Unified Software Method (USM) : Towards a Method of Measurement of the Necessary Changes to Software in Maintenance

Stéphane Mercier, A. Abran M. Lavoie, R. Champagne International Workshop Software Measurement (IWSM 2006) November 2-3, 2006 Potsdam, Germany

Agenda

- o Introduction
- o What is the USM about?
- o The proposed measurement method
- o A case study
- o Conclusion

Introduction

- o Back annotation problem
 - Almost impossible to achieve backward traceability
 - o Creates undesired artificial software aging
- o Software aging
 - o Natural
 - o Can be predicted and anticipated
 - o Technical obsolescence, incompatibility with new technology, etc.
 - o Artificial
 - o Undesired and induced by human
 - o Progressive degradation of synchronization, caused by successive modifications without appropriate updating of documentation
 - When reaching critical condition, rewriting the application becomes more productive then maintaining it

What is the USM about?

- o A solution to the back annotation problem
- Organizing information of software project in form of a graph
 - To offer complete traceability of the software project information
 - Without being constrained by a methodology or a particular process
 - To maintain the synchronization of the information
- o USM information structure must be adapted to humans
 - Be able to master complexity
 - Applying the Keep It Simple (KIS) principle
 - 0 7 +/- 2 elements
 - Up to 4 parameters (relational complexity)
 - Max info in min time using min space with min printed element

What is the USM about?

o The USM graph

- Node: Address of the project information
- Link: Traceability between the information

What is the USM about?

- o Decomposition link
 - Managing the information complexity
 - Divide to conquer

What is the USM about?

- o Multiple-view link
 - To have a better understanding of the information
 - Different representation gives different perspective
 - What? Where? How? Who? Why? ...

Some maintenance measurement methods

- o Measure that give useful information is about
 - Go, do the maintenance or
 - Stop, rewrite the application
 - But if you have people working on the project, they can answer more accurately to this Go/ Stop question

0 Beware of methods that are mathematically unacceptable $MI = 171 - 5.2 \ln(aveV) - 0.23aveV(g') - 16.2 \ln(aveLOC) + 50 \sin(\sqrt{2.4 perCM})$ $MI = () - (HalsteadVolume) - (CyclomaticComplexity) - (LineOfCode) + {%Comment}$

The proposed measurement method

- Measurement process [Jacquet & Abran 1997]
 Step 1: Design of the measurement method
 - Step 2: Application of the rules of the measurement method
 - Step 3: Analysis of the measurement results
 - Step 4: Exploitation of the measurement results

Step 1 : Design of the measurement method

o Definition of the objectives

• To identify information nodes requiring an update as a result of a modification or removal maintenance activity

Step 1 : Design of the measurement method

o Characterization of the concept to be measured

- Because keeping synchronization is mandatory in the USM
 - All nodes which are either directly or indirectly influenced by a maintenance context considered must be identified
- Associated to this measurement result we can also obtain
 - The node count related to the maintenance context
 - The Node proportion related to the maintenance context

Step 1 Design of the Measurement method Definition of the objectives Characterization of the concept to be measured Definition of the numerical assignment rules

Step 1 : Design of the measurement method

o Selection of the meta-model

- Using a USM graph where
 - Nodes that represent project information is the concept to be measured
 - Links are essential to the measurement mechanism but are not considered in the measurement result

Step 1 : Design of the measurement method

Definition of the numerical assignment rules 0

Which ones? $\mathbf{0}$ • The red ones

- $ni = \sum i_m$ 0 How many ? 0 3
- $\%ni = \frac{\sum i_m}{\sum i} *100$ 0 How much ? 30%

A case study

- o Some statistics
 - 0 10 features
 - o 22 use cases
 - o 2 functional requirements
 - o 3 non-functional requirements
 - o 1 architectural diagram
 - o 64 classes (design)
 - 0 18 .jsp files
 - o 71 .java files

Another way to represent statistics

- o Elements of information
 - o 20 nodes associated to user requirement
 - o 50 nodes associated to software specification
 - o 3 nodes associated to architectural design
 - 136 nodes associated to detailed design
 - 120 nodes associated to code
 - 4 nodes associated to other information
- o 333 nodes

Application of the numerical assignment rules

- How many?
- o How much?
 - 0 3,6%
- Which ones?

Conclusion

- Knowing exactly which elements are influenced directly or indirectly by the maintenance activity under investigation may enable this measurement to extend the life expectancy of the software
 - by allowing the software engineer to do clean maintenance that does not leave behind unused code, one of the main causes of artificial software aging
- Nodes represent information that is not of the same nature and the same size
 - If we join COSMIC-FFP, LOC, etc. value to nodes
 - The obtained measurement value is more accurate
 - A good estimated figure will be easier to achieve
 - Better maintenance management

$\bullet \bullet \bullet$

Thank you!

<u>stephane.mercier.5@ens.etsmtl.ca</u> <u>aabran@ele.etsmtl.ca</u> <u>mlavoie@ele.etsmtl.ca</u> <u>rchampagne@ele.etsmtl.ca</u> http://www.etsmtl.ca