
 USM: Toward a Method of Measurement

Unified Software Method: Towards a Method of Measurement of
the Necessary Changes to Software in Maintenance

Stéphane Mercier, Alain Abran, Michel Lavoie, Roger Champagne
École de technologie supérieure (ÉTS)

University of Québec
1100 Notre-Dame Street West

Montréal, Québec H3C 1K3, Canada

stephane.mercier.5@ens.etsmtl.ca, [aabran, mlavoie, rchampagne]@ele.etsmtl.ca

Abstract:
Within the context of use of the Unified Software Method (USM), traceability links
are identified between all data elements of a software project that have a relation
with another data element. Knowledge of these links provides complete traceabil-
ity, which in turn means that synchronization of the information in a software pro-
ject can be maintained. In this article, we propose a method of measurement based
on the USM, which is aimed at quantifying the amount of information related to a
maintenance action planned on an existing element in a software project. This
measurement method makes it possible to quantify the ratio of project information
to be maintained to total project information, at the same time as the amount of in-
formation involved in the maintenance project being considered.

Keywords
Maintenance, measurement method, traceability, USM, synchronization

Zusammenfassung:

Innerhalb des Kontextes des Gebrauches von der vereinheitlichten Software-
Methode (USM), werden traceability Verbindungen zwischen allen
Datenelementen eines Software-Projektes gekennzeichnet, die eine Relation mit
einem anderen Datenelement haben. Wissen dieser Verbindungen liefert komplettes
traceability, das der Reihe nach Mittel, daß Synchrounisierung der Informationen
in einem Software-Projekt beibehalten werden kann. In diesem Artikel schlagen wir
eine Methode des Maßes basiert auf dem USM vor, das die Menge von
Informationen quantitativ bestimmend enthalten in einem Software-Projekt
angestrebt wird, das mit einer Wartung Tätigkeit zusammenhängt, die auf einem
vorhandenen Element in diesem Projekt geplant wird. Diese Maßmethode macht es
möglich, das Verhältnis, um Projektinformationen zusammenzuzählen der
beibehalten zu werden Projektinformationen quantitativ zu bestimmen, zur
gleichen Zeit wie die Menge von Informationen mit einbezogen in das Wartung
Projekt, das betrachtet wird.

Schlüsselbegriffe
Wartung, Methode des Maßes, traceability, USM, Synchronisierung

IWSM/MetriKon 2006

S.Mercier, A.Abran, M.Lavoie, R.Champagne

1 Introduction

The Guide to the SWEBOK [1] classifies maintenance in four categories: correc-
tive, adaptive, perfective and preventive. Within the software engineering disci-
pline, the majority of corrective maintenance actions are currently carried out at
code level, and hence several of the measurement parameters identified with
maintenance are related to code (application type, programming languages, soft-
ware age, etc.). However, the initial source of defects should also be tracked, not
only to its code instantiation, but to the design level as well. Moreover, since past
maintenance associated with a requirement can significantly burden existing code,
then, if the age of the software is substantial, the question arises as to what would
be less expensive, to start again from scratch or to modify an existing application.
As a result, one of the objectives of software maintenance management is to
establish whether, at a certain stage, it is preferable to keep maintaining the
software or to rewrite it. The difficulty lies in achieving backward traceability or
back annotation from the code to the software specifications and the failure to do
so is a major cause of premature software aging. As stated in [6]: “Software aging
is caused by two kinds of sources. The first ones are natural and can be identified
as technical obsolescence, incompatibility with new technologies, or
supplantation by a new generation product. This aging is natural and can be
predicted and anticipated. The other sources, artificial and undesired, are induced
by humans. This occurs when modifications are directly made in the code without
being reflected back in the design document and/or requirements. If
synchronization between code and documentation is lost, it becomes harder to
make changes in the code because we don't know exactly which parts are still
needed and which parts are not. Progressive degradation of synchronization,
caused by successive modifications without appropriate updating of
documentation, will artificially create premature aging of the software. By losing
traceability between code, design documents and requirements information, it
becomes difficult to obtain clean code.”
In the context of our research project on the development of a Unified Software
Method (USM) [6], a key objective is to implement full traceability of the
information to make it possible, among other things, to maintain the
synchronization of information in a software project. Ideally, if the software
information is always synchronized, the maintenance activities should not lead to
unused code in the software, which, among other things, contributes to making
software maintenance more challenging, time-consuming and expensive.
To maintain the synchronization of information in the USM, it is necessary to be
able to identify the information to be checked (and updated if necessary)
whenever a modification to the software is investigated. Without a complete and
up-to-date traceability map of the software, it is not possible to establish exactly
what the impacts of maintenance activities on it are. In this context, maintenance

 Software Measurement Conference

 USM: Toward a Method of Measurement

activities rely on improvization and blind searching. With the USM, this software
traceability map becomes available and appears to offer new possibilities for
maintenance measurement. This paper presents the design of a new measure to
quantify, for a project with its information structured according to the USM, the
size of the potential impact associated with a software modification under
consideration.
This paper is organized as follows. In section 2, the concept of traceability in the
USM is presented. Section 3 presents some measures suggested in the
maintenance literature. Section 4 describes the measurement model proposed in
the context of this new measurement, and, in section 5, an analysis of the
application of this measure is performed. Finally, section 6 presents some
concluding observations and suggestions for future work.

2 Traceability in the USM

The USM is a method proposed for organizing the information of a software de-
velopment project in the form of a graph in order to offer complete traceability of
the software project information without being constrained by a methodology or a
particular process. To construct such a graph using the USM tools, elements of in-
formation must be assigned to the nodes of the graph using a system of identifica-
tion which indicates the address of the information and relates that to links of dif-
ferent types in such a way as to make traceability possible (see further information
about these link types in section 5). The resulting graph constitutes the traceability
scheme of the software project. It is to be noted that, even though this method can
be used for both new and existing software projects, the result always depends on
the availability of the software project documentation. If the documentation is in-
complete, the graph will be incomplete; the expression “garbage in/garbage out”
clearly applies in this case.
An information structure designed in conformity with the USM must also (as a
self-imposed design constraint) be adapted to humans, as must the USM naviga-
tion tool offered as the main search engine in the context of the bidirectional
traceability of information. Project information structured in this way offers both
forward and backward traceability: each piece of information is related to both its
predecessors and its successors. This makes it possible, for example, to identify
which code implements a particular software specification. With the USM, project
information can be represented in the form of graphs where the nodes correspond
to that information and the links to a relation between two pieces of information.
Thus, traceability indicates not only information associated with a particular re-
quirement, but also with all the interrelationships between various kinds of infor-
mation. For example, the same code can be associated with more than one re-
quirement. Such links can thus be used to estimate the practical impacts of a modi-
fication.

IWSM/MetriKon 2006

S.Mercier, A.Abran, M.Lavoie, R.Champagne

To stay within human cognitive limits, one of the characteristics common to every
node of a graph is that the level of complexity of the information must, by design
in the USM, be limited. The following USM design constraints permit standardi-
zation of the amount of information complexity included in the various nodes:

- the information associated with a node should not exceed approximately 7
+/- 2 elements [7],

- the information associated with a node must contain at most 4 different
variables (relational complexity) [4],

- the information associated with a node must provide a maximum of infor-
mation in a minimum amount of time, using minimal space and with a
minimum number of printed elements [8].

These constraints should be considered as guidelines in achieving the goal of cre-
ating information with manageable complexity. Moreover, since the synchroniza-
tion of information is mandatory in the USM, whenever a modification is made to
an information node, all the nodes influenced directly or indirectly must be up-
dated.

3 Related work on software maintenance measures

Several measures associated with software maintenance have been proposed.
Binkley and Schach [2] evaluated six types of measures in four case studies and
proposed the Coupling Dependency Metric (CDM) to predict run-time faults, as
well as effort, for corrective maintenance. The CDM combines three different
types of measurements of dependency: referential (“a measure of the extent to
which a program relies on its declarations remaining unchanged”), structural (“a
measure of the extent to which a program relies on its internal organization
remaining unchanged”) and data integrity dependency (“a measure of the
vulnerability of data elements in one module to be changed by other modules”).
VanDoren [10] proposed a number of measures for maintenance, including one to
determine whether or not it is preferable to maintain a software application or
rewrite it. Their proposed Maintainability Index (MI) measure is defined as:

)4.2sin(50)ln(2.16)'(23.0)ln(2.5171 perCMaveLOCgaveVaveVMI +−−−= (3.1)

where:
- aveLOC is the average number of lines of code per module;
- aveV (g') is the average extended cyclomatic complexity per module;
- aveV is the average Halstead Volume V per module [9]:

)(log* 2 nNV = (3.2)

where:

 Software Measurement Conference

 USM: Toward a Method of Measurement

- N represents the program length (summation of all operators and operands);
- n represents the program vocabulary (summation of distinct operators and

operands).
- perCM (optional) is the average percentage of comments per module.

It must be noted that on the righthand side of equation (3.1) the various quantities
used in the summation are not of the same type: each added element refers to a
distinct entity type and therefore has distinct units of measurement: number of
lines of code, cyclomatic complexity number, percentage of comments, the 171
constant parameter and the log and sine values of some of these elements.
Normally, in a valid mathematical equation, the combination of the various
parameters must be coherent. Otherwise, it is the equivalent of adding apples and
oranges, without a known and meaningful definition of either. Not only is this
mathematically unacceptable, it is impossible to determine the corresponding units
on either side of the equation. Thus, for equation (3.1), the MI unit is unknown
and is certainly neither a value of the effort (in person-hours, for example) nor a
measure of profitability, since these units are not used on the righthand side of the
equation. None of these proposed measures is adequate for the USM context
because none can be applied to the USM traceability map.

4 Design of the measurement method

4.1 Overview

In this section, we present the main elements of the design of the proposed
measure. The methodology used is illustrated in Figure 1 and corresponds to Step
1 of the measurement process proposed in Jacquet and Abran [5]:

- Step 1: Design of the measurement method;
- Step 2: Application of the rules of the measurement method;
- Step 3: Analysis of the measurement results;
- Step 4: Exploitation of the measurement results.

IWSM/MetriKon 2006

S.Mercier, A.Abran, M.Lavoie, R.Champagne

Figure 1: Step 1 of the measurement process: [5]

4.2 Definition of objectives

In the context of maintenance, three principal types of activities with respect to
information are possible: modification, removal and addition. Removal and modi-
fication activities can have a direct or indirect impact on existing software infor-
mation, and it is the anticipated impact of the necessary modification that we wish
to measure (addition is not considered in our measurement model because it
means creating new elements of information, and its impact is not included within
the scope of the measure proposed below).
Currently, it is almost impossible to identify all the secondary defects inserted as a
consequence of a maintenance modification. Moreover, as traceability is a funda-
mental concept in the USM, it is possible to identify the relations between the
various data elements in software at any time. Consequently, since all the links are
known, it is possible to identify the impacts on the whole of the software of a
modification to be carried out at a specific point in a program. In USM mainte-
nance, , it becomes possible, thanks to the connection between elements of infor-
mation, to evaluate in advance the impact of a modification or of the suppression
of information on the whole of the software in advance.
In summary, the objective of the proposed measurement is to arrive at the number
of information nodes requiring an update as a result of a maintenance activity.
With this quantitative information, we can gain a better understanding of the re-
quired maintenance and are in a better position to determine the resources needed
to complete the maintenance activity.

 Software Measurement Conference

 USM: Toward a Method of Measurement

4.3 Selection of the meta model

Figure 2 illustrates the meta model selected for the design of our proposed meas-
ure. The circles (nodes) in the graph correspond to the information contained in a
USM project. The connections between the nodes make it possible to navigate in
the graph to identify the nodes associated with a maintenance request. In the cur-
rent version of the meta model, three types of connections can be identified. A
simple arrow identifies the vertical decomposition connections. The multiple-view
connections are identified by a double-arrow and the related-information connec-
tions with no arrow. The purpose of the various types of connections is to cor-
rectly lay down the rules of selection of the nodes associated with maintenance,
and with each type of connection, there is an associated type of information.

Figure 2: Meta model representation
The nodes (thick-lined circles) are associated with the vertical decomposition
connections that contain information associated with the software life cycle (re-
quirements, architecture, design and programming). The nodes represented as
dashed circles are associated with the related information connections, which con-
tain information not essential to the life cycle (a personal note, a rejected solution,
tests, etc.) and the other nodes represented as dashed-dotted circles are associated
with the multiple views containing information which is complementary to that of
the vertical decomposition (static view, dynamic view, etc.). For a request to mod-
ify a software element, all types of information node must be considered. Follow-
ing a maintenance activity, all information associated with a USM software pro-
ject must remain synchronized.
The circles (nodes) illustrated in Figure 2 represent software information. In the
USM graph, they are also nodes that can represent contextual information and
personal notes.

IWSM/MetriKon 2006

S.Mercier, A.Abran, M.Lavoie, R.Champagne

4.4 Characterization of the concept to be measured

Since the synchronization of information is mandatory in the USM, all nodes un-
dergoing modification which are either directly or indirectly influenced must be
updated by the person who carries out the modification. In the context of this
measurement, by design and by convention in this measurement proposal, only the
nodes need to be considered in the equation. Specifically, measurement is charac-
terized by three types of information which, taken together, constitute the result:

- identification of the nodes to be updated in the maintenance context consid-
ered;

- the exact number of nodes potentially concerned with the maintenance re-
quest being considered;

- the ratio of the nodes of the project which is potentially concerned with the
maintenance request.

The connections illustrated in Figure 2 are essential to the measurement mecha-
nism. Even though they do not appear in the measurement results, they make it
possible to obtain those results. Without these connections, measurement would
not be feasible.

4.5 Definition of the rules of numerical assignment

In addition to adequately identifying the nodes in question, two numerical as-
signment rules are defined: the number of information nodes to be updated and the
ratio of information nodes to be updated relative to the total number of nodes (%).

∑= mini (4.1)

According to the first rule, the total number of information nodes of the software,
ni, associated with the node in maintenance is calculated and then the number of
information nodes affected by this maintenance activity, im, is added to that total -
see equation (4.1). With this value, it is possible to identify the maximum number
of information nodes associated directly or indirectly with a maintenance request.
By knowing the identity of all these nodes, it is then possible to carry out a main-
tenance action while preserving the synchronization of the information of the
software project through checking and updating the information of the nodes iden-
tified by this measure.

100% ∗=
∑
∑

i
i

ni m (4.2)

According to the second rule, the percentage of information nodes of the project
%ni associated with the node undergoing maintenance by calculating the sum of
the information nodes affected by this maintenance im and comparing it to the total

 Software Measurement Conference

 USM: Toward a Method of Measurement

number of information nodes of the project i - see equation (4.2). With this value,
the maximum proportion of information nodes of the project associated directly or
indirectly with the maintenance being considered can be identified.
The percentage alone is an insufficient basis for a decision: without knowledge of
the context, this information means little. For example, a statement that mainte-
nance A will affect 10.7% of module X, and that maintenance B will affect 0.1% of
module Y does not give the same information as a statement that maintenance A
will affect 107 nodes of module X, and that maintenance B will affect 4900 nodes
of module Y. The ideal would to be able to indicate that maintenance A will affect
107ni¦10.7% of module X, and that maintenance B will affect 4900ni¦0.1% of
module Y. With this type of information, one can conclude that maintenance A in-
volves a larger proportion of the information nodes of its project than maintenance
B, but that B is smaller in scope than A in terms of the quantity of nodes.

5 Introduction to the application of the measurement method

5.1 Overview

This section is an introduction to the application of Step 2 of the measurement
process. The main difficulty in applying this method is in the correct identification
of the information nodes that could be influenced indirectly by the maintenance
carried out on any node of information in a USM project. In theory, if a USM
graph is traversed, it is possible to pass by all the information nodes. How, then,
would it be possible to identify the nodes that are really potentially associated with
the maintenance of only one node? To correctly identify all the nodes associated
with maintenance, the USM graph must be analyzed according to three different
types of connections: vertical decomposition and multiple-view, and connections
with associated information. By adequately identifying these connections, it be-
comes possible to identify the nodes of the graph that are correctly linked, either
directly or indirectly, to the information subject to the maintenance considered. It
is important to note here that the measurement method is not defined according to
the type of connection, but according to the information nodes, which are all con-
sidered to be comparable, that is to say, associated with information in textual
form, diagrams, code, etc.

5.2 Vertical decomposition connection

The vertical decomposition connection derives directly from the USM constraint
of adaptability to humans, and the data elements associated with these nodes di-
rectly from the design process, e.g. the elements from the definition of needs, the
architectural design elements, the modeling elements, the programming elements
or the verification and validation elements (test cases, for example). In a sequence

IWSM/MetriKon 2006

S.Mercier, A.Abran, M.Lavoie, R.Champagne

of nodes using this type of connection, all the lower nodes are concerned with
maintenance, as are the nodes immediately above them.

Figure 3: Vertical decomposition connection

According to the subset of nodes illustrated in Figure 3, if a maintenance action
were to be carried out with the node identified as Module C, then the node imme-
diately above it is the one identified as Project 1, which contains Module A, Mod-
ule B and Module C. Everything below the nodes is considered as Subsystem 2,
and Subsystem 1 could potentially have to be updated, depending on the elements
that will be modified in Module C. The maximum numerical result of this meas-
urement would be four (i, iv, v and vi). In practice, if, in Figure 3, only the Subsys-
tem 2 element of Module C is affected by the modification, then only the branch
associated with Subsystem 2 will be affected. Therefore, the maximum numerical
result of this measurement would then be three (i, iv and v). Indeed, arrival at a
lower node requiring no modification should mean that it is no longer necessary to
go into more depth, starting from this node in the graph.

5.3 Multiple-view connection

The connection based on multiple views is the one that makes it possible to obtain
a representation of information that is different. This type of connection corre-
sponds to a necessary redundancy of information with a view to gaining a better
understanding of it. For example, in Figure 4, a vertical decomposition connection
is observed in addition to a multiple-view connection.

 Software Measurement Conference

 USM: Toward a Method of Measurement

Figure 4: Connection based on multiple views
If the static-view information node is identified as a node in maintenance, then the
dynamic-view node is automatically considered an extension of the static-view
node. In practice, if node ii is in maintenance, then the numerical result associated
with Figure 4 will be 3, because i and ii are associated connections of vertical de-
composition and iii is associated with a multiple-view connection. It should be
noted that a node of a certain type of information can be associated with several
nodes of another type of view for the same information.

5.4 Associated information connection

A characteristic of the connection node of associated information is that it has
information that is external to the design process. Like the node associated with
the multiple-view connection, an associated information node is situated in paral-
lel with another node in the hierarchy of the USM graph; however, unlike the
multiple-view node, the associated information node will not necessarily require
modification, but will nevertheless have to be checked. Indeed, this type of node
can contain various types of data, such as additional explanatory personal notes,
information on the solutions rejected, information on possible alternative solu-
tions, various results, remarks on future evolutions, etc. In the example in Figure
5, if node i is in maintenance, the numerical result obtained is four; that is to say, i,
ii, iii and iv, where ii and iii have an information connection associated with I, and
iv has an information connection associated with iii, which is already related to i.

Figure 5: Information connection

IWSM/MetriKon 2006

S.Mercier, A.Abran, M.Lavoie, R.Champagne

5.5 Interpretation of the measurement result

As described previously, the results obtained with this measurement method in a
USM context give three elements of information (via the nodes of the graph):

- the piece of software project information that is related to the intended
maintenance;

- how many elements of information are related to the intended maintenance;
and

- how much (what proportion) of the software project is related to the in-
tended maintenance.

Because a USM goal is to maintain synchronization in software project documen-
tation, the method should provide its own tools to do this for a maintenance activ-
ity. Identification of what information is related to the intended maintenance gives
the engineer the knowledge to maintain the needed synchronization. In contrast,
the information related to how many and how much can be used to determine what
resources are needed to proceed with the maintenance activity.
Some maintenance measurement methods are intended to help the engineer to de-
cide whether the code should be rewritten or maintained. Most of the time, the
need for this decision arises when the condition of the code is very poor due to
software aging, as described previously. For new USM software projects, software
aging should be minimal, in which case this question will not arise, although it
will if the code in an existing project is already badly damaged by artificial aging.
However, at the current stage of the USM, we are not yet ready to answer to this
question in the case of an existing software project adapted to a USM structure.

6 Observations and future work

In the context of the USM, the traceability map of the software that is available
allows us to identify what information, and to quantify how much of it, is poten-
tially related to a planned software maintenance activity.
Even if we could obtain exact results using the new measurement method we are
proposing, the main operational difficulty will be to correctly identify the nodes of
the graph that could potentially be associated with a maintenance request. Identifi-
cation of the various types of connection enables us to clearly lay down the rules
of identification of these nodes. With the percentage of nodes, we can measure the
maximum proportion of information in the software project that may be affected,
as well as calculate the number of information nodes to be modified and/or evalu-
ated in the context of the maintenance activity considered.
Although the USM is still at the development stage, its concepts are sufficiently
well defined that measurement methods related to them can also be defined.
Through future experiments with various maintenance projects, it could become

 Software Measurement Conference

 USM: Toward a Method of Measurement

possible to measure intervals by adding an evaluation of the lower limit that corre-
sponds to the well-known upper limit. It would then be possible to parameterize
equations 4.1 and 4.2 by taking into account the nature of the bonds associated
with the nodes. Equations 6.1 and 6.2 illustrate this possibility, where a, b and c
are values of the percentage of probability and m1, m2, m3 represent the various
types of connection.

∑∑∑ ++= 321 mmm icibiani (6.1)

100% 321 ∗
++

=
∑

∑ ∑∑
i

icibia
ni mmm

 (6.2)

However, knowing exactly which elements are influenced directly or indirectly by
the maintenance activity under investigation may enable this measurement to ex-
tend the life expectancy of the software by allowing the software engineer to do
clean maintenance that does not leave behind unused code, one of the main causes
of artificial software aging.

References

1. Abran, A., Moore, J., Bourque, P., Dupuis, R. and Tripp, L. Guide to the
Software Engineering Body of Knowledge. IEEE Computer Society, 2005.

2. Binkley, A.B. and Schach, S.R. Metric for predicting run-time failures and
maintenance effort: four case studies. CrossTalk - The Journal of Defense
Software Engineering, 1998 (8). 21-23.

3. Ebert, C., Dumke, R., Bundschuh, M. and Schmietendorf, A. Best practices
in software measurement. Springer, 2005.

4. Halford, G.S., Baker, R., McCredden, J.E. and Bain, J.D. How many vari-
ables an humans process? Psychological Science, 16 (1). 70-76.

5. Jacquet, J.-P. and Abran, A., From software metrics to software measure-
ment methods : A process model. in Third International Symposium and
Forum on Software Engineering Standards, ISESS '97, (Walnut Creek
(CA), 1997).

6. Mercier, S., Lavoie, M. and Champagne, R., Unified Software Method: an
Engineering Approach to Software Engineering. in 30th Annual
IEEE/NASA Software Engineering Workshop, (Columbia, 2006).

7. Miller, G.A. The magical Number Seven, Plus or Minus Two - Some Limits
on Our Capacity for Processing Information. Psychological Review, 101
(2). 343-352.

8. Tufte, E. The visual display of quantitative information. Graphics Press,

IWSM/MetriKon 2006

S.Mercier, A.Abran, M.Lavoie, R.Champagne

Cheshire, Connecticut, 1983.
9. VanDoren, E. Halstead Complexity Measures Software Technology Road-

map, Software Engineering Institute, 1997.
10. VanDoren, E. Maintainability index technique for measuring program main-

tainability, Carnegie Mellon Software Engineering Institute, 2005.

 Software Measurement Conference

	1 Introduction
	2 Traceability in the USM
	3 Related work on software maintenance measures
	4 Design of the measurement method
	4.1 Overview
	4.2 Definition of objectives
	4.3 Selection of the meta model
	4.4 Characterization of the concept to be measured
	4.5 Definition of the rules of numerical assignment
	5 Introduction to the application of the measurement method
	5.1 Overview
	5.2 Vertical decomposition connection
	5.3 Multiple-view connection
	5.4 Associated information connection
	5.5 Interpretation of the measurement result

	6 Observations and future work
	References

