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Abstract 

Agile estimation approaches usually start by sizing the user stories to be developed by 
comparing them to one another. Various techniques, with varying degrees of formality, 
are used to perform the comparisons – plain contrasts, triangulation, planning poker, and 
voting.  This article proposes the use of a modified paired comparison method in which a 
reduced number of comparisons is selected according to an incomplete cyclic design. 
Using two sets of data, the authors show that the proposed method produces good 
estimates, even when the number of comparisons is reduced by half those required by 
the original formulation of the method. 
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1. Introduction 

Agile estimation approaches typically comprise three steps: 1) comparison of the user 
stories to be developed to one another for the purpose of establishing their relative size; 
2) conversion of the size estimates to lead times using an assumed team productivity; 
and 3) re-estimation of the project lead times using the team’s actual productivity, once 
this becomes known after two or three iterations. 

User story comparisons take the following form: “This story is like that story, so its size 
must be roughly the same,” or “This story is a little bit bigger than that story which was 
estimated at 4, so its size should be around 5.” The numbers 4 and 5 in the previous 
sentence are called “story points”, which are numbers in ratio scale purportedly 
proportional to the effort it would take to develop each story based on its perceived size 
and complexity [1]. A 6-point user story is expected to require about twice as much effort 
as a 3-point user story. The degree of structure in the comparison process ranges from 
the ad hoc comparison of any two user stories, to triangulation – the comparison of a 
user story with two others,  to a number of Delphi [2] like techniques such as the 
planning poker [3]. To avoid wasting time discussing insignificant differences between 
user stories, the use of a Fibonacci or power series is sometimes recommended, such 
as if the difference between two user stories is not as large as a following term in the 
series, the two user stories are assumed to be of the same size [4]. 



The project lead time is calculated using the concept of velocity, which is a proxy for the 
productivity of the team. At first, velocity is estimated or taken from a previous project, 
but, as work progresses, it is measured by tallying the number of story points completed 
during the counting period. Velocity is measured in story points per iteration, or story 
points per month. As an example, if the current team velocity is 30 story points per 
month, it will take the team 2 months to deliver 60 story points-worth of user stories.  

As will be shown later, comparing one user story to another, or to two others, is not good 
enough to produce reliable estimates. The first reaction to this is to increase the number 
of comparisons, but this creates some problems of its own. As even the most devoted 
estimator gets tired after making a large number of comparisons, the question of how 
many comparisons to make becomes really important, as does the problem of dealing 
with the inconsistencies inherent to the judging process. 

To address these problems, we propose the use of incomplete cyclic designs to identify 
which user stories to compare with which to reach a desired accuracy, and the use of 
the paired comparison method [5-7] to deal with judgment inconsistencies.  

The rest of the paper is organized as follows: section 2 formalizes the triangulation 
concept, section 3 explains the basic paired comparison method, section 4 presents the 
modified process using incomplete cyclic designs, section 5 discusses the accuracy and 
precision of the resulting estimates, and section 6 provides a summary of the article. 

2. Agile estimation and triangulation 

Triangulation is defined in the Agile literature as the process of establishing the size of a 
user story relative to two other user stories with the purpose of increasing the reliability1 
of the estimate [3]. When using triangulation, the comparisons sound something like this: 
“I'm giving user story B 2 points, because it feels like its implementation will take 
somewhat more effort than user story A, which I already rated at 1 story point, and 
somewhat less effort than user story C, which I rated as a 4-point story.” Despite its 
intuitive appeal, triangulation is not as simple as the sentence above makes it appear. 
First, there is the problem of consistency, which can be mathematically expressed as: 

<1> , ,
ij jk ik

a a a i j k n× = ∀ ∈  

Equation <1> reads as follows: if user storyi is 
ij

a times bigger2 than user storyj, and user 

storyj is 
jk

a  times bigger than user storyk, then user storyi must be 
ij jk

a a× times bigger 

than user storyk. This is important, because lack of consistency among triangulations 
leads to inaccurate estimates. 

Second, which two user stories should you choose as reference points? Does the choice 
affect the result? 

The triangulation process can be visualized by arranging the user stories in a circular 
pattern and linking those being compared (see Figure 1). Given n  user stories to be 

                                                
1 A reliable sizing method will yield estimates that are accurate, that is, close to their true value, 
and precise, that is estimates must be consistent across repeated observations in the same 
circumstances.  
2 The comparison can go both ways, i.e. replacing bigger for smaller. 



estimated, there are ( )( )1 2 / 2n n n− − possible configurations or designs which can be 

evaluated, but not all are equally good.  A good design must have two properties: 
balance and connectedness [8-10]. A design is considered balanced when every user 
story appears in as many comparisons as any other user story. This ensures that one 
user story does not overly influence the estimation, while others are under-represented. 
Connectedness implies that any user story is compared, directly or indirectly, to every 
other user story. An unconnected graph is undesirable, because the size of some user 
stories relative to others would be completely indeterminate. Figure 1.b illustrates the 
problem: the user stories in the lower subset are never compared against those in the 
upper subset, so each subset could be accurately sized in itself but completely offset 
with respect to the other. 

The number of times a user story appears in a comparison is called the replication factor 
( r ) of the design. In all the designs shown in Figure 1, r  is 2.  

Balance and connectedness are necessary, but not sufficient conditions for a good 
estimation. As shown by Burton [8], a low r , such as that used in the triangulation 
approach ( 2r = ) is very sensitive to errors in judgment, and thus tends to produce 
unreliable results. In his experiments, Burton found that the correlation ( ρ ) between the 
actual and the estimated values using triangulation ranged from a low of 0.46 to a high 
of 0.92, with a mean value of 0.79. Similar variability was found by the authors using two 
sets of data, this is discussed later. 



 

3. Paired comparison method basics 

3.1. Overview 
The idea behind the paired comparison method is to estimate the size of n user stories 
by asking one or more developers to judge their relative largeness rather than to provide 
absolute size values. After this is done, one of the n user stories is assigned an arbitrary 
number of story points. Using this story as reference, the sizes in story points, of all the 
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Figure 1 Three triangulation designs out of the ( )( )1 2 / 2n n n− − possible ones 

Note 1: ‘a’ and ‘c’ are good designs, but ‘b’ is not, as it consists of two disjoint 
subgraphs. 



other user stories are calculated. The process is called Full Factorial Pairwise 
Comparison because it compares all user stories (factors) against one another, see 
Figure 2. 

Although the selection of the user story to be used as reference and the allocation of 
story points to it is arbitrary to a certain point3, a consistent selection and allocation, i.e. 
two comparable user stories are not allocated 4 story points in one project and 10 in 
other, is useful for the developers to develop an intuition or sense for the effort required 
in the realization of a user story with so many story points. 

It is also possible to use the method to estimate the effort required by each user story 
instead of their story points. In this case, a user story whose development effort, from 
either a previous project or a spike4, is known will be brought in as reference story. For a 
more detailed description of the method, refer to [5, 6]. 

                                                
3 The number zero must be reserved for “stories” with not content to preserve the properties of a 
ratio scale. 
4 In the Agile terminology a spike is an experiment that is performed to learn something. In this 
case the spike would consist on developing a user story tracking how much effort it required. 

Figure 2 In the Full Factorial paired comparison process. Each user story is compared to 
every other user story.  

Note 1: The optional verbal scale allows the user stories to be compared using an ordinal 
scale by labeling the comparison of two user stories with adjectives such as “equal”, “a 
little bigger”, “much bigger”, etc.  
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In the rest of the document we will work with story points to remain true to the title of the 
essay but all the same concepts apply to the calculations using effort.  

3.2. The Pairwise comparison of user stories  

Developers start the process by judging the relative size (
ij

a ) of each user story against 

every other user story, and recording these values in a matrix called the judgment matrix 
<2>.  

<2>
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isp  and 
j

sp  are the as yet unknown numbers of story points for user storyi and user 

storyj to be derived from the 
ij

a  judgments. Note that only the comparisons 

corresponding to the upper diagonal matrix have to be made, since the 
ji

a  are the 

reciprocals of the 
ij

a . 

3.3. Calculating the Size, the Inconsistency Index, and the 
Standard Deviation 

Once all the 
ij

a judgments have been recorded in the judgment matrix, the mean relative 

size ( imrs ) of user storyi is calculated as the geometric mean [11, 12] of the thi   row <3> 

of the judgment matrix. The size in story points of each user story is then computed by 
multiplying its imrs  by the normalized size of the reference user story <4>. For a more 

detailed description of the method, refer to [5, 6]. 

<3> 
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= ×  

As inconsistencies are inherent to the judgment process, Crawford [12] and Aguaron 
[13]  suggest the use of  <5> as an unbiased estimator of the variance of the 
inconsistencies of the judgment matrix n nA × . The larger the inconsistencies between 
comparisons, the larger the variance will be. The square root of <5> is called the 
Inconsistency Index <6> of the judgment matrix. 
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While the Inconsistency Index gives an overall idea of the quality of the judgments, it is a 
quantity that is difficult to interpret. A much better alternative is to present the estimator 
with a range estimate – an interval within which the estimate will likely fall for a given 
degree of inconsistency.  

To calculate the extremes of the interval, we start by assuming that each user story 
contributes equally to 2

A
σ . This assumption allows us to write equation <7>, where 2

A
σ  is 

shown to result from the sum of n individual inconsistencies 2

i
σ  contributed by each 

user story5. The standard deviation of the size of each user story could then be 
calculated as the product of its estimated size and its individual inconsistency <8> . The 
range estimate is given by <9>. 

<7> 

1
2 2 2

1

2

n

A i i

i

A
i

n

InconsistencyIndex

n n

σ σ σ

σ
σ

−

=

= =

∴

= =

∑

 

 

<8> 
isp i
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<9> [ ],i i i iRangeEstimate sp spσ σ= − +  

Other approaches to calculating the standard deviation of the size exist. Hihn [14] 
proposes the use of a triangular distribution, where the developer or estimator judges the 
relation between two user stories in terms of the best case, the most likely case, and the 
worst-case scenarios, but, given the rather large number of user stories included in a 
typical project, we found this to be too taxing.  

                                                
5 If the reference story is brought in from another project or from a spike the denominator in 
equations <7> and <8> needs to be replaced by 1n − instead of n to account for inclusion of the 
known parameter. 



3.4. Reviewing inconsistencies 
At this point, the estimator will use the Inconsistency Index or the estimates’ range as a 
guide to decide whether or not these are good enough and stop, or revise all or some of 
his judgments with the objective of reducing the inconsistencies. 

By simulating a large number of judgment matrices and comparing them to perfectly 
consistent ones, Aguaron [13] determined that, for sets with four or more data points, an 
Inconsistency Index less than or equal to 0.35 would produce satisfactory results in most 
cases. To give the reader an idea of its meaning, an Inconsistency Index of 0.35 with 15 
user stories being estimated would, under the assumption that all user stories contribute 
equally to it, result in a size range of ± 9% for each story. If fewer user stories are 
compared, the size range will be wider. If more user stories are compared, the interval 
will be narrower.. 



 

3.5. A numerical example 
Suppose we wanted to estimate the story points of four user stories called A, B, C and D. 
If we judge the size of A to be three times that of B, five times that of C, and twice that of 
D, and then we assess B to be roughly a quarter of C and one-and-a-half times D, and C 
as being five times bigger than D, the resulting matrix is: 

 4 4

1 3.0 5.0 2.0

.33 1 .25 1.5

0.2 4.0 1 5.0

.50 .67 .20 1

A B C D

A

A B

C

D

× =  

  

Only the relative size of the upper diagonal elements of the matrix needs to be judged, 
as all the other values can be derived using the definitions in <2>. Applying equation <3>, 
the mean relative size of each user story is: 

 

2.34

0.59

1.41

0.50

i
mrs





= 



 

By designating D as the reference user story and assigning it 5 story points we anchor 
the scale above and are able to calculate the size of the other user stories using 
equation  <4> 
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The total size for the project is 47.78 story points, with an Inconsistency Index of 0.94 
which yields a size range of  ± 47% for each user story <8>. 

As the estimator is not happy with such a range, he decides to review his judgments. To 
do this, he resorts to equation <1>, which states that, in a perfectly consistent matrix 

ij jk ik
a a a× = , that is, the relative size of user storyi with respect to user storyj multiplied 

by the relative size of user storyj with respect to user storyk must be equal to the relative 
size of user storyi with respect to user storyk. To operationalize this concept, we divide 
equation <1> by ika and obtain <10>. The amount by which equation <10> differs from 1 

when the actual judgments are plugged in is used to identify the largest inconsistent 
judgments (see Figure 3).  
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Figure 3 Tool interface for detecting the most inconsistent judgments. 

Note 1: Each time the “Analyze” button is pressed, a new triad is displayed.  

Note 2: The “spinner” is used to specify the amount over which a given triad is considered 
inconsistent . 

Note 3: The values in the matrix and the estimated value are rounded to the nearest digit 
for display purposes. 

After reviewing the estimates, the estimator decides that A is half the size of C and not 
five times larger as previously stated. So, he records the new judgment in the judgment 
matrix <11>.   

<11> 4 4

1 3.0 2.0

.33 1

.50

2.0

.25 1.5

4.0 1 5.0

.50 .67 .20 1

A B C D

A
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C

D

× =  

 



This change results in the reduction of the Inconsistency Index from 0.94 to 0.27. The 
lower value indicates a more consistent evaluation of the relative size of the user stories. 
The new Inconsistency Index yields a size range for each user story of ± 14%, and the 
estimator decides to accept the results. 

The new total size for the project is 48.7 story points, with individual sizes and standard 
deviations of:  
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5.9 0.83
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4. Reducing the number of comparisons with Incomplete 
Cyclic Designs (ICD) 

4.1. Overview 
The Full Factorial Paired Comparison method provides a solution to the problem of 
dealing with inconsistent judgments. The problem is that the method does not scale up 
as the number of comparisons required grows with the square of the number of user 
stories being estimated. 

To solve it, several authors [9, 10, 15] had proposed the use of Incomplete Cyclic 
Designs (ICDs) to select a subset of the ( )1 / 2n n −  comparisons required by the Full 

Factorial method. Such designs are called fractional designs because they contain only 
a fraction of all possible comparisons. The  ICD technique is used to select which stories 
are to be compared. Starting with one user story, successive comparisons are selected 
in a cyclical fashion using the arithmetic modulo n . This method is further developed in 
the following sections. 

Table 1 shows the results of a series of experiments conducted by Burton [8] to evaluate 
the impact of a reduced number of comparisons in the reliability of the estimates. The 
experiment consisted of evaluating the correlation between the results of a Full Factorial 
estimation with the results of a number of fractional (ICD) designs, each with a different 
r  for two groups with multiple respondents.  

The closer to 1 the correlation between the full factorial and the fractional designs and 
the lower the spread between the lowest and the mean correlations, the more accurate 
and precise the values estimated using the ICD were. 

The dataset used in the experiment consisted of 21 different concepts for which the test 
subjects needed to quantify their semantic similarity. The Full Factorial design required 
210 comparisons. The experiment showed that a fractional design with only 63 
comparisons displayed a high correlation (0.80 to 0.96) between the similarities 
estimated by the two methods. 



 

Table 1 Results of the Burton experiments 

Number of 
comparisons 

in which 
each 

concept was 
included (r) 

Number of 
comparisons 

with respect to 
the complete 

design 

Number of 
comparisons 

in the Full 
Factorial 
design 

Number of 
comparisons in 

the ICD 

Lowest 
correlation 
with results 

from the 
complete 
design 

Mean 
correlation 
with results 

from the 
complete 
design 

Comments 

2 10% 21 .46 .79 

4 20% 42 .58 .95 

Mean 
correlation is 

acceptable, but 
worst-case 

correlation is 
too low 

6 30% 63 .80 .96 

Mean 
correlation and 

worst-case 
correlation are 

acceptable 

8 40% 

210 

84 .97 .98 
Almost as good 
as the complete 

design 

 

4.2. The Fractional Paired Comparison method 
The Fractional Paired Comparison method requires that: (1) we decide which 
comparisons to make; and (2) we compensate for the missing values. This adds two 
new activities to the original process: Generate Incomplete Cyclic Designs and Impute 
Missing Values (see Figure 4), which are explained in later sections. 
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Figure 4 The Fractional Paired Comparison method. Each user story is only compared to 
those indicated by the ICD.  



4.3. Generating Incomplete Cyclic Designs (ICD) 
The proposed Incomplete Design Cycle (ICD) construction process starts by arranging, 
in a random order, the user stories along a circle, and joining adjacent user stories with a 
line. Each line corresponds to a comparison.  

The design generated in this way (see Figure 5.a) consists of a total of 7 comparisons, 
with each user story appearing in two comparisons, one with the user story to its left and 
the other with the one to its right. The design’s distance s is the minimum number of 
hops along the circle needed to reach the stories being compared. In Figure 5.a, 2r =  
and 1s = .  

Additional designs (see Figures 5.b and 5.c) are generated by increasing the distance 
between the user stories compared. ICDs with a higher r  are obtained by merging 
simpler designs, as shown in Figure 5.d, which results from the juxtaposition of the 
designs in Figures 5.a and 5.c.  
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Figure 5 Four different Incomplete Cyclic Designs. 

Note 1: Designs a, b, & c are created by increasing the distance (s) between user stories. 

Note 2: Design d is the result of merging designs a & c. 



 

To operationalize the generation of ICD, we use an adjacency matrix n nG ×  and the 
algorithm in Figure 6. Table 2 shows the matrix representation of the designs in Figure 5.  

 

 

 

 

Table 2 Matrix representation of the designs in Figure 5 

User story A C F D G B E 

A  a, d b c, d    
C   a, d b c, d   
F    a, d b c, d  
D     a, d b c, d 
G c, d     a, d b 
B b c, d     a, d 
E a, d b c, d     

(a) r = 2, s = 1; (b) r = 2, s = 2; (c) r = 2, s = 3; (d) r = 4 

 

4.4. Imputing missing values 
Before we can calculate the size of the user stories, we need to impute the missing 
values of the judgment matrix, that is, those corresponding to the comparisons that were 
skipped by the design, with a representative value. Note that the assignments 1iia =  and 

1/
ji ij

a a= , the elements on the principal diagonal and the reciprocal of the judgments 

respectively, are not missing values and should be made before the imputing 
calculations are performed. 

1. Number the user stories to be sized 0,1,2,..., 1n −  

Create a matrix nxnG ; initially all the elements of the matrix are False  

 if the comparison  is to be included in the design 

 otherwise

ij ijnxn

ij

g True a
G

g False

=
= 

=
 

2. For 1s =  to / 2r                                    ‘r is the desired replication factor 

2.1. For 0i =  to 1n −  

2.1.1. ( )modj s i n= +  

2.1.2. If ( )jiNot g then
ij

g True=    ‘this check prevents the inclusion of an                  

2.2. Next i                                              ‘element if its reciprocal is already included 

3. Next s  

 

Figure 6 ICD-generating algorithm 



As the comparisons to be skipped were selected at random by the ICD construction 
procedure, we can impute them with the mean value [16, 17] of the row to which they 
would have belonged using the algorithm in Figure 7. 

 

Because the number of judgments made in an ICD with replication factor r  is lower than 
in the case of the Full Factorial design, we need to change the formula for the 
Inconsistency Index to reflect the reduced number of degrees of freedom. To do this, we 
substitute in the denominator in <5>  the number of judgments required by the Full 
Factorial  - ( ( )1 / 2n n − ) - with the number of judgments required by an ICD with a 

replication factor of r -  ( / 2r n× ). 

Assume the existence of a judgment matrix n nA ×  filled according to the ICD represented 
by the matrix n nG ×  whose missing 

ij
a values are zero 

1. For 1i =  to n  

1.1. 1; 0;meanvalue c= =  

1.2. For 1j =  to n  

1.2.1. If 0
ij

a ≠ then                

1.2.1.1. 
ij

meanvalue meanvalue a= ×  

1.2.1.2. 1c c= +  

1.2.2. Endif 

1.3. Next j  

1.4. 
1

1cmeanvalue meanvalue −=          ‘this is the row’s geometric mean, the 1c −  in 
                                                           ‘the denominator is used to compensate for the  
                                                           ‘fact that an element is always equal to itself 
1.5. For 1j =  to n  

1.5.1. If 0
ij

a = then                     ‘we assume zero to be a missing value 

1.5.1.1. 
ij

a meanvalue=  

1.5.1.2. 1/
ji

a meanvalue=  

1.5.2. Endif 

1.6. Next j  

2. Next i  

 

Figure 7 Imputation algorithm. 
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The computation of the standard deviation of the size of the user stories <8> remains 
unchanged. 

5. Empirical verification 

In this section, we compare the performance of the Fractional Paired Comparison 
method with the results generated by the Full Factorial method using a set of 15 user 
stories (see Table 3) derived from a popular Canadian job board [18]. The user stories 
are described in Table 3 using the template: “As <role> I would like to <action> so that 
<benefit>”.   

For an evaluation of the paired comparison method against actuals, refer to [7, 19, 20].  

5.1. Method set-up 
The verification was conducted using two subsets of different sizes to explore the impact 
of the number of user stories in the reliability of the fractional method. As we only 
obtained 15 user stories from the website, two of them were included in both sets. The 
same user story was used as a reference to avoid differences originating from the use of 
different references. In Table 3, the numbers in the left-hand column indicate which user 
stories were included in which dataset (1 or 2, or both). 

First, a Full Factorial estimation was performed on each dataset by a senior software 
developer. From these two datasets, the fractional designs were generated by excluding 
from the calculations those values that would have been skipped by the ICDs. This 
approach allowed us to control for the judgment errors associated with repeated 
questioning. 

Figure 8 shows the data and the comparisons included in the first dataset for three 
different designs with r  = 6 (full factorial – 100% of the comparisons), r  = 4 (66% of the 
comparison), and r  = 2 (33% of the comparisons). In Figure 8, only the shaded values 
need to be provided by the estimator. The user story ‘Notification’ is the reference user 
story, and its predetermined size is 10 story points.  

The Full Factorial design required 21 comparisons, while the first and second ICDs 
required 14 and 7 respectively. The results are shown in Table 4.  

The second dataset consisted of 10 user stories, which were estimated using a Full 
Factorial design and 4 different ICDs. The results are shown in Table 5.  

Note that, for both datasets, the minimal replication ICDs, 2r = , correspond  to the 
simple triangulation procedure proposed in the Agile literature. 



Table 3 User stories derived from the job board [18] 

 

Dataset  
(1 or 2) Role Action Benefit 

1 Login I can use the system capabilities reserved for registered job 
seekers. 

1 Logout …to end a session and protect my data from being accessed by 
unauthorized people. 

1,2 Register I can make my data available to headhunters and use the 
system capabilities reserved for registered job seekers. 

1 Search job 
announcements 

I can find selected postings based on keywords or criteria, such 
as job category, location, industry, and city. 

1 Create career alert I will get email notifications whenever a new announcement 
matching the search criteria is first posted. 

2 Suspend career alert I will not receive notifications without deleting the career alert. 

2 Delete career alert I will not receive further notifications. 

1 Upload resume It can be searched and read by recruiters. 

2 

Job 
seeker 

Delete resume It is not longer available to recruiters. 

2 Login I can use the system capabilities reserved for registered 
recruiters. 

2 Logout …to end a session and protect my data from being accessed by 
unauthorized people. 

2 Post I can post a new job announcement. 

2 Edit I can modify an existing job announcement. 

2 

Recruiter 

Delete I can delete an existing job announcement. 

1,2 System 
owner 

Notify I can email all job seekers re new postings, according to their 
career alert status.  

 



 

Story 
Points 

User Story Registration Notification Create Alert Search jobs Login (job 
seeker) 

Upload 
resume 

Logout (job 
seeker) 

 Registration  1.5 2 3    

10 Notification   1.5 2 3   

 Create alert    1.5 2 5  

 Search jobs      1.5 3 4.0 

 Login job seeker 0.25     2.0 2.5 

 Upload resume 0.11 0.17     1.2 

 Logout job seeker 0.10 0.14 0.17     

a) Full Factorial design – r = 6 

Story 
Points User Story Registration Notification Create Alert Search jobs Login (job 

seeker) 
Upload 
resume 

Logout (job 
seeker) 

 Registration  1.5 2     

10 Notification   1.5 2    

 Create alert    1.5 2   

 Search jobs      1.5 3  

 Login job seeker      2.0 2.5 

 Upload resume 0.11      1.2 

 Logout job seeker 0.10 0.14      

b) Fractional design – r = 4 

Story 
Points 

User Story Registration Notification Create Alert Search jobs Login (job 
seeker) 

Upload 
resume 

Logout (job 
seeker) 

 Registration  1.5      

10 Notification   1.5     

 Create alert    1.5    

 Search jobs      1.5   

 Login job seeker      2.0  

 Upload resume       1.2 

 Logout job seeker 0.10       

c) Fractional design -– r = 2 

Figure 8 Empirical verification using three different designs for dataset 1 

Note 1: Figure 8a) Design with r  = 6 (full factorial – 100% of the comparisons),  

Note 2: Figure 8b) Design with r  = 4 (66% of the comparisons) 

Note 3: Figure 8c) Design with r  = 2 (33% of the comparisons). 



Table 4 Dataset 1: Estimation results of 7 user stories for 3 different replication factors 

r  = 6 (Full Factorial) 

21 comparisons 

r  = 4 

14 comparisons 

r  = 2 

7 comparisons User Story 

Estimated 
Story Points Std. Dev. 

Estimated 
Story Points Std. Dev. 

Estimated 
Story Points Std. Dev. 

Registration 14.4 0.3 18.8 4.97 31.9 20.86 

Notification (Reference) 10.0 0.2 10.0 2.65 10.0 6.54 

Create Alert 7.4 0.17 5.7 1.51 6.8 4.45 

Search jobs 5.0 0.11 4.8 1.27 7.5 4.9 

Login job seeker 3.4 0.08 4.5 1.19 9.0 5.88 

Upload resume 1.6 0.04 3.0 0.79 8.6 5.62 

Log out job seeker 1.3 0.0 2.7 0.71 8.0 5.23 

Project Total 43.1 49.4 81.7 

Inconsistency Index 0.06 0.70 1.73 

 



 
Table 5 Dataset 2: Estimation results of 10 user stories for 5 different replication factors 

r  = 9 (Full 

Factorial) 

90 comparisons 

r  = 8 

40 comparisons 

r  = 6 

30 comparisons 

r  = 4 

20 comparisons 

r  = 2 

10 comparisons User story 

Estimated 
Story Points 

Std. 
Dev. 

Estimate
d Story 
Points 

Std. 
Dev. 

Estimated 
Story 
Points 

Std. 
Dev. 

Estimated 
Story 
Points 

Std. 
Dev. 

Estimated 
Story 
Points 

Std. 
Dev. 

Registration 13.0 0.74 13.5 1.49 14.2 2.69 16.4 4.20 29.7 17.94 

Notification 
(Reference) 

10.0 0.57 10.0 1.11 10.0 1.90 10.0 2.56 10.0 6.04 

Post 
announcement 6.1 0.35 6.0 0.66 5.2 0.99 4.1 1.05 5.4 3.26 

Edit 
announcement 

4.4 0.25 4.3 0.48 3.7 0.70 3.6 0.92 6.7 4.05 

Login recruiter 3.0 0.17 2.8 0.31 2.7 0.51 3.1 0.79 7.0 4.23 

Suspend alert 2.3 0.13 2.5 0.28 2.5 0.47 3.3 0.85 7.8 4.71 

Delete alert 1.9 0.11 2.1 0.23 2.7 0.51 3.8 0.97 8.5 5.13 

Delete 
announcement 

1.5 0.09 1.7 0.19 2.4 0.46 3.8 0.97 8.4 5.07 

Delete resume 1.3 0.07 1.5 0.17 2.2 0.42 3.7 0.95 8.7 5.25 

Logout 
recruiter 

1.0 0.06 1.2 0.13 1.8 0.34 3.1 0.79 7.5 4.53 

Project Total 44.6 45.7 47.5 54.9 99.7 

Inconsistency 
Index 

0.18 0.35 0.60 0.81 1.91 

5.2. Discussion of results 
Each ICD’s performance was evaluated using the Mean Magnitude Relative Error 
(MMRE) and the Predictive Quality Indicator (Pred) at the user story level and at the 
project levels. At the user story level, MMRE and Pred were calculated by comparing the 
estimated size of the user stories for a given replication against the value estimated by 
the full factorial method, and, at the project level, we compared the sum of the sizes of 
all the user stories in the project. 

Evaluating the method on these two levels was important, because the planning of each 
iteration requires not only that the overall project size be reliable, but also that the 
estimation of each user story be acceptable. 

The results were  considered acceptable when their MMRE was less than or equal to 
0.25 and their Pred(.25) was greater than or equal to 0.75 [6, 21]. 

Tables 6 and 7 summarize the performance for the estimation results presented in 
Tables 4 and 5. The values obtained show that the fractional designs produce 
acceptable results at the project level with very low r  (r =4), but that good estimates at 
the user story level required higher degrees of replication or lower Inconsistency Index 
values.  As expected, the influence of inconsistent judgments increased with a reduction 



in the number of comparisons, and this resulted in higher MMREs and lower Pred(.25)s in 
the experimental situation. 

Note that, as a consequence of retaining the values from the Full Factorial design to 
control for judgment error in the experiment design, we did not correct any values to 
obtain an Inconsistency Index closer to the recommended 0.35. Had we allowed 
ourselves to perform one or two amendments, as we would normally do in practice, we 
would have brought the index down and improved the MMREs and Pred(.25)s in the low-
replication estimations. Reasoning along this line, triangulating against two other user 
stories (r=2) would require almost perfect consistency on the judgments rendered for the 
extra comparisons to increase the estimate’s reliability. 



 
Table 6 Method evaluation at the user story level 

Replication 

Factor ( )r  
Inconsistency 

Index 
MMRE *

 ( )0.25Pred *
 Comments 

First dataset – 7 user stories 

4 0.70 0.45 0.33 

2 1.73 2.10 0.17 

MMRE and PRED do not meet the established 
criteria.  

Reducing the Inconsistency Index would help 
improve both measures, but, under the stated 
conditions, the method does not produce 
acceptable results at the user story level. 

Notice that the experiment with r = 2 corresponds 
to the triangulation approach recommended in the 
Agile literature. 

Second dataset – 10 user stories 

8 0.35 0.09 1 
Estimates for individual user stories are 
acceptable.  

6 0.60 0.34 0.56 

4 0.81 0.84 0.33 

As the number of comparisons is reduced, the 
MMRE and PRED for individual user story 
estimates start to deteriorate.  

2 1.91 2.85 0.11 
Estimates for individual user stories are not 
acceptable. Note that this is the case for 
triangulation against 2 other user stories. 

* The denominator used in both calculations is the number of user stories – 1, to account for the reference element. 

( )ˆ /
i i i

abs x x x
MMRE

n

−
=
∑

 

( )(0.25) / 1Pred k n= −  is the proportion of observations (k) that fall within 25% of the actual. 

 

Table 7 Method evaluation at the project level 

Projects included in 
the calculation MMRE  ( )0.25Pred  Comments 

All projects 0.43 0.67 MMRE and PRED do not meet the 
stated criteria. 

Excluding projects with 
r  = 2 

0.11 1 

By excluding the projects with a low 
replication factor, MMRE and PRED 
are brought to acceptable levels. 
Estimates produced with r  > 2 are 
adequate at the project level. 

Only projects with r  = 
2 

1.06 0 This corroborates the comments 
made above. 

 

 



6. Summary 

Agile estimation approaches usually start by sizing the user stories to be developed by 
comparing them to one another. Various techniques, with varying degrees of formality, 
have been proposed by the Agile community to conduct the comparisons – plain 
contrasts, triangulation, planning poker, and voting. This article adds to these techniques 
by proposing the use of a modified paired comparison method, in which a reduced 
number of comparisons is selected according to an Incomplete Cyclic Design.  

An empirical verification of this proposal was conducted using two datasets, showing 
that the proposed method produces good estimates, even when the number of 
comparisons is reduced by half those required by the original formulation of the paired 
comparison method. A byproduct of the evaluation is the conclusion that the simple 
triangulation advocated in the Agile literature does not to automatically result in more 
reliable estimates. Low-replication comparisons require a high degree of consistency 
among judgments. 

To confirm these results the authors plan to conduct follow-up studies in their respective 
organizations. 

Although we have used story points to illustrate the article, the techniques described 
could be equally applied using different size units such as lines of code or to the 
estimation of durations using ideal days or effort. 

Those seeking to introduce the method in their organizations must be aware that, while 
people readily buy into the idea of comparing user stories to one another, they tend to 
become discouraged by the underlying mathematics. Therefore, two things are required 
for a successful deployment of the method: first, the careful selection of the number of 
details to be included in training presentations and process documentation; and second, 
the development of a simple spreadsheet to support these calculations. 
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