

Issues in the development of an ontology for an emerging engineering discipline

Olavo Mendes

DECOM/CCHLA/UFPB
Federal University at Paraiba – Brazil

PhD Student Cognitive Informatics
Université du Québec à Montréal - UQAM

olavomendes@hotmail.com

Alain Abran

École de Technologie Supérieure – ETS
Université du Québec

1100 Notre-Dame Ouest,
H3C 1K3 Montréal Québec , Canada,

aabran@ele.etsmtl.ca

Abstract

The Guide to the software engineering body of knowledge
(SWEBOK - ISO TR 19759) provides a consensually
validated characterization of the bounds of the software
engineering discipline as well as a topical access to the
Body of Knowledge supporting that discipline. This Body
of Knowledge is currently organized as a taxonomy
subdivided into ten Knowledge Areas designed to
discriminate among the various important concepts, but
only at the top level. Of course, the software engineering
knowledge is much richer that this high level taxonomy
and currently resides in the textual descriptions of each
knowledge area. Such textual descriptions widely vary in
style and content. The ontology approach is therefore
used to analyze the richness of this body of knowledge and
to improve its structuring. This paper presents the proto-
ontology developed in the first phase of the construction
of a domain ontology for this new engineering discipline.
Overall, some six thousands (6000) software engineering
concepts and about 400 relationship types between
concepts have been identified. Some of the major results
obtained to this point are detailed and discussed.

Keywords: SWEBOK, Software Engineering Body of
Knowledge, Ontology, Domain ontology, Ontology development,
Ontology construction, SWEBOK Ontology, Software
Engineering ontology

1 Introduction

Ontologies have been known in philosophy since
Aristotle and Porphyry [N1 3b]. In the computer domain
the emergence of ontologies is much more recent: in the
early 90s, the DARPA project «Knowledge Sharing
Initiative» [2] that involved many research centers across
the USA, had as a goal to reduce the time and effort (and,
therefore, the costs) required to develop knowledge data
bases, through sharing and reuse [3]. Since we cannot
share and reuse knowledge if we do not speak the same
language and have somehow a consensus concerning the
meanings of the concepts used to communicate, the
researchers introduced the ontologies to describe the
semantics/meanings and to make explicit the domain
assumptions associated to the knowledge to be shared and
reused [4] [5].

So, in the computer domain, an ontology represents a
consensual and shared description of the pertinent objects
and of their interrelationships considered as existing in a
certain domain of knowledge [6], described in a formal
and explicit way as well as the terms we use to refer to
them and their agreed meanings and properties [6] [8].
This description takes the form of: concepts, properties
and attributes, constraints on properties and attributes and,
often but not always, individuals (instances of the
concepts) [7].

Ontologies make thus possible communication among
people/organizations, systems/software agents, and people
and systems by agreeing and sharing a common
understanding about a conceptualisation, recognizing the
existence of a set of objects and their relationships, as well
as the terms used to refer to them and their agreed
meanings (ontological commitment) [7] [5].

Ontologies could play an important role in Software
Engineering as they do in other disciplines where they: 1)
provide a source of precisely defined terms that can be
communicated across people, organisations and
applications (information systems or intelligent agents); 2)
offer a consensual shared understanding concerning the
domain of discourse; 3) render explicit all hidden
assumptions concerning the objects pertaining to a certain
domain of knowledge [6] [8] [17].

Despite some initial effort to develop partial (sub
domain) ontologies (software maintenance [14] [15],
software measurement [16], software quality [9] [10], OO
Design [17]) as a field of knowledge, Software
Engineering still does not have a comprehensive detailed
ontology which describes the concepts that domain
experts agree upon, as well as their terms , definitions and
meanings. Such an ontology would also need to look at
the more pertinent relationships where concepts
participate in the creation of the semantic network in
which they are inserted [11].

The development of a “software engineering domain
ontology” would allow us to: 1) share and reuse
knowledge accumulated until now in the Software
Engineering field; 2) open new avenues to automatic
interpretation of this knowledge using information
systems or intelligent software agents.

The rest of this text is structured as follows. Section 2
presents the SWEBOK guide that provides a consensually
validated characterization of the bounds of the software
engineering discipline as well as a topical access to the
Body of Knowledge supporting that discipline. Then,
Section 3 presents the construction methodology used to
produce the SWEBOK ontology. Section 4 presents next
some preliminary results for the SWEBOK proto-ontology
currently under development and, Section 5, a summary
and some directions for further work.

2. The SWEBOK Guide

The SWEBOK project - Software Engineering Body
of Knowledge [11] [12], is the result of a collaborative
effort between the IEEE Computer Society and Université
du Québec (École de Technologie Supérieure and
UQAM). Over the years, close to 500 reviewers from very
diverse domains including the industrial and academic
fields, government agencies, professional societies,
international standards organisations, as well as research
centers, have been involved in the project, which has thus
earned an international credibility in the software
engineering field.

The resulting SWEBOK Guide is the result of great
effort of declarative and procedural knowledge mining,
acquisition and structuring that was, until then, scattered
in a myriad of very diverse documents (scientific papers,
conference proceedings, books, chapters, technical
reports, technical standards), and of empirical knowledge
from field experts and researchers.

The SWEBOK project team established the project
with five objectives [12]: 1) To characterize the content of
the software engineering discipline; 2) To provide topical
access to the software engineering body of knowledge; 3)
To promote a consistent view of software engineering
worldwide; 4) To clarify the place – and set the
boundaries – of software engineering with respect to other
disciplines such as computer science, project
management, computer engineering, and mathematics; 5)
To provide a foundation for curriculum development and
individual certification material.

The SWEBOK project allowed, through multiple
review cycles, to build a consensus on: 1) the knowledge
areas consensually agreed to integrate the software
engineering field; 2) the knowledge content associated to
each knowledge area, as well as the related major
references; 3) the scientific disciplines participating in
each knowledge area.

The resulting product of the SWEBOK project it is
not the body of knowledge itself, but rather a guide to it,
permitting to gain consensus on the core subset of
knowledge characterizing the software engineering
discipline [12] [13]. As a result, ten knowledge areas
have been identified as integrating the Software
engineering field: KA.01 Software requirements, KA.02

Software design, KA.03 Software construction, KA.04
Software testing, KA.05 Software maintenance, KA.06
Software configuration management, KA.07 Software
engineering management, KA.08 Software engineering
process, KA.09 Software engineering tools and methods,
KA.10 Software quality.

This Body of Knowledge is currently organized as a
taxonomy subdivided into ten Knowledge Areas designed
to discriminate among the various important concepts, but
only at the top level. Of course, the software engineering
knowledge is much richer than this high level taxonomy
and currently resides in the textual descriptions of each
knowledge area. Such textual descriptions widely vary in
style and content. The ontology approach is therefore used
in the research presented here to analyze the richness of
this body of knowledge, to improve its structuring and to
develop a consensus on its detailed terminology.
 3. Ontology Development Methodology

The process adopted by the SWEBOK project has
permitted a progressive building of consensus among the
experts participating to the Delphi panels concerning the
knowledge and structure of the Software Engineering
discipline: the SWEBOK Guide represents therefore an
important and privileged information source for the
construction of a Software Engineering domain ontology.

The ontology building process integrates a number of
major activities: 1) Specification; 2) Conceptualization; 3)
Ontologization; 4) Integration (with other sub-ontologies
which might be available); 5) Operationalization; 6)
Evaluation [18].

Our process to develop the software engineering
domain ontology requires three phases: 1) Proto-ontology
construction; 2) Internal validation cycle; 3) External
validation and possibly extension - V&E cycle.

Proto-ontology construction : We started the
ontology construction process with the development of a
proto-ontology using the information contained in the
SWEBOK Guide. The descriptions contained in the
SWEBOK Guide were analysed and the concepts,
relationships between concepts, terms and definitions
were extracted, one SWEBOK knowledge area at a time.
Some definitions for the concepts extracted were
complemented using the 610.12-1190 IEEE Standard
Glossary of the Software Engineering Terminology that
contains 1500+ entries.

This phase corresponds to the conceptualization and
ontologization phases traditionally existing in ontology
development methodologies.

This concept extraction by detailed inspection of the
SWEBOK Guide content was complemented by the use of
automatic terms extraction tools having as input the
SWEBOK corpus of text in natural language. The outputs
of the term extraction tools were used to cross-validate

and complete the lis t of concepts and relationships identified through the analysis of the documents.

Figure 1 – The SWEBOK ontology project phases ontology

Internal validation cycle: We are presently starting the
internal validation cycle at various instances levels
(internal: ETS – UQAM – SPIN, etc.), aiming to build a
progressively larger consensus about the elements in this
software engineering proto-ontology.

External validation cycle: Finally, a series of external
validation and possibly proto-ontology extension - V&E -
cycles will be performed (beginning in July, 2005), aided
by international software engineering domain experts, to
build progressively a consensus about the concepts,
attributes and relationships between class/concepts that
should be present in the final ontology.

This proto-ontology represents the starting point for the
development of a Software Engineering domain ontology:
it is based on an already consensual domain knowledge
(e.g. the SWEBOK Guide) and will serve as an initial
focus to the domain experts starting up the ontology
construction process. The V&E phase will be performed
on the conceptual level of the SWEBOK proto-ontology.
Once the V&E completed, the SWEBOK ontology will be
translated to the operational level using ontology editors
and the OWL language.

4. The SWEBOK Proto-ontology

The proto-ontology development phase has identified
in the SWEBOK Guide over 6,000 concepts, linked by
normalized relationships, as well as 1,200 facts
(examples/instances of concepts). Table 1 presents a
breakdown by knowledge areas: the column

‘Relationships’ shows the total number of relationships
linking the concepts in the ontology. These relationships have
been normalized in order to limit and standardize the great
variety of terms having the same meaning that the natural
language allows. The column ‘Index’ represents the concepts
related to the structure of the SWEBOK guide (KA, section,
sub-section, etc.) and will permit to trace back where a
concept is used in the SWEBOK guide. In Table 1, Software
Engineering Management, Software Testing and Software
Maintenance knowledge areas have the greatest number of
concepts; on the other hand, Software Engineering Tools and
Methods, Software Requirements and Software Design
knowledge areas have the smallest number of concepts.

Figure 2 presents the concepts in the main level of the
SWEBOK ontology (in its conceptual format). A set of
concepts mainly related to the structural organisation of the
SWEBOK guide are depicted (shown in grey). Other
concepts in the example relate to the contextual aspects: the
guide version, the editors, the reviewer team, the industrial
advisory board, and the experts who participated in the
SWEBOK review cycles to build the consensus about the
knowledge areas, KAs knowledge content and related domain
areas.

Each knowledge area is then progressively exploded to
reveal the concepts (and relationships linking these concepts)
embedded in their sections and subsections. The grey boxes
represent concepts associated to the SWEBOK structure and,
the oval boxes, an index that allows to subsequently tracing
back a concept pertaining to a section of the SWEBOK Guide.

Table 1 – Overview of the number of elements currently in the SWEBOK proto-ontology

 Relationships Index Concepts Facts

SWEBOK (Main structure) 6 0 39 57
KA 01 Introduction 25 0 673 14
KA 02 Software Requirements 41 44 205 72
KA 03 Software Design 46 45 267 200
KA 04 Software Construction 23 20 200 62
KA 05 Software Testing 97 101 1048 165
KA 06 Software Maintenance 47 45 725 141
KA 07 Software Configuration Management 51 56 960 102
KA 08 Software Engineering Management 40 38 1059 109
KA 09 Software Engineering Process 45 37 562 134
KA 10 Software Engineering Tools and Methods 19 51 198 58
KA 11 Software Quality 37 34 412 82
CH 12 Related Disciplines of Software Engineering 12 0 164 32

 TOTAL 471 6512 1228

Table 1 – Overview of quantity of elements currently in the SWEBOK proto-ontology

Figure 2 – Overview of the SWEBOK Proto-ontology (Main Level)

Figure 3 – The Software Maintenance Knowledge Area (Main Level)

SWEBOK GuideSWEBOK
GuideVersion hasVersion

CH 2
Software Requirements

Editors
hasEditors

CH 7
Software Configuration

Management

CH 9
Software Engineering

Process

CH 10
Software Engineering Tools

and Methods

hasStructuralPart
hasStructuralParthasStructuralParthasStructuralPart

hasStructuralPart hasStructuralPart

hasStructuralPart

hasStructuralPart

hasStructuralPart

CH 11
Software Quality

Appendix

hasStructuralPart

Appendix A Appendix B Appendix C

CH 1
Introduction to the Guide

hasStructuralPart

hasStructuralPart hasStructuralPart hasStructuralPart

Appendix D

hasStructuralPart

Panel of Experts

Industrial Advisory
Board

hasPanelOfExperts

hasAdvisoryBoard

Reviewer Team

hasReviewers

CH 12
Related Disciplines of
Software Engineering

hasStructuralPart

CH 4
Software Construction

CH 3
Software Design

CH 8
Software Engineering

Management

CH 5
Software Testing

CH 6
Software Maintenance

describesTheGenerallyAcceptedPortionOf

Software Engineering
Body of knowledge

CH 6
Software Maintenance

hasIntroduction

hasAssociatedEditor

Associated Editor

Software Maintenance
Fundamentals

Key Issues in Software
Maintenance Maintenance Process

hasSubArea hasSubArea

Techniques for
Maintenance

hasSubArea

Introduction

hasSubArea

All other chapters of the
SWEBOK Guide.

refersToSWEBOK
 KA

Acronyms
hasAcronym

Software Maintenance
(a portion of the Software
Engineering Knowledge)

SWEBOK Guide

describesTheGenerallyAcceptedPortionOf

Software Engineering
Body of knowledge

hasKnowledgeArea

contains

providesTopicalAccessTo

KA06_0

hasSectionReference

KA06_1 KA06_2 KA06_3 KA06_4

hasSectionReference hasSectionReference hasSectionReference hasSectionReference

Internal references between Knowledge Areas are
represented by an instance of the structural concept KA
(in the example depicted in Figure 2, the Software
Maintenance KA is related to all other SWEBOK
Knowledge Areas).

A more detailed view of the proto-ontology is presented in
Figure 3 that shows the main level of the Software
Maintenance knowledge area. The descriptions associated
to this KA are presented first in an introduction presenting
the sub area, followed by four sections where the main
concepts are presented. Indexes representing the sections
references are also shown as ovals. Some contextual
information concerning the knowledge area associated

editor and the acronyms used are also shown. This
background information is provided only for the specific
purpose to provide to the domain experts traceability to the
SWEBOK structure in the proto-ontology to be validated and
extended. Therefore, the concepts related to the structure of
the SWEBOK Guide will not appear in the final Software
Engineering ontology.

In Figure 4, three instances of concepts are also shown
(two bibliographic references and Spiral, as an instance of the
software life cycle model). Two generalization-specialisation
hierarchies are also shown (Actor and Maintenance actions),
represented by the «S» links.

.

Figure 4 – The Software Maintenance Knowledge Area (Detailed Level)

5. Summary and next steps
Our project goal is to build and validate an ontology

for the Software Engineering discipline. To reach this
goal, an initial domain ontology (e.g. a proto-ontology)
was developed for the software engineering area, taking as
starting point the consensual knowledge already acquired,
structured, validated and made available by the SWEBOK
project (SWEBOK Guide - Iron Man version,
18.05.2004). Technical standards (IEEE and ISO) will
also be used to complete the SWEBOK ontology,
providing for definitions of the currently accepted
terminology as well as alternate accepted terms. The
resulting domain ontology will integrate a set of artefacts
corresponding to the conceptual, ontological and
operational levels of the software engineering validated
ontology.

This paper has presented samples of the proto-
ontology developed in the development phase for a
comprehensive ontology for the software engineering
discipline.

The major contributions expected from this study are:

1) Identification of the main inputs, outputs and
activities to be performed in order to develop the target
ontology;

 2) Identification of the main software engineering
concepts, terms, definitions, relations between
classes/concepts (IsA, Part-Whole, and other specifics
relationships) and axioms describing the concepts;

3) Validation (and possibly extension) of the software
engineering ontology;

4) Progressive building of a consensus concerning the
concepts in the ontology with the support of international
software engineering domain experts.

 Besides the benefits already mentioned in section 1,
the use of this “software engineering ontology” may also
contribute later to the development of additional content
validation by carrying out automatic cross-correlation
validation across the ten areas of knowledge integrated in
the SWEBOK Guide. This next step would ensure that
all concepts and definitions are used in a consistent
fashion throughout all ten SWEBOK knowledge areas as

Software Maintenance

User Requirements

User

Software Life Cycle
Model

Spiral

I

System Changes

Maintenance Actions
(on Software)

Corrective Perfective Evolutive Adaptative

S S S S

Key Characteristics

[Pfl01]

hasBibliographicReference

Maintaining control over the
software’s day-to-day

functions

Maintaining control over
software modification

Perfecting existing functions

Preventing software
performance from degrading

 to
unacceptable levels

hasCharacteristics

S

S

S

S

Software hasTarget

Satisfaction of User
Requirements

hasReason

hasCharacteristics

produces

Software
Developpement

produces

uses

hasActivities

produces

Corrective Actions Non Corrective Actions

S S

Software Maintainer

Actor

S S performs

Need for MaintenanceKA06_1.3
[Pfl01:c11.s11.2;
Pig97: c2s2.3;

Tak97:c1]
hasSectionReference hasBibliographicReference

Software Maintenance
Fundamentals

hasTopic

hasTopic

CH 6
Software Maintenance

hasSubArea

well as to harmonize the level of description of the
SWEBOK Guide content.

An automatic validation would also be useful in the
ISO/IEC JTC1/SC-7 SWG5 development towards the
harmonisation of all vocabulary used by the various
working groups involved in software engineering
technical standards.

Further work in this project includes: 1) ontology
V&E and 2) cognition-communication analysis . In the
former, we are starting the validation and extension
(V&E) cycle with panels of domain experts. This phase
will produce a series of sub-ontologies (one for each
validated knowledge area) that, once integrated, will form
the SWEBOK ontology. These sub-ontologies will be
subsequently operationalized using the OWL language.

In the second one – cognitive-communication
analysis – we will observe and analyse the interactions
that take place among the group of domain experts when
they are working collaboratively to validate and extend
the SWEBOK proto-ontology. The identification and
modelling of the communication interactions and of the
cognitive activities that emerge within the distributed
cognitive system formed by the experts working in the
V&E of the SWEBOK ontology, will contribute to
identify major key issues and challenges in the ontology
V&E process, as well as to formulate some
recommendations aiming at improving the global
efficiency of the ontology construction process.

References

[1] Porphyry ““Isagoge ””,, Vrin, 1998, ISBN: 2711613445

[2] Patil et al. 1992, “The DARPA Knowledge Sharing Effort:
Progress Report”, Principles of Knowledge Representation
and Reasoning: Proceedings of the Third International
Conference KR'92, San Mateo, California, p: 777-788.

[2] Neeches R., F. R. E., Finin T., Gruber T. R., Senator T.,
and Swartout W. R., 1991. “Enabling technology for
knowledge sharing ”, AI Magazine, 12, p: 35-56.

[4] Davenport, Thomas H., 1993, “Process Innovation:
Reengineering Work Through Information Technology ”,
Boston, MA, Harvard Business School Press.

[5] Guarino, N., Schneider , L., 2002, ““Ontology -Driven
Conceptual Modelling””,, Lecture Notes In Computer
Science; Vol. 2503 Proceedings of the 21st International
Conference on Conceptual Modeling, ISBN:3-540-44277

[6] Gruber, T.R.,. 1993, “Towards Principles for the Design of
Ontologies Used for Knowledge Sharing”, in Roberto Poli
Nicola Guarino, editor, International Workshop on Formal
Ontology, Padova, Italy , 1993, Technical report KSL-93-
04, Knowledge Systems Laboratory, Stanford University.

[7] Rector, A., Schreiber, G., Noy, N. F., Knublauch H. and
Musen, M., 2004, “Ontology Design Patterns and
Problems ”, Tutorial at the Third International Semantic
Web Conference (ISWC 2004), November 7th, 2004.

[8] Gruninger, M., Lee, Jintae, 2002, “Ontology Design and
Applications”. Communications of the ACM, February
2002, 45 (2), p: 1-2.

[9] Wille, C., Abran, A., Desharnais, J.M.., Dumke, R., 2003,
“The Quality concepts and sub concepts in SWEBOK:
An ontology challenge”, in International Workshop on
Software Measurement (IWSM), Montreal, 2003 , p. 18.

[10] Wille, C., Dumke, R., Abran, A., Desharnais, JM. ,2004.
E-Learning Infrastructure for Software Engineering
Education: Steps in Ontology Modeling for SWEBOK,
Software Measurement European Forum, Rome, Italy.

[11] Mendes, O., Abran, A. 2004. “Software Engineering
Ontology: A Development Methodology ”, Position
Paper, Metrics News 9:1,August, p : 68-76

[12] Bourque, P., Dupuis, R., Abran, A., 1999, “The Guide to
the Software Engineering Body of Knowledge”, IEEE
Software, November/December.

[13] Abran, A., Moore, J., Bourque, P., Dupuis, R., Tripp, L.,
Guide to the Software Engineering Body of Knowledge –
SWEBOK, Iron Man Version 1.0, IEEE-Computer
Society Press, to be published 2005,
URL: http://www.swebok.org

[14] Kitchenham, B., et al. 1999, “Towards a software
maintenance ontology ”, Journal of Software
Maintenance: Research and Practice, Vol. 11, p: 365-389.

[15] Ruiz, F., Vizcaíno, A., Piattini, M. y García, F., 2004, “An
Ontology for the Management of Software Maintenance
Projects”, International Journal of Software Engineering
and Knowledge Engineering, Vol. 14, No. 3, p: 323-349.

[16] Martin, M de A., Olsina, L., 2003, ““Towards an Ontology
for Software Metrics and Indicators as the Foundation for
a Cataloging Web System ””,, First Latin American Web
Congress (LA-WEB'03). 10 - 11, 2003. Santiago, Chile.

[17] Garzás J., Piattini M. 2005, “An Ontology for
Microarchitectural Design Knowledge”, IEEE Software
Vol. 29, p: 28 -33.

[18] Mendes, O., 2004, “Méthodologies de construction
d’ontologies”, Congrès de l’ACFAS, Montreal May 12

