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Abstract 
 Software measurement represents an important 
topic heavily discussed within the software 
engineering community. Since thirty years, software 
measurement has become an important domain 
where interesting debates have occurred. 
Internal measurements of software do not necessitate 
any execution. Since these measurements are 
automated, it is commonly accepted that during such 
measurements errors cannot occur. Indeed, such 
measurements have no random or probabilistic 
aspect. 
The current paper aims at showing that other 
sources of error or uncertainty exist in the software 
measurement.  Sources of uncertainty can appear 
before the measurement itself, that is, at the 
measurement design level. Indeed, mistakes related 
to the design of measurement can occur, and 
therefore affect the measurement results when 
executing the measures. 
The current paper extends the notion of uncertainty 
to the measurement design level, and highlights the 
impact of the design uncertainty onto the 
measurement result.  
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1. Introduction 
Software measurement represents an important topic 
heavily discussed within the software engineering 
community. Since thirty years, software measurement 
has become an important domain where interesting 
debates have occurred.  
During last decades, a type of measurement played an 
important role in the development and the progress 
within the software measurement field, that is, internal 
software measurement. 
Measurement of internal characteristics of software is 
defined as measurement of software without 
executing it  
According to (ISO 9126), the internal metrics may be 
applied to a non-executable software product during 
its development stages  (such as request for 
proposal, requirements definition, design 
specification or source code).  Internal  metrics 
provide the users with the ability to measure the 
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quality of the intermediate deliverables and thereby  
predict the quality of the final product.  
Such measurements have met a great success, since 
they can be automated, and therefore are considered 
as low-cost means to assess the software quality. 
 
Examples of internal of measurement are McCabe 
cyclomatic number or fan-out coupling measurement. 
 
Internal measurements of software are often source 
code-based methods. Indeed, the measuring 
instrument analyses the source code in order to 
extract the countable elements related to a given 
internal measurement. For instance, the McCabe 
cyclomatic complexity number counts the number of 
decision nodes, that is, the tokens if, for, while, 
switch for Java.  
 
Source code analysis is a deterministic phenomenon. 
Deterministic refers to events that have no random or 
probabilistic aspects but proceed in a fixed 
predictable fashion. In other words, a given element 
(such as an if token) within the measurement of the 
McCabe number of a given source code will always 
be detected by the measuring instrument. Repeating 
(without changing the measurement conditions) or 
reproducing this measurement will not affect the 
measurement result in the sense that the i f token will 
always be detected. 
 
Since the source code analysis is a deterministic 
operation, the internal measurement is never related to 
any notion of errors or uncertainty. Indeed, no doubts 
can be associated with the results of internal 
measurement. Errors due to incorrect source code 
analysis are considered as bugs in the source code 
analyzer, but not as an error of the measurement. 
Nevertheless, other sources of uncertainty exist in the 
metrology literature. These sources of uncertainty are 
not only found in the measuring tool itself, that is, the 
source code analyzer.  
 
The object of the current paper is to show that even 
thought source code analysis is a deterministic 
process; internal measurements can be affected by 
uncertainty through other sources of errors. We take 
here as an example the measurement of coupling. 
Coupling is a measurement which is often used by the 
software measurement community. The current paper 
treats the impact of the type conversion in Java for 
the coupling measurement. 
 

 
2. Coupling Measurement  
 
Coupling measurement has become an increasingly 
popular research area (Briand  1999) . A number of 
proposals about coupling attribute definitions and 
coupling measures can be found in the literature. 
However, as there is no consensus on coupling 
related terminology and formalisms, many measures 
are expressed in an ambiguous manner (Briand  1999): 
for instance, the counting rules are embedded within 
the definitions of the coupling measures, without 
explicit design rationale for the selected numerical 
assignment rules selected. . 
Moreover, some coupling mechanisms (type 
conversion) are not taken into account, and of course 
impact the measurement result. 
 
An important step in the design of a measurement 
method is the definition of the attribute to be 
measured that is here, the coupling concept. 
As previously said, many definitions are available in 
the state of the art. Three of them are given in the 
following paragraphs. 
In (Pressman 1999), coupling is defined as a measure 
of interconnection among modules in a software 
structure. In (Yourdon 1978), coupling is the degree of 
interdependence between modules. In (Chidamber 
1994), a definition of coupling applied to the OO 
paradigm is given: two objects are coupled if and only 
if at least one of them acts upon the other, X is said to 
act upon Y if the history of Y is affected by X, where 
history is defined as the chronologically ordered 
states that a thing traverses in a time. 
An important concept is shared by these three 
definitions (and also by most of the definitions), that 
is, connection.  
Briand et al. highlight the different types of 
connections involved in coupling. Based on three 
frameworks of coupling measurement (Eder 1994), 
(Hitz 1995), (Briand 1999) , nine connection 
mechanisms between classes have been described.  
1. Methods share data (public attributes etc.)  

2. Method references attribute  

3. Method of a class A invokes method of another 
class B 

4. Method receives pointer to method  

5. Class is type of a class’ attribute (aggregation) 

6. Class is type of a method’s parameter or return 
type 



7. Class is type of a method’s local variable  

8. Class is type of a parameter of a method invoked 
from within another method 

9. Class is ancestor of another class 

Many connection mechanisms deal with the type of 
the class (i.e. mechanisms 5 to 9). It could be of 
interest to probe further these type-based 
mechanisms. In other words, can the type of a given 
class be modified? Are there means in Java that allow 
types modification? 

Unfortunately, such type modifications can occur, 
and are called types conversion. Indeed, it is possible 
to convert the type of a given class into another type 
within a specific context. Fortunately, there are strong 
limitations on type conversion. However, the 
conversion of types can affect the above connections 
mechanisms, and therefore can affect coupling. 

The following sections develop the notion of type as 
well as the type conversions that exist in the Java 
programming language. 

3. Brief History of Typing 
 
Types represent an important issue in programming 
languages. Indeed, types limit the values that a 
variable can hold or that an expression can produce, 
limit the operations supported on those values, and 
determine the meaning of the operations. 
Languages whose types are checked at compile-time 
are called strongly typed. Examples of such languages 
are Java, Ada, C++. 
By contrast, languages where all checking is deferred 
to run time are called weakly typed. Examples of 
weakly typed languages are PHP and Python. 
During the short history of Computer Science, the 
types within the programming languages have 
evolved and the following paragraphs provide an 
overview of this evolution. 
 
According to (Cardelli 1985), in early programming 
languages, computation was identified with 
numerical computation and values could be viewed 
as having a single arithmetic type. However, as early 
as 1954, Fortran found it convenient to distinguish 
between integers and floating-point numbers, in part 
because differences in hardware representation 
made integer computation more economical and in 
part because the use of integers for iteration and 
array computation was logically different from the 

use of floating point numbers for numerical 
computation. 
 
Thereafter, Algol 60 (Cardelli 1985) included an 
explicit concept of type and associated requirements 
for compile time type checking. Algol 60 block-
structure requirements allowed not only the type but 
also the scope (visibility) of variables to be checked 
at compile time. 
 
Since Algol 60, programming languages evolve in 
order to implement better type checking and inference 
mechanisms. For instance, Simula is the first object-
oriented language to include a concept of type which 
includes classes. Indeed, Simula types, as in most 
object-oriented languages, are  actually all classes, 
and vice-versa. 
 
In the early 1970’s (Cardelli 1985) , Ken Thompson 
and Dennis Ritchie developed the C programming 
language for use on the UNIX operating system. C 
has a type system similar to that of other ALGOL 
descendants such as Pascal. There are types for 
integers of various sizes, both signed and unsigned, 
floating-point numbers, characters, enumerated types 
(enums), and records (structs).  
 
In the early 1980’s, ADA became an ANSI standard 
(ANSI/MIL-STD 1815). Ada has only a very small set 
of predefined types, while new types are defined 
according to domain specific needs. Thus Ada is 
more like PL/I where data types are described in terms 
of what is needed, and not chosen from a predefined 
set. Type checking mechanisms implemented in Ada 
are known as very efficient mechanisms in the sense 
that objects of different types in Ada are 
incompatible, i.e. may not be assigned or mixed, even 
if they have matching value ranges. 
 
In mid-1990’s, another well-known programming 
language was developed by Sun, that is, Java. Java 
holds a types checking mechanism similar to that of 
Ada types checking, but nevertheless the Java type 
checking prevent dangerous types conversion. For 
instance, let us look at the two following class 
definitions: 
 
class PayCheck { 
int Salary; 
int MonthsOfWork; 
} 
 



class EngineControl { 
int Gear;  
int Speed; 
} 
 
At a representation level, both classes are compatible 
in the sense that an instance object will hold the same 
memory space and that each attribute will be decoded 
the same way at the machine level. Nevertheless, it is 
obvious that if we try to assign for some obscure 
reason an instance of PayCheck to an instance of 
EngineControl, we are heading toward some serious 
problems. Fortunately, this type of assignation is 
forbidden in Java. 
 
The brief history of the evolution of types in 
programming languages previously explained shows 
an important trend in order to better check and ensure 
types. Indeed, it is often accepted that languages with 
strong types checking mechanisms  like Ada or Java 
allow making safer and more understandable software. 
 
However, using so strongly typed languages 
decreases the programmer productivity due to a lack 
of flexibility within the types. For instance, in Java we 
have the method “clone” which is a member of the 
class Object from which all classes descend. This 
method as we can guess from its name clones an 
object to create a new one. Since this method belongs 
to the class “Object”, its return type is of type 
“Object”. Let us look at the following code sample: 
 
… 
Rectangle r = new Rectangle; 
Rectangle c; 
 
Object o = r.clone(); // Clone rectangle 
C = (Rectangle) o; // Cast it back to Rectangle type 
 
Without type casting, we could not cast back the 
object created by “clone” to its original type. This will 
prevent us to create methods as generic as “clone”, 
and thus lead to a decrease in productivity. 
 
In this context, some mechanisms are therefore 
available within the language in order to overcome 
some of the loss of flexibility. 
 
 
4. Types Conversion in Java 
 

In Java, as in many other languages, the type 
conversion and promotion are mechanisms that allow 
certain flexibility with types.  
 
According to (Sun Java, 2004), the types of the Java 
programming language are divided into two 
categories: primitive types and reference types. The 
primitive types are the boolean type and the numeric 
types.  
The numeric types are the integral types byte, short, 
int, long, and char, and the floating-point types float 
and double. 
  
The reference types are class types, interface types, 
and array types. There is also a special null type. An 
object is a dynamically created instance of a class 
type or a dynamically created array. 
 
Primitive type conversions are also possible in Java. 
However, connections with primitive types are not 
considered in (Briand 1999). So, within the scope of 
this paper, it is assumed that primitive type 
conversions do not affect coupling. It is important to 
notice that this hypothesis must be tested in order to 
clarify the influence of primitive type conversions 
onto coupling.  
 
According to (Sun Java, 2004 ); a lot of of references 
types conversions exist in the Java programming 
language. To gain some insights into this issue, only 
casting conversion is investigated here; in other 
words, it is assumed that casting conversion 
represents a mechanism that can strongly affect 
coupling.  
 
Casting conversion is applied to the operand of a cast 
operator: the type of the operand expression must be 
converted to the type explicitly named by the cast 
operator.  
 
The following highlights the syntax of the casting 
conversion. Let class X  be a subclass of class Y. 
 
//instanciation of a new class X 
X x = new X();  
 
//instanciation of a new class Y 
Y y = new Y();  
 
//assignement of Ywith a casting  
//conversion of object x to type Y.  
Y y = (Y) x;  



 
The casting conversion is legal, that is, compiling 
does not return any error, and no error will be 
produced at run-time. This type conversion is legal 
because X is a subclass of Y. 
 
The detailed rules for compile-time correctness 
checking of a casting conversion of a value of 
compile-time reference type S (source) to a compile-
time reference type T (target) are as follows: 

• If S is a class type: 
o If T is a class, then S and T must be 

related classes – that is, S and T 
must be the same class, or S a 
subclass of T, or T a subclass of S; 
otherwise a compile-time error 
occurs. 

o If T is an interface type: 
§ If S is not a final class, 

then the cast is always 
correct at compile time 
(because even if S does 
not implement T, a 
subclass of S might). 

§ If S is a final class, then S 
must implement T, or a 
compile-time error occurs. 

 
In (Sun Java, 2004 ), other casting conversion cases 
are described. However, only casting conversions 
related to class types are relevant for the coupling, 
since current frameworks only consider connections 
with classes but not interfaces nor primitive types 
(Eder 1994), (Hitz 1995), (Briand 1999). 
 
Moreover, current coupling frameworks do not take 
into account the impact of the casting conversion 
onto coupling, hence, current measuring instruments 
do not implement counting rules that consider the 
casting conversion. 
 
For instance, the example below shows a type 
conversion which is not specified in the previous 
framework. 
 
class A 
{ 
… 
 Void method() { 
  ((B).a).methodB(); 

} 
} 

Code Sample 1 

 
It is assumed that object a can be converted into type 
of class B.  
Briand et al. do not explicitly identify this case, and 
therefore the coupling relationship between classes A 
and B will not be counted. Hence, a certain level of 
uncertainty can be introduced within the 
measurement result. 
 
In such a context, neglecting the type conversion of 
Code Sample 1 can lead to measurement errors. And, 
in that sense, the metrology can help clarifying the 
kind of errors due to this negligence and handling 
them.  
 
 
5. Useful Metrology Concepts 
 
According to (NIST 1994),  In general, the result of a 
measurement is only an approximation or estimate of 
the value of the specific quantity subject to 
measurement, that is, the me asurand, and thus the 
result is complete only when accompanied by a 
quantitative statement of its uncertainty. 
However, such errors or uncertainty are considered as 
inexistent in the internal measurement, since internal 
measurement is considered as a deterministic. 
 
Previous section shows that a specific kind of 
uncertainty is introduced in the measurement results 
due to a misconception in the measurement design, 
that is, the lack of a case of connexions between 
classes. 
 
So, what is the type of such uncertainty? Can the 
metrology field highlight this uncertainty? 
 
Some answers can be found in the approach given in 
the Guide to the Expression of Uncertainty in 
Measurement (GUM 1995). This guide represents the 
current international view of how to express 
uncertainty in measurement. 
 
Obviously, neglecting the type conversion illustrated 
by Code Sample 1 represents a source of uncertainty. 
But, what does uncertainty mean? Based on the 
(GUM 1995), uncertainty (of measurement) is defined 
as a parameter associated with the result of a 
measurement, that characterizes the dispersion of the 
values that could reasonably be attributed to the 
measurand. 



A note completes the above definition by arguing 
that Uncertainty of measurement comprises, in 
general, many components. Some of these 
components may be evaluated from the statistical 
distribution of the results of a series of measurements 
and can be characterised by experimental standard 
deviations.  The other components, which can also 
be characterised by standard deviations, are 
evaluated from assumed probability distributions 
based on experience or other information. 
Within this note, an important notion is mentioned, 
that is, components. 
In practice the uncertainty on the result may arise 
from many possible sources, including examples such 
as incomplete definition, sampling. 
To estimate the overall uncertainty, it may be 
necessary to take each source of uncertainty and treat 
it separately to obtain the contribution from that 
source.   Each of the separate contributions to 
uncertainty is referred to as an uncertainty 
component. 
According to (NIST 1994, GUM 1995), the uncertainty 
of the result of a measurement generally consists of 
several components which may be grouped into two 
categories according to the method used to estimate 
their numerical values:  

A. those which are evaluated by statistical 
methods,  

B. those which are evaluated by other means. 
 
It is important to note that there is not always a simple 
correspondence between the classification of 
uncertainty components into categories A and B and 
the commonly used classification of uncertainty 
components as “random” and “systematic.”  
A note within the GUM (GUM 1995) highlights the 
distinction between error and uncertainty. Indeed, the 
result of a measurement after correction can 
unknowably be very close to the exact value of the 
measurand, and thus have negligible error, even 
though it may have a large uncertainty. 
 
To remind, an error is defined as the difference 
between a true value, x, and a measure value, xi. And, 
the uncertainty is an estimate of the true value as a 
possible range of errors. So, even if a measurement 
value is corrected, and therefore with a negligible 
error, the uncertainty can remain important. 
Random error typically arises from unpredictable 
variations of influence quantities. These random 
effects give rise to variations in repeated 
observations of the measurand. The random error of 

an analytical result cannot be compensated for, but it 
can usually be reduced by increasing the number of 
observations. 
 
Systematic  error  is defined as a component of error 
which, in the course of a number of analyses of the 
same measurand, remains constant or varies in a 
predictable way. It is independent of the number of 
measurements made and cannot therefore be reduced 
by increasing the number of analyses under constant 
measurement conditions. 
 
In regard with these definitions, the error due to the 
missed identification of the type conversion 
illustrated by Code Sample 1 cannot be considered as 
a systematic error nor a random error. 
On the one hand, the error due to missed type 
conversion within the coupling measurement does 
not vary in a predictable way. 
On the other hand, this error is not compensated by 
increasing the number of observations, and therefore 
it cannot be considered as a random error. 
 
So, how can the uncertainty due to missed type 
conversion be qualified? 
 
According to (VIM 1993) , for a material measure, the 
variation due to an influence quantity is the difference 
between the values of the supplied quantity when the 
influence quantity assumes two different values. 
 
This variation due to an influence quantity, would 
then have an influence on the repeatability and 
replicability of the measurement results, since various 
measurers could miss the identification of the 
variation (that is the special condition previously 
mentioned when measuring coupling). 
 
So, a variation within the measurand can be missed by 
the measuring instrument, and therefore the 
instrument can show an erroneous measurement 
result. However, the classical typology of error 
(systematic and random) is not complete enough to 
qualify the error due to a missed type conversion 
within a coupling measurement. 
Therefore, the metrology provides other means to 
qualify and estimate the uncertainty related to a 
measurement result, that is, the types A and B 
evaluation of uncertainty 
This approach suggested in (GUM 1995) helps 
evaluating the uncertainty that cannot be classified 
within one of the classical error types (systematic or 



random). 
Actually, types A and B of uncertainty evaluation 
represent a different means to handle uncertainty of 
measurement. 
 
A Type A evaluation of standard uncertainty may be 
based on any valid statistical method for treating 
data. Examples are calculating the standard deviation 
of the mean of a series of independent observations. 
When expressed as a standard deviation, an 
uncertainty component is known as a standard 
uncertainty. 
So, the evaluation of uncertainty by the statistical 
analysis of series of observations is termed a Type A 
evaluation of uncertainty. 
 
A Type B evaluation of standard uncertainty is 
usually based on scientific judgment using all the 
relevant information available, which may include: 

• previous measurement data 
• experience with, or general knowledge of, the 

behavior and property of relevant materials 
and instruments 

• manufacturer’s specifications 
• data provided in calibration and other 

reports  
• uncertainties assigned to reference data 

taken from handbooks 
 
So, the metrology provides some means to estimate 
the uncertainty related to a given measurement 
method, which exhibits non classical errors (like the 
missed type conversion).An important open issue is 
now to evaluate the uncertainty due to the type 
conversion in the coupling measurement. The 
evaluation can be done by a statistical method (type 
A) or other  means (type B). However, this work will 
be done in a future work, since this is out of the scope 
of the current paper.  
 
 
 
6. Conclusion 
Internal measurement can be characterized as a 
deterministic phenomenon in the sense that the 
operation itself of measurement is deterministic. 
 
Thus, there is no source of uncertainty that affect the 
application of an internal measurement, that is, the 
parsing of the source code. And, if uncertainty exists, 
it is often considered that its source is a bug in the 

measuring instrument, which is, actually, a software 
tool. 
 
However, a measurement method is not limited to the 
application phase. Indeed, the measurement is a 
broader process, which includes the definition of the 
measurement, the application to the measurement, and 
the exploitation of the results (Abran 1999). So, from 
this higher point of view, sources of uncertainty can 
be present at different phases of the whole 
measurement process. 
 
Discussions about errors in internal measurements are 
often centered on the application of the measurement 
method, that is, the source code parsing. And, in this 
phase, no sources of uncertainty have been identified 
by the current work. 
 
In this paper, we have identified a source of 
uncertainty that operates at another level. Indeed. 
Misconception of the measurement can generate a 
certain degree of uncertainty. This source of 
uncertainty can occur at the design phase (the 
definition of the measurement method).  
 
According to this, the paper shows how an 
unaccounted for type conversion can affect the 
measurement of coupling and introduce uncertainty in 
the measurement result. 
This uncertainty arises from phenomenon or elements 
unaccounted for during the design of the 
measurement.  
 
So, even if the internal measurement process itself is a 
deterministic phenomenon, the measurement result 
can be affected by uncertainty and thus by errors. 
 
This kind of error does not seem to fit exactly to the 
typology of uncertainty sources proposed in the 
theory of metrology (GUM 1995). However, the same 
theory teaches us how to measure this uncertainty 
experimentally. Maybe the “classical” metrology 
needs to be adapted to take into account the 
specificities of internal measurement. 
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