
1

Software Engineering Software Engineering Software Engineering Software Engineering
Principles: Do they Meet Principles: Do they Meet Principles: Do they Meet Principles: Do they Meet
Engineering Criteria?Engineering Criteria?Engineering Criteria?Engineering Criteria?

Kenza Meridji

Supervision : Dr. Alain Abran

2

AgendaAgendaAgendaAgenda

• Introduction

• Related work

• Methodology

• Discussion

3

IntroductionIntroductionIntroductionIntroduction

Software engineering is defined by the IEEE as:

“The application of a systematic, disciplined,
quantitative approach to the development,
operation and maintenance of software, the
application of engineering to software’

IEEE 610.12

4

Related work Related work Related work Related work
Individual work

Boehm, B.W., Seven Basics Principles of Software Engineering. Journal of Systems
and Software, 1983. 3(no 1): p. 366-371.

Davis, A.M., 201 Principles of Software Development. 1995, New-York: McGraw-Hill.

Karl E. Wiegers Creating a software Engineering culture. 1996. New-York: Dorset
House Publishing.

Séguin, N., Inventaire, Analyse et Consolidation des Principes Fondamentaux du
Genie Logiciel. 2006, Université du Québec à Montréal: Montreal.

Collaborative work

Buschmann, F., R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal, Pattern Oriented
Software Architecture. England. Wiley ed. 1996, England. 476 pages.

Pierre Bourque, Robert Dupuis, Alain Abran, James W. Moore, Leonard Tripp, and S.
Wolff, Fundamental principles of software engineering – a journey. Journal of
Systems and Software, 2002. 62: p. 59-70.

Ghezzi, C., M. Jazayeri, and D. Mandrioli, Fundamentals of Software Engineering.
2th ed . 2003, New-Jersey: Prentice Hall.

5

34 candidates 34 candidates 34 candidates 34 candidates (S(S(S(Sééééguin 2006)guin 2006)guin 2006)guin 2006)

Involve the customer17

Invest in the understanding of the problem16

Implement a disciplined approach and improve it continuously15

Grow systems incrementally14

Give product to customers early13

Fix requirements specification error now12

Establish a software process that provides flexibility11

Don’t write your own test plans10

Don’t try to retrofit quality9

Don’t overstrain your hardware8

Determine requirements now7

Design for maintenance6

Define software artifacts rigorously5

Build with and for reuse4

Build software so that it needs a short user manual3

Apply and use quantitative measurements in decision making2

Align incentives for developer and customer1

Candidates – In alphabetical order

6

Candidate Candidate Candidate Candidate principlesprinciplesprinciplesprinciples ---- CtdCtdCtdCtd

In face of unstructured code, rethink the module and redesign it from scratch.34

Choose a programming language to assure maintainability33

Select tests based on the likelihood that they will find faults32

Know software engineering’s techniques before using development tools31

Write programs for people first30

Use documentation standards29

Use better and fewer people28

To improve design, study previous solutions to similar problems27

Tailor cost estimation methods26

Strive to have a peer, rather than a customer, find a defect25

Since tradeoffs are inherent to software engineering, make them explicit and document it24

Since change is inherent to software, plan for it and manage it23

Rotate (high performer) people through product assurance22

Quality is the top priority; long term productivity is a natural consequence of high quality21

Produce software in a stepwise fashion20

Maintain clear accountability for results19

Keep design under intellectual control18

Candidates– In alphabetical orderNo.

7

MethodologyMethodologyMethodologyMethodology

8

MethodologyMethodologyMethodologyMethodology

AssessmentAssessment of results and data 7

MeasurementMeasurement of characteristics6

Schema of qualityCombination of partial results from 2, 3 and 4 into

practical schema for research

5

QualityGrowth and refinement of opinion regarding desirable

qualities

4

TechniquesDevelopment of instrument and techniques3

CriteriaIdentification of concepts and criteria2

ProblemRecognition of a problem1

AbbreviationVincenti’s Engineering CriteriaID.

Phase 1: Identification of Engineering Criteria

Vincenti criteria

9

Reuse designEngineers reuse designs and design artifacts.7

Development and

validation

Engineers, via their professional societies, advance by the development and validation of principles,

standards, and best practices.

6

Use of ToolsEngineers use tools to apply processes systematically. Therefore, the choice and use of appropriate

tools is key to engineering.

5

Engineer’s rolesEngineers can have multiple roles: research, development, design, production, testing, construction,

operations, management, and others such as sales, consulting, and teaching.

4

Disciplined processEngineers emphasize the use of a disciplined process when creating a design and can operate

effectively as part of a team in doing so.

3

MeasurementsEngineers measure things, and when appropriate, work quantitatively; they calibrate and validate

their measurements; and they use approximations based on experience and empirical data.

2

Decision makingEngineers proceed by making a series of decisions, carefully evaluating options, and choosing an

approach at each decision-point that is appropriate for the current task in the current context.

Appropriateness can be judged by tradeoff analysis, which balances costs against benefits.

1

AbbreviationEngineering Criteria IdentifiedID

Methodology Cont.Methodology Cont.Methodology Cont.Methodology Cont.

IEEE & ACM Engineering

criteria

Phase 1: Identification of Engineering Criteria

10

Methodology Cont.Methodology Cont.Methodology Cont.Methodology Cont.

Phase 2: Verification against the two sets of criteria

11
IIDDIIIDon’t try to retrofit quality9

IIIIDon’t overstrain your hardware8

IIIIDDetermine requirements now 7

IIIIIDesign for maintenance 6

IIIIIIIDefine software artifacts rigorously5

IIIIDBuild with and for reuse4

IIIIIIIBuild software so that it needs a short user manual3

IDIIIIApply and use quantitative measurements in

decision making

2

IIAlign incentives for developer and customer1

C7.

A

s

s

e

s

s

m

e

n

t

C6.

M

e

a

s

u

r

e

m

e

n

t

C5.

S

c

h

e

m

a

o

f

q

u

a

l

i

t

y

C#4.

Q

u

a

l

i

t

y

C#3.

T

e

c

h

n

i

q

u

e

s

C#2.

C

r

i

t

e

r

i

a

C#1.

P

r

o

b

l

e

m

Result of the mapping of the candidate FP to Result of the mapping of the candidate FP to Result of the mapping of the candidate FP to Result of the mapping of the candidate FP to
VincentiVincentiVincentiVincenti engineering criteria engineering criteria engineering criteria engineering criteria

12
IIIIDon’t try to retrofit quality9

IIDon’t overstrain your hardware8

IIDetermine requirements now 7

DIIDesign for maintenance 6

DIDefine software artifacts rigorously5

DIBuild with and for reuse4

IIIBuild software so that it needs a short user manual3

DDApply and use quantitative measurements in

decision making

2

IAlign incentives for developer and customer1

C 7.

R

e

u

s

e

d

e

s

i

g

n

C6.Dev

e

l

o

p

m

e

n

t

&

v

a

l

i

d

a

t

i

o

n

C 5

U

s

e

o

f

T

o

o

l

s

C4

E

n

g

i

n

e

e

r

’

s

r

o

l

e

s

C3.

D

i

s

c

i

p

l

i

n

e

d

p

r

o

c

e

s

s

C2.M

M

e

a

s

u

r

e

m

e

n

t

s

C1.

D

e

c

i

s

i

o

n

m

a

k

i

n

g

Mapping of the candidate FP to Mapping of the candidate FP to Mapping of the candidate FP to Mapping of the candidate FP to
IEEE & ACM engineering criteriaIEEE & ACM engineering criteriaIEEE & ACM engineering criteriaIEEE & ACM engineering criteria

13

Methodology Cont.Methodology Cont.Methodology Cont.Methodology Cont.

Phase 3: Analysis and Consolidation using
both sets of criteria

The analysis across each set of engineering
criteria can then be grouped into 3 sets of
candidate FP:
– with Vincenti mapping similar to the IEEE-ACM
mapping;

– with Vincenti mapping with no equivalent IEEE-ACM
mapping;

– with IEEE-ACM mapping with no equivalent Vincenti’s
mapping.

14

Candidate FP that meets Candidate FP that meets Candidate FP that meets Candidate FP that meets
directly criteria from directly criteria from directly criteria from directly criteria from

either seteither seteither seteither set

Quality is the top priority; long term productivity

is a natural consequence of high quality

21Quality is the top priority; long term productivity is a

natural consequence of high quality

21

Keep design under intellectual control 18

Invest in the understanding of the problem16

Implement a disciplined approach and improve it

continuously

15Implement a disciplined approach and improve it

continuously

15

Grow systems incrementally14

Fix requirements specification error now 12

Don’t try to retrofit quality9

Determine requirements now 7

Design for maintenance 6

Define software artifact rigorously5

Build with and for reuse4Build with and for reuse4

Apply and use quantitative measurements in

decision making

2Apply and use quantitative measurements in decision

making

2

IEEE and ACM Mapping#Vincenti Mapping#

15

List of fundamental List of fundamental List of fundamental List of fundamental
principles of software principles of software principles of software principles of software
engineeringengineeringengineeringengineering

27To improve design, study previous solutions to similar problems9

24Since tradeoffs are inherent to software engineering, make them explicit and document it 8

23Since change is inherent to software, plan for it and manage it7

21Quality is the top priority; long term productivity is a natural consequence of high quality6

16Invest in the understanding of the problem5

15Implement a disciplined approach and improve it continuously4

14Grow systems incrementally3

4Build with and for reuse2

2Apply and use quantitative measurements in decision making1

Vincenti, IEEE and ACM mapping#

16

18 Keep design under intellectual control To improve design, study previous

solutions to similar problems

27

5 Define software artifacts rigorously

29 Use documentation standards
Since tradeoffs are inherent to

software engineering, make them

explicit and document it

24

6 Design for maintenance
33 Choose a programming language to assure maintainability

32 Select tests based on the likelihood that they will find faults

34 In face of unstructured code, rethink the module and redesign it from

scratch.

11 Establish a software process that provides flexibility

Since change is inherent to software,

plan for it and manage it

23

9 Don’t try to retrofit quality

22 Rotate (high performer) people through product

assurance

25 Strive to have a peer, rather than a

customer, find a defect

Quality is the top priority; long term

productivity is a natural consequence

of high quality

21

7 Determine requirements now

12 Fix requirements specification error now
Invest in the understanding of the

problem

16

1 Align incentives for developer and customer

17 Involve the customer

18 Keep design under intellectual control

5 Define software artifacts rigorously

20 Produce software in a stepwise fashion
31 Know software engineering’s techniques before using development

tools

19 Maintain clear accountability for results

29 Use documentation standards

Implement a disciplined approach and

improve it continuously

15

11 Establish a software process that provides flexibilityGrow systems incrementally14

6 Design for maintenance

11 Establish a software process that provides flexibility

18 Keep design under intellectual control

Build with and for reuse4

18 Keep design under intellectual control

26 Tailor cost estimation methods
Apply and use quantitative

measurements in decision making

2

Derived instantiation

(= Indirect mapping)

Direct mapping to Vincenti criteria#

Hierarchy of

Principles

17

ReferencesReferencesReferencesReferences
• ACM, I.a., Curriculum Guidelines for Undergraduate Degree Programs in Software

Engineering, A.V.o.t.C.C. Series, Editor. 2004.
• Pierre Bourque, Robert Dupuis, Alain Abran, James W. Moore, Leonard Tripp, and S. Wolff,

Fundamental principles of software engineering – a journey. Journal of Systems and
Software, 2002. 62: p. 59-70.

• Jabir, Moore, J.W., Abran, A., Bourque, P., Dupuis, R., Hybertson, D., Jacquet, J.-P., Köller,
A., Lowry, E., and Tripp, L.L., A Search for Fundamental Principles of Software Engineering
– Workshop Report - Forum on Software Engineering Standards Issues, Montréal, Quebec,
Canada, 21-25 October 1996, Computer Standards and Interfaces, vol. 19, pp. 155-160,
1998.

• Séguin, N., Inventaire, Analyse et Consolidation des Principes Fondamentaux du Genie
Logiciel. 2006, Université du Québec à Montréal: Montreal.

• Séguin, N. and A. Abran, Inventaire des principes du génie logiciel. Revue Génie Logiciel,
2007: p. 45-51.

• Séguin, N. and A. Abran, Software Engineering Principles: A Survey and Analysis.
• Alain Abran, N.S., Pierre Bourque, Robert Dupuis. The search for software engineering

principles: An overview of results. in PRInciples of Software Engineering. 2004.
• Boehm, B.W., Seven Basics Principles of Software Engineering. Journal of Systems and

Software, 1983. 3(no 1): p. 366-371.
• Davis, A.M., 201 Principles of Software Development. 1995, New-York: McGraw-Hill.

18

References Cont.References Cont.References Cont.References Cont.

• Buschmann, F., R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal, Pattern
Oriented Software Architecture. England. Wiley ed. 1996, England. 476 pages.

• Ghezzi, C., M. Jazayeri, and D. Mandrioli, Fundamentals of Software
Engineering. 2th ed ed. 2003, New-Jersey: Prentice Hall.

• Dupuis, R., P. Bourque, A. Abran, and M.J. W. Principes Fondamentaux du génie
logiciel : Une étude Delph, Le génie logiciel et ses applications, CNAM. 1997,
Paris, Dec. 3-5 2007.

• Vincenti, W.G., What engineers know and how they know it, ed. M.R. Smith.
1990, Baltimore, London: The johns Hopkins University Press.

• Alain Abran, Luigi Buglione, and A. Sellami. Software measurement body of
knowledge initial validation using Vincenti's classification of engineering
knowledge types. in 14th International Workshop on Software Measurement -
IWSM-MetriKon 2004. 2004. Konigs Wusterhausen, Germany: Shaker-Verlag.

• A. Abran, P.B., R. Dupuis and JW Moore & L. Tripp., The Guide to the Software
Engineering Body of Knowledge - SWEBOK 2004 version. 2005, Los Alamitos:
IEEE Computer Society Press.

• Abran, A. and K. Meridji, Analysis of Software Engineering from An Engineering
Perspective. European Journal for the Informatics Professional, February 2006.
7(1): p. 46-52.

19

QuestionsQuestionsQuestionsQuestions

20

Discussion Discussion Discussion Discussion
• Do you agree with the 2 sources of information used?

• Do you know of other sources of information to define
engineering criteria?

• For you, which engineering criteria are the most
important?

• Do you agree with the direct and indirect mapping to the
two sets of engineering criteria used?

• If not, according to you which one does not have the
correct mapping?

21

Discussion Cont.Discussion Cont.Discussion Cont.Discussion Cont.

• In the list of the 9 principles selected, is
there one with which you do not agree?

• Is there a missing principle in this list of the
selected 9 principles that should be
considered as a fundamental principle?

• In the hierarchy for the other 25 candidates,
which one you do not agree (e.g.
positioning in the hierarchy)?

