with primitive types are not
considered in (Briand 1999). So, within the scope of
this paper, it is assumed that primitive type
conversions do not affect coupling. It is important to
notice that this hypothesis must be tested in order to
clarify the influence of primitive type conversions
onto coupling.

According to (Sun Java, 2004); a lot of of references
types conversions exist in the Java programming
language. To gain some insights into this issue, only
casting conversion is investigated here; in other
words, it is assumed that casting conversion
represents a mechanism that can strongly affect
coupling.

Casting conversion is applied to the operand of a cast
operator: the type of the operand expression must be
converted to the type explicitly named by the cast
operator.

The following highlights the syntax of the casting
conversion. Let class X be a subclass of class Y.

//instanciation of a new class X
X x = new X();

//instanciation of a new class Y
Y y = new Y();

//assignement of Ywith a casting
//conversion of object x to type Y.
Y y = (Y) x;

The casting conversion is legal, that is, compiling
does not return any error, and no error will be
produced at run-time. This type conversion is legal
because X is a subclass of Y.

The detailed rules for compile-time correctness
checking of a casting conversion of a value of
compile-time reference type S (source) to a compile-
time reference type T (target) are as follows:

• If S is a class type:
o If T is a class, then S and T must be

related classes – that is, S and T
must be the same class, or S a
subclass of T, or T a subclass of S;
otherwise a compile-time error
occurs.

o If T is an interface type:
§ If S is not a final class,

then the cast is always
correct at compile time
(because even if S does
not implement T, a
subclass of S might).

§ If S is a final class, then S
must implement T, or a
compile-time error occurs.

In (Sun Java, 2004), other casting conversion cases
are described. However, only casting conversions
related to class types are relevant for the coupling,
since current frameworks only consider connections
with classes but not interfaces nor primitive types
(Eder 1994), (Hitz 1995), (Briand 1999).

Moreover, current coupling frameworks do not take
into account the impact of the casting conversion
onto coupling, hence, current measuring instruments
do not implement counting rules that consider the
casting conversion.

For instance, the example below shows a type
conversion which is not specified in the previous
framework.

class A
{
…
 Void method() {
 ((B).a).methodB();

}
}

Code Sample 1

It is assumed that object a can be converted into type
of class B.
Briand et al. do not explicitly identify this case, and
therefore the coupling relationship between classes A
and B will not be counted. Hence, a certain level of
uncertainty can be introduced within the
measurement result.

In such a context, neglecting the type conversion of
Code Sample 1 can lead to measurement errors. And,
in that sense, the metrology can help clarifying the
kind of errors due to this negligence and handling
them.

5. Useful Metrology Concepts

According to (NIST 1994), In general, the result of a
measurement is only an approximation or estimate of
the value of the specific quantity subject to
measurement, that is, the me asurand, and thus the
result is complete only when accompanied by a
quantitative statement of its uncertainty.
However, such errors or uncertainty are considered as
inexistent in the internal measurement, since internal
measurement is considered as a deterministic.

Previous section shows that a specific kind of
uncertainty is introduced in the measurement results
due to a misconception in the measurement design,
that is, the lack of a case of connexions between
classes.

So, what is the type of such uncertainty? Can the
metrology field highlight this uncertainty?

Some answers can be found in the approach given in
the Guide to the Expression of Uncertainty in
Measurement (GUM 1995). This guide represents the
current international view of how to express
uncertainty in measurement.

Obviously, neglecting the type conversion illustrated
by Code Sample 1 represents a source of uncertainty.
But, what does uncertainty mean? Based on the
(GUM 1995), uncertainty (of measurement) is defined
as a parameter associated with the result of a
measurement, that characterizes the dispersion of the
values that could reasonably be attributed to the
measurand.

A note completes the above definition by arguing
that Uncertainty of measurement comprises, in
general, many components. Some of these
components may be evaluated from the statistical
distribution of the results of a series of measurements
and can be characterised by experimental standard
deviations. The other components, which can also
be characterised by standard deviations, are
evaluated from assumed probability distributions
based on experience or other information.
Within this note, an important notion is mentioned,
that is, components.
In practice the uncertainty on the result may arise
from many possible sources, including examples such
as incomplete definition, sampling.
To estimate the overall uncertainty, it may be
necessary to take each source of uncertainty and treat
it separately to obtain the contribution from that
source. Each of the separate contributions to
uncertainty is referred to as an uncertainty
component.
According to (NIST 1994, GUM 1995), the uncertainty
of the result of a measurement generally consists of
several components which may be grouped into two
categories according to the method used to estimate
their numerical values:

A. those which are evaluated by statistical
methods,

B. those which are evaluated by other means.

It is important to note that there is not always a simple
correspondence between the classification of
uncertainty components into categories A and B and
the commonly used classification of uncertainty
components as “random” and “systematic.”
A note within the GUM (GUM 1995) highlights the
distinction between error and uncertainty. Indeed, the
result of a measurement after correction can
unknowably be very close to the exact value of the
measurand, and thus have negligible error, even
though it may have a large uncertainty.

To remind, an error is defined as the difference
between a true value, x, and a measure value, xi. And,
the uncertainty is an estimate of the true value as a
possible range of errors. So, even if a measurement
value is corrected, and therefore with a negligible
error, the uncertainty can remain important.
Random error typically arises from unpredictable
variations of influence quantities. These random
effects give rise to variations in repeated
observations of the measurand. The random error of

an analytical result cannot be compensated for, but it
can usually be reduced by increasing the number of
observations.

Systematic error is defined as a component of error
which, in the course of a number of analyses of the
same measurand, remains constant or varies in a
predictable way. It is independent of the number of
measurements made and cannot therefore be reduced
by increasing the number of analyses under constant
measurement conditions.

In regard with these definitions, the error due to the
missed identification of the type conversion
illustrated by Code Sample 1 cannot be considered as
a systematic error nor a random error.
On the one hand, the error due to missed type
conversion within the coupling measurement does
not vary in a predictable way.
On the other hand, this error is not compensated by
increasing the number of observations, and therefore
it cannot be considered as a random error.

So, how can the uncertainty due to missed type
conversion be qualified?

According to (VIM 1993) , for a material measure, the
variation due to an influence quantity is the difference
between the values of the supplied quantity when the
influence quantity assumes two different values.

This variation due to an influence quantity, would
then have an influence on the repeatability and
replicability of the measurement results, since various
measurers could miss the identification of the
variation (that is the special condition previously
mentioned when measuring coupling).

So, a variation within the measurand can be missed by
the measuring instrument, and therefore the
instrument can show an erroneous measurement
result. However, the classical typology of error
(systematic and random) is not complete enough to
qualify the error due to a missed type conversion
within a coupling measurement.
Therefore, the metrology provides other means to
qualify and estimate the uncertainty related to a
measurement result, that is, the types A and B
evaluation of uncertainty
This approach suggested in (GUM 1995) helps
evaluating the uncertainty that cannot be classified
within one of the classical error types (systematic or

random).
Actually, types A and B of uncertainty evaluation
represent a different means to handle uncertainty of
measurement.

A Type A evaluation of standard uncertainty may be
based on any valid statistical method for treating
data. Examples are calculating the standard deviation
of the mean of a series of independent observations.
When expressed as a standard deviation, an
uncertainty component is known as a standard
uncertainty.
So, the evaluation of uncertainty by the statistical
analysis of series of observations is termed a Type A
evaluation of uncertainty.

A Type B evaluation of standard uncertainty is
usually based on scientific judgment using all the
relevant information available, which may include:

• previous measurement data
• experience with, or general knowledge of, the

behavior and property of relevant materials
and instruments

• manufacturer’s specifications
• data provided in calibration and other

reports
• uncertainties assigned to reference data

taken from handbooks

So, the metrology provides some means to estimate
the uncertainty related to a given measurement
method, which exhibits non classical errors (like the
missed type conversion).An important open issue is
now to evaluate the uncertainty due to the type
conversion in the coupling measurement. The
evaluation can be done by a statistical method (type
A) or other means (type B). However, this work will
be done in a future work, since this is out of the scope
of the current paper.

6. Conclusion
Internal measurement can be characterized as a
deterministic phenomenon in the sense that the
operation itself of measurement is deterministic.

Thus, there is no source of uncertainty that affect the
application of an internal measurement, that is, the
parsing of the source code. And, if uncertainty exists,
it is often considered that its source is a bug in the

measuring instrument, which is, actually, a software
tool.

However, a measurement method is not limited to the
application phase. Indeed, the measurement is a
broader process, which includes the definition of the
measurement, the application to the measurement, and
the exploitation of the results (Abran 1999). So, from
this higher point of view, sources of uncertainty can
be present at different phases of the whole
measurement process.

Discussions about errors in internal measurements are
often centered on the application of the measurement
method, that is, the source code parsing. And, in this
phase, no sources of uncertainty have been identified
by the current work.

In this paper, we have identified a source of
uncertainty that operates at another level. Indeed.
Misconception of the measurement can generate a
certain degree of uncertainty. This source of
uncertainty can occur at the design phase (the
definition of the measurement method).

According to this, the paper shows how an
unaccounted for type conversion can affect the
measurement of coupling and introduce uncertainty in
the measurement result.
This uncertainty arises from phenomenon or elements
unaccounted for during the design of the
measurement.

So, even if the internal measurement process itself is a
deterministic phenomenon, the measurement result
can be affected by uncertainty and thus by errors.

This kind of error does not seem to fit exactly to the
typology of uncertainty sources proposed in the
theory of metrology (GUM 1995). However, the same
theory teaches us how to measure this uncertainty
experimentally. Maybe the “classical” metrology
needs to be adapted to take into account the
specificities of internal measurement.

7. Acknowledgement

This research project is supported by the
European Union (ERFD) and the Walloon Region

(DGTRE) under the terms defined in the Convention
n° EP1A12030000072-130008.

8. References
(Abran 1999) Abran,A., Jacquet, J.P., "A Structured
Analysis of the New ISO Standard on Functional Size
Measurement-Definition of Concepts", Fourth IEEE
International Symposium and Forum on Software
Engineering Standards, 1999, pp. 230-241.

(Briand 1999), Briand, L., Daly, J., Wust, J., “A Unified
Framework for Coupling Measurement in Object-
Oriented Systems”, IEEE Transactions on Software
Engineering, Volume 25 , Issue 1 (January 1999),
IEEE Press, USA

(Cardelli 1985), Cardelli, L., Wagner, P.,“On
Understanding Types, Data Abstraction, and
Polymorphism”, Computing Surveys, Vol 17 n. 4, pp
471-522, December 1985

(Chidamber 1994) Chidamber, S. R., AND Kemerer, C.
F. “A Metric Suite for Object-Oriented Design” IEEE
Transactions on Software Engineering 20, 6 (June
1994), 476–493.

(Eder 1994) Eder, J., Kappel, G., Schrefl, M.,
“Coupling and Cohesion in Object-Oriented
Systems”,Technical Report, University of Klagenfurt,
1994.

(GUM 1995) ISO, “Guide to the Expression of
Uncertainty in Measurement”. International
Organization for Standardization, Printed in
Switzerland, ISBN 92-67-10188-9, First Edition, 1993.
Corrected and reprinted 1995

(Hitz 1995) Hitz, M., Montazeri, B., “Measuring
Coupling and Cohesion in Object-Oriented systems”,
inProc. Int. Symposium on Applied Corporate
Computing, Monterrey, Mexico, October 1995.

 (ISO 9126) ISO, “ISO/IEC 9126 - Software
Engineering- Product Quality Part 3 - Internal
Metrics., 1999.

(NIST 1994), Barry, T., Kuyatt, C. “Guidelines for
Evaluating and Expressing the Uncertainty of NIST
Measurement Results”, NIST Technical Note 1297
1994 Edition

 (Pressman 1994), Pressman, R. S. “Software
Engineering: A Practitioner’s Approach", McGraw-
Hill, 1994.

 (Sun Java 2004), Java Language Specification, 2nd
Edition, 2004,

http://java.sun.com/docs/books/jls/second_edition/ht
ml/jIX.fm.html

 (VIM 1993), ISO, International Vocabulary of Basic
and General Terms in Metrology, International
Organization for Standardization - ISO, Geneva, 1993

(Yourdon 1978), Yourdon, E., AND Constantine, L. L.
“Structured Design: Fundamentals of a Discipline of
Computer Program and Systems Design”, 2 ed.
Yourdon Press, New York, 1978.

