
International Workshop on Software Measurement (IWSM’01) 137
Montréal, Québec, Canada – August 28-29, 2001

An Integrated Measure for Functional Requirements Correctness

Nihal Kececi & Alain Abran
Department of Computer Science

Software Engineering Management Research Laboratory
Université du Québec à Montréal/École de Technologie Supérieure

www.lrgl.uqam.ca

Abstract

This paper describes and illustrates a methodology for
identifying the correctness of software functional
requirements on the basis of a logic-based dynamic
framework. It focuses on the issues related to user
and/or system functional requirements; quality
attributes, measures and analysis methods, and
integrates the core concepts of the Graphical
Requirement Analysis (GRA) and COSMIC-FFP
techniques:The proposed approach provides a
structured procedure for arranging functional software
requirements into a graphical framework, thereby
providing a means for evaluating their clarity and
their presence/absence. Moreover, the architecture of
this approach makes it possible to trace specific
entities forwards, from system/user requirements to
design, and backwards. The way in which the proposed
Integrated Measure for Functional Requirements
(IMFR) captures critical aspects of functional
requirements such as ambiguous or incomplete
requirements, incomplete linkages from software
requirements to system requirements and to design
and/or to test cases is illustrated. Using a sub-system
of the Generic Westinghouse Reactor Protection
(GWRP) control system case study as an example, we
identify and demonstrate various ambiguities of textual
software requirements.

Key words: Requirements, Testing, Measure,
Completeness, and Software Quality

1. Introduction

The measurement of the quality of software
requirements specifications supports both requirements
engineering (definition and analysis) and requirements
management (change management, impact analysis,
cost estimation, maintainability). This measurement
process is, therefore, important for harvesting the
benefits associated with the early detection and
correction of problems associated with requirements.

A Software Requirement Specification (SRS) has been
defined in IEEE Std 730.1-1989 [1] as follows: “A
Software Requirement Specification (SRS) shall clearly
and precisely describe each of the essential
requirements (functions, performances, design
constraints, and attributes) of the software and
external interfaces. Each requirement shall be defined
such that its achievement is capable of being
objectively verified and validated by a prescribed
method: for example, inspection, analysis
demonstration or test.” Basically. The SRS captures
functional and non-functional requirements as well as
technical requirements. One or more representatives of
the supplier, one or more representatives of the
customer, or both, may write (generally using natural
language) the SRS.

In recent years, researchers have proposed numerous
approaches for specifying/defining, constructing and
certifying requirement correctness for high-quality
software systems. These proposals include formal
methods, semi-formal methods, reviews and analyses,
and traceability analysis. Formalizing the requirements
(in total or in part) cannot be guaranteed to detect all
errors, nor can it ensure that the requirement
specifications are correct. Formal review and
inspection methods based on checklists and predefined
criteria are currently being used as a quality assurance
process for requirement specifications. Although there
are some advantages to guidelines and checklists, they
also have some limitations. For instance, where
guidelines are expressed in general terms, their
interpretation may depend on expert opinion when
objective evaluation is simply not possible.
Furthermore, while a checklist can be used to identify
potential problems, it cannot be turned into measures;
similarly, there is no way to accurately weight the
importance of the various recommendations.
Checklists are most often used in the absence of
available methodologies to address the related issues.

Furthermore, there are two other difficult problems,
which are not being addressed either by formal
methods or by checklists, and addressing these is the
objective of this study.

138

• The first is the need for a graphical method for
storing system requirement specifications and
capturing the software requirements. A graphical
method can contribute to overcoming a weakness
of natural language in vis ualizing functional
requirements by providing both an analytical
synthesis of the requirements and,
simultaneously, a means for verifying the various
levels of detail of the requirements that are
described in the SRS, or those that should have
been included in it.

•• The second is the need for a procedure
standardizing the set of functionalities common to
all systems.

To address these problems, an Integrated Measure for
Functional Requirements (IMFR) has been designed.
The IMFR is based on the strengths of the following
techniques:

• Graphical Requirement Analysis (GRA),
proposed originally to integrate system/software
functional requirements [2,3], translates the
functional requirements from textual form to a
logic-based graphical form.

• COSMIC-FFP, designed and implemented to
measure the functional size of software, provides
a procedure for describing a functional
requirement based on a generic model of a
software functional process. This includes
identification of the sub-processes that must be
designed to support input, process logic, output
and interface data to, from and within the
software.

2. Backgrounds and Related Work

2.1 Requirement Analyses

Descriptions of the functional requirements (what the
system is supposed to do) are provided to the
developers by the stakeholder and are usually prepared
in natural language. However, as noted in one study
[4], “There is no known way in which all the required
details of functionality can be extracted from natural
language text with any degree of certainty.” Contrary
to the views expressed in many books [5,6], “functions
cannot be deduced necessarily or exclusively from the
use of verbs?” Being able to obtain correct
requirements and get them right first time has been a
desire of software engineers, but there has been little
available in terms of analytical tools to equip them
with the adequate means to do so. There is , of course,
even less available to enable them to visualize the
requirement specifications, or the quality of such
specifications.

History tells us that the greatest numbers of errors –
and the errors that are most costly to fix – are
generated at the earliest stages of development.
Problems not found until the testing stage are at least
14 times more costly to fix than problems found during
the requirements phase. The use of natural language to
prescribe complex dynamic system functionality
causes at least two severe problems: ambiguity and
inaccuracy.

Managing the functional requirements is another
critical issue: in most system development programs,
since functional requirements are of a dynamic and
volatile nature. As new requirements are added, or as
existing ones are updated, deleted or modified, a
management process should be in place to provide
traceability and impact analysis to ensure that each of
the changes is properly included in the system
development process. At a minimum, continuous
verification and validation procedures must be in place
to ensure that stakeholder needs are met.

As with other human-designed activities, or processes,
measurement quality is a challenging aspect of getting
these activities or processes right. This is also a valid
concern in the context of getting the requirements
right. Currently, techniques proposed to measure the
quality attributes in the requirements phase are mostly
intuitive interpretations, based on experience and
supported by project feedback; such measures are
either indirect or, at best, nominally based. While
defining and measuring the quality of functional
requirements is critical for project scheduling and
monitoring, there are no published or industry
standards, or guidelines, for SRS measurement. These
issues are investigated in this paper, and a proposal on
how to address these issues with the SRS is presented.

In section 3, existing approaches to requirement
quality attributes are summarized and the
inconsistencies are discussed. This paper focuses on
the challenges faced in measuring the quality of an
SRS from three perspectives: (1) writing a requirement
with correct functionality, (2) managing the volatility
of requirements, and (3) measuring the quality
attributes of requirements. To tackle these problems ,
we introduce an integrated model to provide a new
solution to these challenges. This study also illustrates
how IMFR captures critical aspects of functional
requirements, such as ambiguous or incomplete
requirements, and incomplete linkages from software
requirements to system requirements, as well as to
design and/or test cases.

2.2. Quality Attributes of Software Requirements

In order to implement a successful measurement
program, project managers need well-defined criteria,

139

valid measurement methods and reliable tools and
analytical techniques to help them. If the requirements
are ambiguous, incomplete or difficult to understand,
then the risk of an unsatisfactory final product is
increased. Functional requirements in the SRS should
be traceable from the system requirements (or user
requirements) to the software requirements document,
through design and implementation and through test.
As noted in IEEE 830-1998 [8], “There is no tool or
procedure that ensures correctness, but traceability
makes this procedure easier and less prone to error.”
Besides this , some quality characteristics of the SRS
can be improved or measured while others cannot. For
instance, it may be possible to improve consistency
and correctness, but not completeness.

In addition to the various individual quality models
proposed in the literature, there have been recent
attempts at the standard level (either IEEE or ISO) to
define a more extensive quality model. McCall’s
quality model [10] identifies traceability, completeness
and consistency as being factors contributing to
correctness. Boehm’s quality model [7] gives
completeness and consistency as sub-factors of
RELIABILITY. On the other hand, correctness and
consistency are two sub-factors , which affect
MAINTAINABILITY in the McCall quality model.
Furthermore, according to ISO/IEC 9126 [9],
testability is a sub-factor of maintainability. In
industry, the Software Engineering Technology Center
of the National Aeronautics and Space Administration

(NASA) [11] has selected five quality attributes for
evaluating requirements quality in their applications
(ambiguity, completeness, understandability, volatility
and traceability). The Nuclear Regulatory Commission
[12], in contrast, has defined the requirements quality
attributes as traceability, consistency, correctness,
completeness, verifiability, understandability and
ambiguity.

These various viewpoints on the quality of
requirements are summarized in Table 1. Such a table
of the various approaches highlights on the one hand
that there is not yet a consensus, and on the other hand
that none of these models tackles all the quality issues
identified by any of these models

Both Table 1 and Figure 1 illustrate that, in the current
state of the art, there are gray areas about what should
be measured to ensure quality requirements and how
they should be measured. There are areas where the
initial set of “core” attributes listed in Table 1 overlap,
and this can be visualized in Figure 1, where the
complex relationships between the quality attributes of
software requirement specifications and of their
software product are illustrated, simultaneously taking
into account the information from the three quality
models already presented, plus some information from
other authors.

Table 1: The quality attributes of software requirements

Quality Attributes IEEE Std-
830
[8]

ISO/IEC-9126
Criteria/Sub-criteria

[9]

Boehm
Factor/-Sub-factor-

[7]

McCall
Factor/-Criteria-

[10]

NRC
NUREG

[12]

NASA
SATC
[11]

Traceability X - - Correctness/
-Traceability-

X X

Consistency X - Reliability/
-Consistency-

Reliability &
Maintainability &

Correctness/
-Consistency-

X -

Correctness X - - Correctness X -
Completeness X - Reliability/

-Completeness-
Correctness/

-Completeness-
X X

Verifiability X - - X -
Understandability - Usability/

-Understandability-
Maintainability/

-Understandability-
Maintainability

-Simplicity-

Style X

Ambiguity X - - - X X
Volatility Stability Maintainability/

-Stability-
- - - X

Modifiability X Maintainability/
-Change-ability-

Maintainability/
-Modifiability-

- - -

Testability - Maintainability/
-Testability-

Maintainability/
-Testability-

Test ability
-Simplicity-

- -

140

Figure 1. Analyzing the SRS quality attributes using the GRA Framework

2.3. Logic-based GRA Method [2,3]One way to
avoid the ambiguity inherent in natural language is to
write the SRS in a particular requirement specification
language. A recently developed framework for
building high-quality requirement specifications is
based on the GRA method. GRA provides a graphical
representation of functional requirements on a logic-
based framework. Constructing a function with GRA is
relatively easy for software developers, and the logic-
based graphical method provides a precise,
unambiguous basis for communication between
developers and organizations. Procedures for
constructing functional requirements with GRA have
been summarized in the following four-steps:

Step 1: High-level requirements are collected from the
system specifications and are grouped according to the
goals and functions of the system. Subsequently,
functional requirements are classified into two groups,
describing the main functions and the support
functions respectively. Step 2: Main and support
functions are decomposed hierarchically into
subfunctions. Step 3: The relationships in the
hierarchies are represented by a connection between
different nodes of a hierarchy or between nodes across
two different hierarchies. The relations can be
characterized as logical, physical or fuzzy (this is not
to say that these are all the categories of relationships
in a system). Step 4: The natural language functional
requirements are translated into equivalent

prepositional expressions using the definitions in step
3.

2.4. COSMIC-FFP [13]

Any measurement is based on the common acceptance
of a model of a physical object (or of an abstract
concept such as 'benefits'), on a shared way of
representing it and then on the assignment of a
numerical value according to specified and widely
recognized scales. The measurement of functional
requirements requires similar steps. For instance, the
COSMIC-FFP functional size method recognizes two
major steps for measuring requirements described in
natural language: a mapping phase where the
requirements are mapped in a very generic common
model of the functional user requirements (FURs) of
the software (and of its key concepts), followed by the
assignment of numerical values according to simple
measurement rules, once the mapping has been
completed. COSMIC-FFP requires the execution of the
following tasks for the software to be measured:

a. Identification of the software's functional
boundaries:

b. Identification of the functional process: a

functional process is a unique set of data
movements (entry, exit, read, write) implementing
a cohesive and logically indivisible set of FURs.

c. Identification of the triggering event; a triggering
event occurs outside the boundary of the measured

ISO/IEC 9126

Boehm
McCall

Author (new)

Correctness

Understandability

Volatility

Ambiguity

Completeness

Testability

Modifiability

Traceability

Consistency

Reliability

Verifiability

Usability

Maintainability

Functionality

ISO/IEC 9126

Boehm
McCall

Author (new)

Correctness

Understandability

Volatility

Ambiguity

Completeness

Testability

Modifiability

Traceability

Consistency

Reliability

Verifiability

Usability

Maintainability

Functionality

141

software and initiates one or more functional
processes.

d. Identification of the data groups that pertain to this
process for a specific subprocess.

e. Identification of the data attributes that pertain to
this process for a specific subprocess; a data
attribute is the smallest parcel of information,
within an identified data group, carrying a
meaning from the perspective of the software’s
FURs .

f. Assignment of the numerical values.

Tasks a to e deal with the mapping of the requirements
to a generic model of software, and only step f deals
with the assignment of numerical values. The output of
the mapping tasks then provides a basis upon which to
more easily apply the selected (preferred or
mandatory) quality models to a set of standardized
representations of the functional requirements

Table 2 Criteria of High-Quality SRS

Criteria Description
Functional Requirements

Definition of Functional
Requirements

What the software is to do and how the software should respond to its environment.

Input and Output
Requirements

These specify requirements for input and output of the software.

Software algorithms Detailed description of the software algorithms.

Software data The content of the information flows, with their formats and relationships.

External Interface Requirements
System Interfaces Each system interface should be listed, the functionality of the software required to accomplish the

system requirements should be identified and the interface to match the system described.

User Interfaces

(1) The logical characteristics of each interface between the software product and its users, including such
configuration characteristics as required screen formats, page or window layout, content of any reports or
menus, availability of programmable function keys.

(2) All the aspects of optimizing the interface with the person who must use the system. This may simply
comprise a list of do s and don’ts relating to how the system will appear to the user. One example may be
a requirement to offer the option of long or short error messages.

Software Interfaces The nature of the information flows across software boundaries, where this information is found and
under what conditions. This should be specified for the use of other required software products (e.g. data
management system, an operating system or a mathematics package) and interfaces with other application
systems (e.g. the linkage between an accounts receivable system and a general ledger system).

Hardware interfaces What t he software must do to transfer data across hardware boundaries, e.g. number of ports, instruction
sets, etc.)

Communication interfaces The various interfaces with communications software should be specified, such as local network
protocols, etc.

Constraints
Software constraints Imposed limits placed on the software and its simulation and responses.

Design constraints Are there required standards to be met, e.g. implementation language, policies for database integrity,
resource limits, operating environment(s), etc?

Software error conditions What constitutes a departure from the norm, under which conditions does one occur and what action
should be taken?

Software states Stable modes which the software may assume, under which conditions and as a result of what actions.

Performance Requirements
Time-related issues Speed, response times

Accuracy-related issues An SRS should contain a requirement relating to the accuracy of code predictions relative to the
phenomena to be modeled.

Quality Requirements (non-functional requirements)
Software standards Those forms of representation and the content of the requirements demanded by the development

organization and the user organizations.

Software quality attributes The conditions that the software must meet in order to be considered fit for use in its intended application.
These requirements specify operation of the software, such as portability, maintainability and other non-
functional quality attributes

142

3. The Approach and Its Application
(IMFR)

The IMFR proposed next is an integrated
measurement approach designed to address both the
correct definition of functional requirements and the
measurement of quality in terms of quality attributes
such as traceability, consistency, ambiguity and
completeness. In addition, the GRA notation of the
software functional requirements provides a
visualization of functional requirement correctness.
The COSMIC-FFP measurement rules and
procedures are mapped onto the logic-based
graphical representation of the FUR model of the
software. Injecting the COSMIC-FFP measurement
rules into the GRA framework provides, then, a
structured procedure for identifying functional
system requirements, thereby providing a means for
verifying the clarity and the presence/absence of the
requirements, or details of requirements, which
should meet the broad consensus of a generic model.

The IMFR captures the concepts, definitions,
interfaces and relationships – functional structure –
between user functional requirements and their
subfunctions, within a function and across functions.
Building a measurable functional requirement process
with the GRA method involves three well-known
engineering approaches which have already been used
for modeling and analyzing complex physical systems:
(1) hierarchy theory, (2) the success/failure paradigm,
and (3) Dynamic Master Logic [14]. The consolidation
of the COSMIC-FFP measurement model and
procedures into the GRA method provides the
structural procedures for the IMFR measurement
approach.

3.1 Build Measurable Functional User
Requirements

Terminology: To avoid confusion, we have used the
terminology defined in IEEE 610.12: A software

module that performs a specific action is invoked by
the appearance of its name in an expression; it? may
receive an? input value and return a single value.
When a function is decomposed, subfunctions can be
identified. These definitions of function and
subfunction correspond to the functional
process/subprocess of the COSMIC-FFP measurement
method.Using Hierarchy Theory and Functional
Modeling in the IMFR: Frequently, complexity takes
the form of a hierarchy, whereby a complex system is
composed of interrelated subsystems which, in turn,
have their own subsystems, and so on, until the lowest
level of elementary component is reached. Hierarchic
systems are usually composed of only a few different
kinds of subsystems arranged in various combinations.
Since only a finite number of basic parts constitute the
building elements of a complex system, one only needs
to know the common properties of these basic building
blocks and their interactions with each other in order to
describe the system. This also highlights the important
role of class representation (or, more correctly, the
class object), instances of which describe specific
properties of parts of the system [14]. Since the parts
of a system are functionally interrelated, FURs can be
classified and grouped based on their objectives and
purpose using hierarchy theory and functional
modeling.

Using the Success/Failure Paradigm in the IMFR:
There could be multiple support functions in a
successful implementation of the main FURs , even
though the user might not have a direct interest in
them. Every high-level software functional
requirement can be a function of many variables.
When software functional requirements are defined for
a specific application domain, many subfunctions
and/or subprocesses could contribute to the success of
the main FURs.

143

Figure 2 Success & Failure Paradigm

Using the GRA Framework for the IMFR: This
involves a type of modular decomposition in which a
system is broken down into components, which
correspond to the system functions and subfunctions.
When the hierarchical decomposition has been
completed, subfunctions can easily be obtained. To
achieve the low-level sub-functions, inputs from
outside the boundary are necessary which are not user

requirements, but rather system requirements. Those
inputs could be physical variables (level, pressure,
temperature) or outputs of another function/module
(support function/module), or they may be the
user's/operator’s inputs. As illustrated in Figure 3, in
many cases one input can be used to contribute to the
fulfillment of more than one FUR or subfunction. Each
node in the Figure represents I/O relationships.

Figure 3 Definitions of Requirements with the GRA Methodology

3.2 Procedure of the IMFR Measurement Model

STEP 1: Identify COSMIC FFP boundary
• Define the purpose of each FUR - “What is it

supposed to do?”.
• Apply hierarchy theory on all FURs to define a

functional process.
• Apply the Success/Failure Paradigm on each

FUR to identify each main and support function.

• Apply the GRA framework to define I/O
relationships between the FUR and Support
Functions.

STEP 2: Identify functional processes and
subfunctional processes
• By applying the multilevel hierarchy theory,

define all functions and subfunctions (main or
support);

Success of Requirement

Need A

Need B

Failure of Requirement

Because of A

Because of B

Success of Requirement

Need A

Need B

Success of Requirement

Need A

Need B

Failure of Requirement

Because of A

Because of B

FUR 2 FUR (n)FUR (n -1)FUR 1

FUR 1.1 FUR 1.2

S
R

 1

S
R

 1
.1

S
R

 1
.2

S
R

 2

S
R

 2
.1

S
R

 2
.2

Functional User/System Requirements Specification

S
u

p
p

o
rt

 F
u

n
ct

io
n

s

FUR 2 FUR (n)FUR (n -1) FUR (n)FUR (n -1)FUR 1

FUR 1.1 FUR 1.2

FUR 1

FUR 1.1 FUR 1.2

S
R

 1

S
R

 1
.1

S
R

 1
.2

S
R

 2

S
R

 2
.1

S
R

 2
.2

S
R

 1

S
R

 1
.1

S
R

 1
.2

S
R

 2

S
R

 2
.1

S
R

 2
.2

S
R

 2

S
R

 2
.1

S
R

 2
.2

Main Functions

S
u

p
p

o
rt

 F
u

n
ct

io
n

s

User/operator inputs

Outputs of another function/module

Sensor outputs

Any hardware action

FUR 2 FUR (n)FUR (n -1) FUR (n)FUR (n -1)FUR 1

FUR 1.1 FUR 1.2

FUR 1

FUR 1.1 FUR 1.2

S
R

 1

S
R

 1
.1

S
R

 1
.2

S
R

 2

S
R

 2
.1

S
R

 2
.2

S
R

 1

S
R

 1
.1

S
R

 1
.2

S
R

 2

S
R

 2
.1

S
R

 2
.2

S
R

 2

S
R

 2
.1

S
R

 2
.2

Functional User/System Requirements Specification

S
u

p
p

o
rt

 F
u

n
ct

io
n

s

FUR 2 FUR (n)FUR (n -1) FUR (n)FUR (n -1)FUR 1

FUR 1.1 FUR 1.2

FUR 1

FUR 1.1 FUR 1.2

S
R

 1

S
R

 1
.1

S
R

 1
.2

S
R

 2

S
R

 2
.1

S
R

 2
.2

S
R

 2

S
R

 2
.1

S
R

 2
.2

S
R

 1

S
R

 1
.1

S
R

 1
.2

S
R

 2

S
R

 2
.1

S
R

 2
.2

S
R

 2

S
R

 2
.1

S
R

 2
.2

Main Functions

S
u

p
p

o
rt

 F
u

n
ct

io
n

s

User/operator inputs

Outputs of another function/module

Sensor outputs

Any hardware action

144

• By using the high-quality criteria on all
requirements, define all input/output/trigger
events/time issues of subfunctions and functions;

• By identifying the I/O relationships between each
and every functional process.

STEP 3: Identify Write/Read/Entry/ Exit Data
Elements

Figure 4 Definition of a sub-function/ sub-process into IMRF"Sub-proces" needs another s =
" Sub-process"; also delete hyphen

4. An Example: Reactor Protection System
Trip Function

The various reactor trip signals automatically open the
reactor trip breakers whenever a condition monitored
by the reactor trip system reaches a preset level. The
implementation of the proposed model on the
subfunction of Reactor Protection System Trip
Functions (pressurizer water level control system) is
demonstrated in this section as an example.

4.1 Building Correct Functionality with GRA

STEP 1 Definition of functionality: - “What is the
function supposed to do?” Group them in order of their
goals. The following information is taken from the

Generic Westinghouse Reactor Protection (GWRP)
System Specification [15]:
Reactor protection system functions are designed for:
1. Monitoring the values of specific variables and

comparing them to their respective set point,
2. Initiating reactor trip if the safe operating limits

are exceeded. They will also initiate the
engineering safety features if an accident occurs.

Three pressurizer water level channels are used for the
reactor trip. Isolated signals from these channels are
used for pressurizer water level control.

 EXTERNAL OUTPUTS(ECX)

EX
TE

R
N

AL
 I

N
PU

TS
(E

CE
)

In
te

rn
al

O

ut
pu

ts

(W
rit

e)

Process Logic Sub-proces Logic

Process Logic Sub-process Logic

Internal Inputs
(Read)

In
te

rn
al

In

pu
ts

 (
W

rit
e

)

Boundary

145

Figure 5 Identifying and grouping the FURs into hierarchy

STEP 2 Identify boundaries: As in defined in step 1,
the functional requirements are classified into two
groups: trip function requirements and monitoring
requirements. These requirements are illustrated in
Figure 5 using hierarchy theory. However, this
information cannot provide for the concept of
boundary, or the concepts of subprocess and process,
as mentioned in COSMIC FFP. To fulfill the FUR
successfully, five different inputs are necessary. One
out of five inputs is provided by another requirement
as an input to FUR 79 (output of FUR 87).
Furthermore, FUR 87 has to be obtained from the
output of FUR 86. The I/O relationships (represented

by red dots) between FURs and support functions are
illustrated in Figure 6.

Group A: High Water Level Trip Function (FUR 79):
Group B: Monitor Requirements (FUR 35, 37 and 38)
• FUR 35: All press-water levels and set points are

displayed as percent total water level.
• FUR 37: A circula r indicator labeled “P-7” is

gray when P-7 is FALSE and green when it is
TRUE

• FUR 38: A rectangular indicator labeled “TRIP”
is gray when Trip is TRUE and red when it is
FALSE

Figure 6 Identification of Boundary and I/O relations with GRA

STEP 3: Build functionality using the logic-based
GRA framework: The functional logic of the high
water level trip (FUR79) has been defined in the
software requirements specification, as mentioned

above. However, Figure 7 illustrates that the statement
“IF (2 out of 3x pressure level> high pressure level set
point)” has been interpreted in two different ways by
two different analyzers. The GRA framework can

Trip/Actuator

Req. 38 Req. 37Req. 35

Monitor

Req. 87

Req. 79

Req. 86

FUNCTIONAL USER REQUIREMENTS

Trip/Actuator

Req. 38 Req. 37Req. 35

Monitor

Req. 87

Req. 79

Req. 86

FUNCTIONAL USER REQUIREMENTS

Trip/Actuator

Req. 38 Req. 37Req. 35

Monitor

Req. 87

Req. 79

Req. 86

FUNCTIONAL USER REQUIREMENTS

PRESSURIZER HIGH WATER LEVEL
TRIP FUNCTION REQUIREMENTS

(FUR)

INITIATING TRIP FUNCTION MONITORING REQUIREMENTS

Requirement 79 Requirement 35 Requirement 37 Requirement 38

PRESSURIZER HIGH WATER LEVEL
TRIP FUNCTION REQUIREMENTS

(FUR)

INITIATING TRIP FUNCTION MONITORING REQUIREMENTS

Requirement 79 Requirement 35 Requirement 37 Requirement 38

146

precisely describe functionality to avoid such an
ambiguous, inconsistent and incomplete definition of
an FUR. Once the FUR has been built with GRA,
verification of the FUR becomes much easier.

SRS of High Water Level Trip Function (FUR 79):

Inputs : (1) A-Press-Water-Level, (2) B-Press-
Water-Level (3) C-Press-Water-Level, (3) High-

Press-Water-Level Set Point, (4) P-7, (5) High-
Press-Water Level-Trip Set Point.
Output: High Water Level Trip Function
Logic: IF (2 out of 3x press-level > high press-
level set-point) AND (P-7= FALSE)

THEN high-press-level-trip = FALSE;
ELSE high-press-level trip = TRUE;
END.

Figure 7: Graphical logic-based representations of High Water Level Trip (FUR 79), by two different analysts from
the same FUR description – containing one ambiguous description

The functionality of FUR 79 (a sub-process), as is
shown in Figure 7, can be interpreted in two different
ways by different software designers. GRA is a method
by which these types of ambiguities in functional
descriptions can be avoided and/or captured.

STEP 4: Apply “Success/Failure Paradigm” in the
GRA framework to define the I/O relationships
between subfunctions/support functions and FURs

To succeed, the Trip Function (FUR 79) requires five
inputs. Three level signals are obtained from level
sensor outputs. Also, a set point has been defined,

though the output of permission 7 is provided by
another function of the system. For p-7 (FUR 87) to
succeed, the output of p-10 (FUR 86) is necessary. The
functionality of P-10 is built with GRA and illustrated
in Figure 8. It is clear that FUR 79 needs FUR 87 and
FUR 86 to achieve its functionality. It will then be very
easy to identify input/outputs, subfunctions
(subprocesses), logic and the relationships between
them in the GRA framework, as shown in Figure 8.

Level Signal A

Level Signal B

Level Signal C

High Level
Water Set -point

P-7: Req. 87

Trip Signal to Actuator
Req. 79

2/3

C

And

Level Signal A

Level Signal B

Level Signal C

High Level
Water Set -point

P-7: Req. 87

Trip Signal to Actuator
Req. 79

2/32/3

CC

And

Level Signal A

Level Signal B

Level Signal C

High Level
Water Set -point

P-7: Req. 87

Trip Signal to Actuator
Req. 79

2/3

C

And

C

C

Level Signal A

Level Signal B

Level Signal C

High Level
Water Set -point

P-7: Req. 87

Trip Signal to Actuator
Req. 79

2/32/3

CC

And

CC

CC

147

Figure 8 Success/failure paradigm of trip signal (FUR79) in the logic-based GRA framework.

STEP 5: Implementation of the IMFR
Measurement Model on the GWRP “High Water
Level Trip Function”

• TRIGGER (TIME) : The software samples every
100 milliseconds in real-time. Real time is
accessed by the computer’s internal clock. (FUR
1)

• EXTERNAL INPUTS: LA, LB, LC, FA, FB,
FC, FD (7 FFP)

• EXTERNAL OUTPUTS: trip function
(ON/OFF), monitor requirement {(values of LA,

LB, LC), (position of P-7), (position of trip
function)} (4 FFP)

• INTERNAL WRITE: External inputs {LA, LB,
LC, FA, FB, FC, FD} and subprocess outputs {p-
7, p-10, Trip} (10 FFP)

• INTERNAL READ: L-SP, F-SP, LA, LB, LC,
FA, FB, FC, FD (10 FFP)

Level Signal A

Level Signal B

Level Signal C

High Level Water
Set-point

P-7: Req. 87

Trip Signal to
Actuator Req. 79

2/3

C

And

NOTP-10: Req. 86

C

Power Flux Signal A

Power Flux Signal B

Power Flux Signal C

High Power Set-point

2/4

Power Flux Signal D

Level Signal A

Level Signal B

Level Signal C

High Level Water
Set-point

P-7: Req. 87

Trip Signal to
Actuator Req. 79

2/32/3

CC

And

NOTNOTP-10: Req. 86

CC

Power Flux Signal A

Power Flux Signal B

Power Flux Signal C

High Power Set-point

2/42/4

Power Flux Signal D

148

Figure 9 COSMIC-FFP generic model of software (for functional size measurement) in the GRA method.

4.2 Measuring Functional Correctness with the
IMFR

The architecture of the proposed IMFR model captures
at least1 the following quality attributes of software
functional requirements: ambiguity, consistency,
completeness, traceability.

Completeness: If any input/output of logic has been
forgotten in the SRS, the IMFR can catch them during
the decomposition process. Building functionality
using the architecture of the IMFR requires, and
enforces, the specification of the characteristics of each
FUR, such as the goal of the particular functionality,
inputs, outputs, logic, trigger, boundaries and
interfaces. Missing components and characteristics of
functionality can be detected with the generic built-in
representation of software functionality within the
IMFR.

Consistency: If two FURs are in conflict with each
other in the SRS, because of the tree and lattice
structure of GRA, the IMFR can detect conflict
requirements easily. For instance, one requirement

1 The method can be useful for other quality attributes as well,

such as maintainability (testability, modifiability, volatility).
However, this study focuses only on the correctness attributes
and not on maintainability.

might have specified that the program will add two
inputs and another has specified that the program will
multiply them. One requirement might state that A
must always follow B , while another requires that A
and B occur simultaneously.

Ambiguity: An SRS is unambiguous if, and only if;
every requirement stated therein has only one
interpretation. In the case where a term used in a
particular context could have multiple meanings, with
the logic-based graphical language of the requirements,
the IMFR can capture ambiguity very easily, as
demonstrated in the high water level trip function
example.

Traceability: The architecture of the IMRA provides
the help needed to follow each function in the
requirements phases, from the design through to
implementation. When a requirement in the SRS
represents a derivative of another requirement, both
forward and backward traceability are provided by the
IMFR. In addition, the relationships between different
phases of the development life cycle can be identified
in the same architecture.

Interfaces and boundaries: The hierarchical
decomposition technique is used to decompose each
FUR into independent modules with clearly defined
interfaces and boundaries.

R38 R38 R35 R37R37

PP--77

RAM

TRIPTRIP

PP--77

RAM

LCLC

LALA

LBLB

TRIP TRIP

2/32/3

PP--1010

FAFA

FBFB

FCFC

FDFD

FF--SPSP

LL--SPSP

ROMROM

PP--1010

SOFTWARE OUTPUTS (USER REQUIREMENTS)

S
O
F
T
W
A
R
E

I
N
P
U
T
S

S
U
B
-
P
R
O
C
E
S
S

O
U
T
P
U
T
S

R38 R38 R35 R37R37

PP--77

RAM

TRIPTRIP

PP--77

RAM

LCLC

LALA

LBLB

TRIP TRIP

2/32/3

PP--1010

FAFA

FBFB

FCFC

FDFD

FAFA

FBFB

FCFC

FDFD

FF--SPSP

LL--SPSP

ROMROM

PP--1010

SOFTWARE OUTPUTS (USER REQUIREMENTS)

S
O
F
T
W
A
R
E

I
N
P
U
T
S

S
U
B
-
P
R
O
C
E
S
S

O
U
T
P
U
T
S

149

Verifiability: An SRS is verifiable if, and only if;
every requirement stated therein is verifiable [IEEE
830-1999]. When an FUR is built with the IMRA, it
presents all the necessary characteristics of the
function, including subfunctions and support functions.
For example, the Trip Function (req.79), which is one
FUR, is illustrated with all necessary components in
Figure 8. The complete pressurizer high water level

trip function requirements are also visualized in Figure
10. Users, customers and developers can agree on the
same understanding of functionality in a visual way.
Verification of functional correctness can be provided
when a tool is available for automation.

Functional representation and size measurement
are an integral part of the proposed model.

Figure 10

5. Conclusions and Future Work

In this paper, three different perspectives of Software
Requirement Specification (SRS) have been discussed:
(1) the quality attributes of SRS from a measurement
perspective, (2) the quality criteria of a good SRS from
the quality assurance perspective
(inspection/review/audits), and (3) requirement
analysis methods from the requirements engineering
and management perspectives. It has been illustrated
that, even when using any of these, the description of
an SRS can still be incomplete or ambiguous. To
address this issue, the IMFR approach has been
designed with the following characteristics:

1. The model provides an especially efficient and
accurate way to specify functional requirements.

2. In the model, requirements are expressed using a
logic-based graphical technique which makes it

possible to avoid the ambiguity inherent in natural
language as well as to detect ambiguous FURs.

3. The model provides a mapping from inputs to
outputs into a multi-level detailed system and
software functionality. It can help identify and
define various modules of software or demonstrate
the intended functionality of any FUR.

4. The modular structure can be built into, and
verified in, the architecture of the model. The
model provides the interconnections between
module, functional block, functions and
subfunctions and/or subprocesses.

5. The model captures most of the characteristics of a
high quality SRS, and the criteria that are
recommended in the literature and in various
standards can be built into the architecture of the
model.

6. The model provides a means by which to verify
clarity and its presence/absence.

High Level
Set-point

Display Logic [TRIP]
Req.38

Actuator
 TRIP signal

Req.79
Monitor

Display Logic [LEVEL]
Req.35

Display Logic [P-7]
Req.37

Req.87

Req.79

ECXE C X ECX E C X

Req.86

Level
A

Level
C

Level
B

E C E

E C E

E C E

Flux-
B

Flux-A

Flux-
C

Flux-
D

E C E

E C E

E C E

E C E

High Flux
Set-point

150

References

1. IEEE Std 730.1-1998 IEEE Standard for Quality
Assurance Plans.

2. Kececi, N., M. Modarres and C. Smidts. “System
Software Interface for Safety-Related Digital I&C
Systems”, European Safety and Reliability –
ESREL’99 Conference, TUM Munich- Garching,
September 13-17, 1999.

3. Kececi N., M. Li and C. Smites, C. "Function
Point Analysis: An Application to a Nuclear
Reactor Protection System," International
Topical Meeting on Probabilistic Safety
Assessment –PSA’99, Washington, DC, August
22-25, 1999.

4. Hennell M.A.1987. Requirements, Specification
and Testing. Software Reliability Achievement
and Assessment, Edited by B. Littlewood.
Blackwell Scientific Publication.

5. DeMarco T. 1979. Structured Analysis and
System Specification. Prentice-Hall.Jones C.B.
(1980) Software Development. Prentice-Hall.

6. Jackson M.A. 1983. System Development.
Prentice-Hall.

7. Boehm, B.W., J.R. Brown, J.R. Kaspar, M.
Lipow and G. Mac Cleod. Characteristics of
Software Quality. Amsterdam: North Holland.
1978.

8. IEEE 830-1998, “IEEE Guide to Software
Requirements Specification”.

9. ISO/IEC 9126 “Information Technology Software
Quality Characteristics and Metrics”; Part 1:
Quality model, Part 2: External metrics, Part
3:Internal metrics.

10. McCall, J.A., P.K. Richards and G.F. Walters.
Factors in Software Quality, vol. 1,2 and 3,
AD/A-049-014/015/055. Springfield, VA:
National Technical Information Service, 1977.

11. NASA/ SATC Linda H Rosenberg, T.K hammer,
L.L. Huffman “Requirements, Testing, and
Metrics” NASA SATC Software Engineering
Technology Center http://satc.gsfc.nasa.gov.

12. NRC/NUREG-0800: HICB-BTP-14, “Guidance
on Software Reviews for Digital Computer-Based
Instrumentation and Control Systems”. U.S.A.
Nuclear Regulatory Commission 1999.

13. Abran, A., Desharnais, J.-M., Oligny, S., St-
Pierre, D., Symons, C., COSMIC FFP –
Measurement Manual version 2.1, Montréal
(Canada), May, 2001.
http://www.lrgl.uqam.ca/cosmic -ffp

14. Modarres, M. “Functional Modeling of Complex
Systems Using a GTST-MPLD Framework”.
Proceedings of the 1st International Workshop on
Functional Modeling of Complex Technical
Systems, Ispra, Italy 1993.

15. Westinghouse Technology System Manual,
United States Nuclear Regulatory Commission
Technical Training Center.Rev.0690 Vol.2, p. 12.

16. IEEE 610.12-1990, “Standard Glossary of
Software Engineering Terminology (ANSI)”.

