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Abstract 

This paper describes and illustrates a methodology for 
identifying the correctness of software functional 
requirements on the basis of a logic-based dynamic 
framework. It focuses on the issues related to user 
and/or system functional requirements; quality 
attributes, measures and analysis methods, and 
integrates the core concepts of the Graphical 
Requirement Analysis (GRA) and COSMIC-FFP 
techniques:The proposed approach provides a 
structured procedure for arranging functional software 
requirements into a graphical framework, thereby 
providing a means for evaluating their clarity and 
their presence/absence. Moreover, the architecture of 
this approach makes it possible to trace specific 
entities forwards, from system/user requirements to 
design, and backwards. The way in which the proposed 
Integrated Measure for Functional Requirements 
(IMFR) captures critical aspects of functional 
requirements such as ambiguous or incomplete 
requirements, incomplete linkages from software 
requirements to system requirements and to design 
and/or to test cases is illustrated. Using a sub-system 
of the Generic Westinghouse Reactor Protection 
(GWRP) control system case study as an example, we 
identify and demonstrate various ambiguities of textual 
software requirements.     

Key words: Requirements, Testing, Measure, 
Completeness, and Software Quality 

1. Introduction 

The measurement of the quality of software 
requirements specifications supports both requirements 
engineering (definition and analysis) and requirements 
management (change management, impact analysis, 
cost estimation, maintainability). This measurement 
process is, therefore, important for harvesting the 
benefits associated with the early detection and 
correction of problems associated with requirements. 

A Software Requirement Specification (SRS) has been 
defined in IEEE Std 730.1-1989 [1] as follows:  “A 
Software Requirement Specification (SRS) shall clearly 
and precisely describe each of the essential 
requirements (functions, performances, design 
constraints, and attributes) of the software and 
external interfaces. Each requirement shall be defined 
such that its achievement is capable of being 
objectively verified and validated by a prescribed 
method: for example, inspection, analysis 
demonstration or test.” Basically. The SRS captures 
functional and non-functional requirements as well as 
technical requirements. One or more representatives of 
the supplier, one or more representatives of the 
customer, or both, may write (generally using natural 
language) the SRS.  

In recent years, researchers have proposed numerous 
approaches for specifying/defining, constructing and 
certifying requirement correctness for high-quality 
software systems. These proposals include formal 
methods, semi-formal methods, reviews and analyses, 
and traceability analysis. Formalizing the requirements 
(in total or in part) cannot be guaranteed to detect all 
errors, nor can it ensure that the requirement 
specifications are correct. Formal review and 
inspection methods based on checklists and predefined 
criteria are currently being used as a quality assurance 
process for requirement specifications. Although there 
are some advantages to guidelines and checklists, they 
also have some limitations. For instance, where 
guidelines are expressed in general terms, their 
interpretation may depend on expert opinion when 
objective evaluation is simply not possible. 
Furthermore, while a checklist can be used to identify 
potential problems, it cannot be turned into measures; 
similarly, there is no way to accurately weight the 
importance of the various recommendations. 
Checklists are most often used in the absence of 
available methodologies to address the related issues. 

Furthermore, there are two other difficult problems, 
which are not being addressed either by formal 
methods or by checklists, and addressing these is the 
objective of this study. 
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• The first is the need for a graphical method for 
storing system requirement specifications and 
capturing the software requirements. A graphical 
method can contribute to overcoming a weakness 
of natural language in vis ualizing functional 
requirements by providing both an analytical 
synthesis of the requirements and, 
simultaneously, a means for verifying the various 
levels of detail of the requirements that are 
described in the SRS, or those that should have 
been included in it.  

••  The second is the need for a procedure 
standardizing the set of functionalities common to 
all systems.  

To address these problems, an Integrated Measure for 
Functional Requirements (IMFR) has been designed. 
The IMFR is based on the strengths of the following 
techniques:  

• Graphical Requirement Analysis (GRA), 
proposed originally to integrate system/software 
functional requirements [2,3], translates the 
functional requirements from textual form to a 
logic-based graphical form.  

• COSMIC-FFP, designed and implemented to 
measure the functional size of software, provides 
a procedure for describing a functional 
requirement based on a generic model of a 
software functional process. This includes 
identification of the sub-processes that must be 
designed to support input, process logic, output 
and interface data to, from and within the 
software.  

2. Backgrounds  and Related Work 

2.1 Requirement Analyses  

Descriptions of the functional requirements (what the 
system is supposed to do) are provided to the 
developers by the stakeholder and are usually prepared 
in natural language. However, as noted in one study 
[4], “There is no known way in which all the required 
details of functionality can be extracted from natural 
language text with any degree of certainty.” Contrary 
to the views expressed in many books [5,6], “functions 
cannot be deduced necessarily or exclusively from the 
use of verbs?” Being able to obtain correct 
requirements and get them right first time has been a 
desire of software engineers, but there has been little 
available in terms of analytical tools to equip them 
with the adequate means to do so. There is , of course, 
even less available to enable them to visualize the 
requirement specifications, or the quality of such 
specifications.  

History tells us that the greatest numbers of errors – 
and the errors that are most costly to fix – are 
generated at the earliest stages of development. 
Problems  not found until the testing stage are at least 
14 times more costly to fix than problems found during 
the requirements phase. The use of natural language to 
prescribe complex dynamic system functionality 
causes at least two severe problems: ambiguity and 
inaccuracy.  

Managing the functional requirements is another 
critical issue: in most system development programs, 
since functional requirements are of a dynamic and 
volatile nature. As new requirements are added, or as 
existing ones are updated, deleted or modified, a 
management process should be in place to provide 
traceability and impact analysis to ensure that each of 
the changes is properly included in the system 
development process. At a minimum, continuous 
verification and validation procedures must be in place 
to ensure that stakeholder needs are met. 

As with other human-designed activities, or processes, 
measurement quality is a challenging aspect of getting 
these activities or processes right. This is also a valid 
concern in the context of getting the requirements 
right. Currently, techniques proposed to measure the 
quality attributes in the requirements phase are mostly 
intuitive interpretations, based on experience and 
supported by project feedback; such measures are 
either indirect or, at best, nominally based. While 
defining and measuring the quality of functional 
requirements is critical for project scheduling and 
monitoring, there are no published or industry 
standards, or guidelines, for SRS measurement. These 
issues are investigated in this paper, and a proposal on 
how to address these issues with the SRS is presented. 

In section 3, existing approaches to requirement 
quality attributes are summarized and the 
inconsistencies are discussed. This paper focuses on 
the challenges faced in measuring the quality of an 
SRS from three perspectives: (1) writing a requirement 
with correct functionality, (2) managing the volatility 
of requirements, and (3) measuring the quality 
attributes of requirements. To tackle these problems , 
we introduce an integrated model to provide a new 
solution to these challenges. This study also illustrates 
how IMFR captures critical aspects of functional 
requirements, such as ambiguous or incomplete 
requirements, and incomplete linkages from software 
requirements to system requirements, as well as to 
design and/or test cases.  

2.2. Quality Attributes of Software Requirements 

In order to implement a successful measurement 
program, project managers need well-defined criteria, 
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valid measurement methods and reliable tools and 
analytical techniques to help them. If the requirements 
are ambiguous, incomplete or difficult to understand, 
then the risk of an unsatisfactory final product is 
increased. Functional requirements in the SRS should 
be traceable from the system requirements (or user 
requirements) to the software requirements document, 
through design and implementation and through test. 
As noted in IEEE 830-1998 [8], “There is no tool or 
procedure that ensures correctness, but traceability 
makes this procedure easier and less prone to error.” 
Besides this , some quality characteristics of the SRS 
can be improved or measured while others cannot. For 
instance, it may be possible to improve consistency 
and correctness, but not completeness. 

In addition to the various individual quality models  
proposed in the literature, there have been recent 
attempts at the standard level (either IEEE or ISO) to 
define a more extensive quality model. McCall’s 
quality model [10] identifies traceability, completeness 
and consistency as being factors contributing to 
correctness. Boehm’s quality model [7] gives 
completeness and consistency as sub-factors of 
RELIABILITY. On the other hand, correctness and 
consistency are two sub-factors , which affect 
MAINTAINABILITY in the McCall quality model. 
Furthermore, according to ISO/IEC 9126 [9], 
testability is a sub-factor of maintainability. In 
industry, the Software Engineering Technology Center 
of the National Aeronautics and Space Administration 

(NASA)  [11] has selected five quality attributes for 
evaluating requirements quality in their applications 
(ambiguity, completeness, understandability, volatility 
and traceability). The Nuclear Regulatory Commission 
[12], in contrast, has defined the requirements quality 
attributes as traceability, consistency, correctness, 
completeness, verifiability, understandability and 
ambiguity.   

These various viewpoints on the quality of 
requirements are summarized in Table 1. Such a table 
of the various approaches highlights on the one hand 
that there is not yet a consensus, and on the other hand 
that none of these models tackles all the quality issues 
identified by any of these models  

Both Table 1 and Figure 1 illustrate that, in the current 
state of the art, there are gray areas about what should 
be measured to ensure quality requirements and how 
they should be measured. There are areas where the 
initial set of “core” attributes listed in Table 1 overlap, 
and this can be visualized in Figure 1, where the 
complex relationships between the quality attributes of 
software requirement specifications and of their 
software product are illustrated, simultaneously taking 
into account the information from the three quality 
models already presented, plus some information from 
other authors. 

 

Table 1: The quality attributes of software requirements  

Quality Attributes IEEE Std-
830 
[8] 

ISO/IEC-9126 
Criteria/Sub-criteria 

[9] 

Boehm 
Factor/-Sub-factor- 

[7] 

McCall 
Factor/-Criteria- 

[10] 

NRC 
NUREG 

[12] 

NASA 
SATC 
[11] 

Traceability X - - Correctness/ 
-Traceability- 

X X 

Consistency X - Reliability/ 
-Consistency- 

Reliability & 
Maintainability & 

Correctness/ 
-Consistency- 

 

X - 

Correctness X - - Correctness  X - 
Completeness X - Reliability/ 

-Completeness- 
Correctness/ 

-Completeness- 
X X 

Verifiability X  - - X - 
Understandability - Usability/ 

-Understandability- 
Maintainability/ 

-Understandability- 
Maintainability 

-Simplicity- 
 

Style X 

Ambiguity X - - - X X 
Volatility Stability Maintainability/ 

-Stability- 
- - - X 

Modifiability X Maintainability/ 
-Change-ability- 

Maintainability/ 
-Modifiability- 

- - - 

Testability - Maintainability/ 
-Testability- 

Maintainability/ 
-Testability- 

Test ability 
-Simplicity- 

- - 
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Figure 1. Analyzing the SRS quality attributes using the GRA Framework 

2.3. Logic-based GRA Method [2,3]One way to 
avoid the ambiguity inherent in natural language is to 
write the SRS in a particular requirement specification 
language. A recently developed framework for 
building high-quality requirement specifications is 
based on the GRA method. GRA provides a graphical 
representation of functional requirements on a logic-
based framework. Constructing a function with GRA is 
relatively easy for software developers, and the logic-
based graphical method provides a precise, 
unambiguous basis for communication between 
developers and organizations. Procedures for 
constructing functional requirements with GRA have 
been summarized in the following four-steps: 

Step 1: High-level requirements are collected from the 
system specifications and are grouped according to the 
goals and functions of the system. Subsequently, 
functional requirements are classified into two groups, 
describing the main functions and the support 
functions respectively. Step 2: Main and support 
functions are decomposed hierarchically into 
subfunctions. Step 3: The relationships in the 
hierarchies are represented by a connection between 
different nodes of a hierarchy or between nodes across 
two different hierarchies. The relations can be 
characterized as logical, physical or fuzzy (this is not 
to say that these are all the categories of relationships 
in a system). Step 4: The natural language functional 
requirements are translated into equivalent 

prepositional expressions using the definitions in step 
3. 

2.4. COSMIC-FFP [13] 

Any measurement is based on the common acceptance 
of a model of a physical object (or of an abstract 
concept such as 'benefits'), on a shared way of 
representing it  and then on the assignment of a 
numerical value according to specified and widely 
recognized scales. The measurement of functional 
requirements requires similar steps. For instance, the 
COSMIC-FFP functional size method recognizes two 
major steps for measuring requirements described in 
natural language: a mapping phase where the 
requirements are mapped in a very generic common 
model of the functional user requirements (FURs) of 
the software (and of its key concepts), followed by the 
assignment of numerical values according to simple 
measurement rules, once the mapping has been 
completed. COSMIC-FFP requires the execution of the 
following tasks for the software to be measured:  

a. Identification of the software's functional 
boundaries: 

  
b. Identification of the functional process: a 

functional process is a unique set of data 
movements (entry, exit, read, write) implementing 
a cohesive and logically indivisible set of FURs.   

c. Identification of the triggering event; a triggering 
event occurs outside the boundary of the measured 
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software and initiates one or more functional 
processes.   

d. Identification of the data groups that pertain to this 
process for a specific subprocess.  

e. Identification of the data attributes that pertain to 
this process for a specific subprocess; a data 
attribute is the smallest parcel of information, 
within an identified data group, carrying a 
meaning from the perspective of the software’s 
FURs . 

f. Assignment of the numerical values. 

Tasks a to e deal with the mapping of the requirements 
to a generic model of software, and only step f deals 
with the assignment of numerical values. The output of 
the mapping tasks then provides a basis upon which to 
more easily apply the selected (preferred or 
mandatory) quality models to a set of standardized 
representations of the functional requirements 

Table 2 Criteria of High-Quality SRS  

Criteria Description 
Functional Requirements  

Definition of Functional 
Requirements 

What the software is to do and how the software should respond to its environment. 

Input and Output 
Requirements 

These specify requirements for input and output of the software. 

Software algorithms Detailed description of the software algorithms. 

Software data The content of the information flows, with their formats and relationships. 

External Interface Requirements  
System Interfaces Each system interface should be listed, the functionality of the software required to accomplish the 

system requirements should be identified and the interface to match the system described. 

User Interfaces 

 

(1) The logical characteristics of each interface between the software product and its users, including such 
configuration characteristics as required screen formats, page or window layout, content of any reports or 
menus, availability of programmable function keys. 

(2) All the aspects of optimizing the interface with the person who must use the system. This may simply 
comprise a list of do s and don’ts relating to how the system will appear to the user. One example may be 
a requirement to offer the option of long or short error messages. 

Software Interfaces The nature of the information flows across software boundaries, where this information is found and 
under what conditions. This should be specified for the use of other required software products (e.g. data 
management system, an operating system or a mathematics package) and interfaces with other application 
systems (e.g. the linkage between an accounts receivable system and a general ledger system). 

Hardware interfaces What t he software must do to transfer data across hardware boundaries, e.g. number of ports, instruction 
sets, etc.) 

Communication interfaces The various interfaces with communications software should be specified, such as local network 
protocols, etc.  

Constraints  
Software constraints Imposed limits placed on the software and its simulation and responses. 

Design constraints Are there required standards to be met, e.g. implementation language, policies for database integrity, 
resource limits, operating environment(s), etc? 

Software error conditions What constitutes a departure from the norm, under which conditions does one occur and what action 
should be taken? 

Software states Stable modes which the software may assume, under which conditions and as a result of what actions. 

Performance Requirements  
Time-related issues Speed, response times 

Accuracy-related issues An SRS should contain a requirement relating to the accuracy of code predictions relative to the 
phenomena to be modeled. 

Quality Requirements (non-functional requirements) 
Software standards Those forms of representation and the content of the requirements demanded by the development 

organization and the user organizations.  

Software quality attributes The conditions that the software must meet in order to be considered fit for use in its intended application. 
These requirements specify operation of the software, such as portability, maintainability and other non-
functional quality attributes 
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3. The Approach and Its Application 
(IMFR)   

The IMFR proposed next is an integrated 
measurement approach designed to address both the 
correct definition of functional requirements and the 
measurement of quality in terms of quality attributes 
such as traceability, consistency, ambiguity and 
completeness. In addition, the GRA notation of the 
software functional requirements provides a 
visualization of functional requirement correctness. 
The COSMIC-FFP measurement rules and 
procedures are mapped onto the logic-based 
graphical representation of the FUR model of the 
software. Injecting the COSMIC-FFP measurement 
rules into the GRA framework provides, then, a 
structured procedure for identifying functional 
system requirements, thereby providing a means for 
verifying the clarity and the presence/absence of the 
requirements, or details of requirements, which 
should meet the broad consensus of a generic model. 

The IMFR captures the concepts, definitions, 
interfaces and relationships – functional structure – 
between user functional requirements and their 
subfunctions, within a function and across functions. 
Building a measurable functional requirement process 
with the GRA method involves three well-known 
engineering approaches which have already been used 
for modeling and analyzing complex physical systems: 
(1) hierarchy theory, (2) the success/failure paradigm, 
and (3) Dynamic Master Logic [14]. The consolidation 
of the COSMIC-FFP measurement model and 
procedures into the GRA method provides the 
structural procedures for the IMFR measurement 
approach.  

3.1 Build Measurable Functional User 
Requirements  

Terminology: To avoid confusion, we have used the 
terminology defined in IEEE 610.12: A software 

module that performs a specific action is invoked by 
the appearance of its name in an expression; it? may 
receive an? input value and return a single value. 
When a function is decomposed, subfunctions can be 
identified. These definitions of function and 
subfunction correspond to the functional 
process/subprocess of the COSMIC-FFP measurement 
method.Using Hierarchy Theory and Functional 
Modeling in the IMFR: Frequently, complexity takes 
the form of a hierarchy, whereby a complex system is 
composed of interrelated subsystems which, in turn, 
have their own subsystems, and so on, until the lowest 
level of elementary component is reached. Hierarchic 
systems are usually composed of only a few different 
kinds of subsystems arranged in various combinations. 
Since only a finite number of basic parts constitute the 
building elements of a complex system, one only needs 
to know the common properties of these basic building 
blocks and their interactions with each other in order to 
describe the system. This also highlights the important 
role of class representation (or, more correctly, the 
class object), instances of which describe specific 
properties of parts of the system [14]. Since the parts 
of a system are functionally interrelated, FURs  can be 
classified and grouped based on their objectives and 
purpose using hierarchy theory and functional 
modeling.    

Using the Success/Failure Paradigm in the IMFR: 
There could be multiple support functions in a 
successful implementation of the main FURs , even 
though the user might not have a direct interest in 
them. Every high-level software functional 
requirement can be a function of many variables. 
When software functional requirements are defined for 
a specific application domain, many subfunctions 
and/or subprocesses could contribute to the success of 
the main FURs.  
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Figure 2 Success & Failure Paradigm  

Using the GRA Framework for the IMFR: This 
involves a type of modular decomposition in which a 
system is broken down into components, which 
correspond to the system functions and subfunctions. 
When the hierarchical decomposition has been 
completed, subfunctions can easily be obtained. To 
achieve the low-level sub-functions, inputs from 
outside the boundary are necessary which are not user 

requirements, but rather system requirements. Those 
inputs could be physical variables (level, pressure, 
temperature) or outputs of another function/module 
(support function/module), or they may be the 
user's/operator’s inputs. As illustrated in Figure 3, in 
many cases one input can be used to contribute to the 
fulfillment of more than one FUR or subfunction. Each 
node in the Figure represents I/O relationships. 

 

 
Figure 3 Definitions of Requirements with the GRA Methodology 

 

3.2 Procedure of the IMFR Measurement Model  

STEP 1: Identify COSMIC FFP boundary  
• Define the purpose of each FUR - “What is it 

supposed to do?”. 
• Apply hierarchy theory on all FURs to define a 

functional process. 
• Apply the Success/Failure Paradigm on each 

FUR to identify each main and support function. 

• Apply the GRA framework  to define I/O 
relationships between the FUR and Support 
Functions.  

STEP 2: Identify functional processes and 
subfunctional processes   
• By applying the multilevel hierarchy theory, 

define all functions and subfunctions (main or 
support);  
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• By using the high-quality criteria on all 
requirements, define all input/output/trigger 
events/time issues of subfunctions and functions; 

• By identifying the I/O relationships between each 
and every functional process. 

STEP 3: Identify Write/Read/Entry/ Exit Data 
Elements 

 
 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4 Definition of a sub-function/ sub-process into IMRF"Sub-proces" needs another s =  
" Sub-process"; also delete hyphen 

4. An Example: Reactor Protection System 
Trip Function 

The various reactor trip signals automatically open the 
reactor trip breakers whenever a condition monitored 
by the reactor trip system reaches a preset level. The 
implementation of the proposed model on the 
subfunction of Reactor Protection System Trip 
Functions (pressurizer water level control system) is 
demonstrated in this section as an example.  

4.1 Building Correct Functionality with GRA 

STEP 1 Definition of functionality: - “What is the 
function supposed to do?” Group them in order of their 
goals. The following information is taken from the 

Generic Westinghouse Reactor Protection (GWRP) 
System Specification [15]: 
Reactor protection system functions are designed for:  
1. Monitoring the values of specific variables and 

comparing them to their respective set point,  
2. Initiating reactor trip if the safe operating limits 

are exceeded. They will also initiate the 
engineering safety features if an accident occurs.   

Three pressurizer water level channels are used for the 
reactor trip. Isolated signals from these channels are 
used for pressurizer water level control.  
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Figure 5 Identifying and grouping the FURs into hierarchy 

STEP 2 Identify boundaries: As in defined in step 1, 
the functional requirements are classified into two 
groups: trip function requirements and monitoring 
requirements. These requirements are illustrated in 
Figure 5 using hierarchy theory. However, this 
information cannot provide for the concept of 
boundary, or the concepts of subprocess and process, 
as mentioned in COSMIC FFP. To fulfill the FUR 
successfully, five different inputs are necessary. One 
out of five inputs is provided by another requirement 
as an input to FUR 79 (output of FUR 87). 
Furthermore, FUR 87 has to be obtained from the 
output of FUR 86. The I/O relationships (represented 

by red dots) between FURs and support functions are 
illustrated in Figure 6.  

Group A: High Water Level Trip Function (FUR 79): 
Group B: Monitor Requirements (FUR 35, 37 and 38) 
• FUR 35: All press-water levels and set points are 

displayed as percent total water level. 
• FUR 37: A circula r indicator labeled “P-7” is 

gray when P-7 is FALSE and green when it is 
TRUE  

• FUR 38: A rectangular indicator labeled “TRIP” 
is gray when Trip is TRUE and red when it is 
FALSE  

  
 

Figure 6 Identification of Boundary and I/O relations with GRA 

STEP 3: Build functionality using the logic-based 
GRA framework: The functional logic of the high 
water level trip (FUR79) has been defined in the 
software requirements specification, as mentioned 

above. However, Figure 7 illustrates that the statement 
“IF (2 out of 3x pressure level> high pressure level set 
point)” has been interpreted in two different ways by 
two different analyzers. The GRA framework can 
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precisely describe functionality to avoid such an 
ambiguous, inconsistent and incomplete definition of 
an FUR. Once the FUR has been built with GRA, 
verification of the FUR becomes much easier.  

SRS of High Water Level Trip Function (FUR 79): 

Inputs : (1) A-Press-Water-Level, (2) B-Press-
Water-Level (3) C-Press-Water-Level, (3) High-

Press-Water-Level Set Point, (4) P-7, (5) High-
Press-Water Level-Trip Set Point. 
Output: High Water Level Trip Function  
Logic: IF (2 out of 3x press-level > high press-
level set-point) AND (P-7= FALSE)  

THEN high-press-level-trip = FALSE; 
ELSE high-press-level trip = TRUE; 
END.

  
  
  
  
  
  
  
  
  
  
  
  
  
  

Figure 7: Graphical logic-based representations of High Water Level Trip (FUR 79), by two different analysts from 
the same FUR description – containing one ambiguous description 

 

The functionality of FUR 79 (a sub-process), as is 
shown in Figure 7, can be interpreted in two different 
ways by different software designers. GRA is a method 
by which these types of ambiguities in functional 
descriptions can be avoided and/or captured.  

STEP 4: Apply “Success/Failure Paradigm” in the   
GRA framework to define the I/O relationships 
between subfunctions/support functions and FURs 

To succeed, the Trip Function (FUR 79) requires five 
inputs. Three level signals are obtained from level 
sensor outputs. Also, a set point has been defined, 

though the output of permission 7 is provided by 
another function of the system. For p-7 (FUR 87) to 
succeed, the output of p-10 (FUR 86) is necessary. The 
functionality of P-10 is built with GRA and illustrated 
in Figure 8. It is clear that FUR 79 needs FUR 87 and 
FUR 86 to achieve its functionality. It will then be very 
easy to identify input/outputs, subfunctions 
(subprocesses), logic and the relationships between 
them in the GRA framework, as shown in Figure 8.   
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Figure 8 Success/failure paradigm of trip signal (FUR79) in the logic-based GRA framework. 

STEP 5: Implementation of the IMFR 
Measurement Model on the GWRP “High Water 
Level Trip Function”  

• TRIGGER (TIME) : The software samples every 
100 milliseconds in real-time. Real time is 
accessed by the computer’s internal clock. (FUR 
1) 

• EXTERNAL INPUTS:  LA, LB, LC, FA, FB, 
FC, FD (7 FFP) 

• EXTERNAL OUTPUTS: trip function 
(ON/OFF), monitor requirement {(values of LA, 

LB, LC), (position of P-7), (position of trip 
function)} (4 FFP) 

• INTERNAL WRITE: External inputs {LA, LB, 
LC, FA, FB, FC, FD} and subprocess outputs {p-
7, p-10, Trip} (10 FFP) 

• INTERNAL READ:  L-SP, F-SP, LA, LB, LC, 
FA, FB, FC, FD (10 FFP) 
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Figure 9 COSMIC-FFP generic model of software (for functional size measurement) in the GRA method. 

4.2 Measuring Functional Correctness with the 
IMFR 

The architecture of the proposed IMFR model captures 
at least1 the following quality attributes of software 
functional requirements: ambiguity, consistency, 
completeness, traceability. 

Completeness: If any input/output of logic has been 
forgotten in the SRS, the IMFR can catch them during 
the decomposition process. Building functionality 
using the architecture of the IMFR requires, and 
enforces, the specification of the characteristics of each 
FUR, such as the goal of the particular functionality, 
inputs, outputs, logic, trigger, boundaries and 
interfaces. Missing components and characteristics of 
functionality can be detected with the generic built-in 
representation of software functionality within the 
IMFR. 

Consistency: If two FURs are in conflict with each 
other in the SRS, because of the tree and lattice 
structure of GRA, the IMFR can detect conflict 
requirements easily. For instance, one requirement 
                                                                 
1  The method can be useful for other quality attributes as well, 

such as maintainability (testability, modifiability, volatility). 
However, this study focuses only on the correctness attributes 
and not on maintainability. 

might have specified that the program will add two 
inputs and another has specified that the program will 
multiply them. One requirement might state that A 
must always follow B , while another requires that A 
and B occur simultaneously. 

Ambiguity: An SRS is unambiguous if, and only if; 
every requirement stated therein has only one 
interpretation. In the case where a term used in a 
particular context  could have multiple meanings, with 
the logic-based graphical language of the requirements, 
the IMFR can capture ambiguity very easily, as  
demonstrated in the high water level trip function 
example.   

Traceability: The architecture of the IMRA provides 
the help needed to follow each function in the 
requirements phases, from the design through to 
implementation. When a requirement in the SRS 
represents a derivative of another requirement, both 
forward and backward traceability are provided by the 
IMFR. In addition, the relationships between different 
phases of the development life cycle can be identified 
in the same architecture. 

Interfaces and boundaries: The hierarchical 
decomposition technique is used to decompose each 
FUR into independent modules with clearly defined 
interfaces and boundaries. 

R38 R38 R35 R37R37

PP--77

RAM

TRIPTRIP

PP--77

RAM

LCLC

LALA

LBLB

TRIP TRIP 

2/32/3

PP--1010

FAFA

FBFB

FCFC

FDFD

FF--SPSP

LL--SPSP

ROMROM

PP--1010

SOFTWARE OUTPUTS (USER REQUIREMENTS)

S
O
F
T
W
A
R
E

I
N
P
U
T
S

S
U
B
-
P
R
O
C
E
S
S

O
U
T
P
U
T
S

R38 R38 R35 R37R37

PP--77

RAM

TRIPTRIP

PP--77

RAM

LCLC

LALA

LBLB

TRIP TRIP 

2/32/3

PP--1010

FAFA

FBFB

FCFC

FDFD

FAFA

FBFB

FCFC

FDFD

FF--SPSP

LL--SPSP

ROMROM

PP--1010

SOFTWARE OUTPUTS (USER REQUIREMENTS)

S
O
F
T
W
A
R
E

I
N
P
U
T
S

S
U
B
-
P
R
O
C
E
S
S

O
U
T
P
U
T
S



149 

Verifiability: An SRS is verifiable if, and only if; 
every requirement stated therein is verifiable [IEEE 
830-1999]. When an FUR is built with the IMRA, it 
presents all the necessary characteristics of the 
function, including subfunctions and support functions. 
For example, the Trip Function (req.79), which is one 
FUR, is illustrated with all necessary components in 
Figure 8. The complete pressurizer high water level 

trip function requirements are also visualized in Figure 
10. Users, customers and developers can agree on the 
same understanding of functionality in a visual way. 
Verification of functional correctness can be provided 
when a tool is available for automation.   

Functional representation and size measurement  
are an integral part of the proposed model. 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

 
 
 

 

 

 

Figure 10 

5. Conclusions and Future Work 

In this paper, three different perspectives of Software 
Requirement Specification (SRS) have been discussed: 
(1) the quality attributes of SRS from a measurement 
perspective, (2) the quality criteria of a good SRS from 
the quality assurance perspective 
(inspection/review/audits), and (3) requirement 
analysis methods from the requirements engineering 
and management perspectives. It has been illustrated 
that, even when using any of these, the description of 
an SRS can still be incomplete or ambiguous. To 
address this issue, the IMFR approach has been 
designed with the following characteristics:  

1. The model provides an especially efficient and 
accurate way to specify functional requirements.  

2. In the model, requirements are expressed using a 
logic-based graphical technique which makes it 

possible to avoid the ambiguity inherent in natural 
language as well as to detect ambiguous FURs. 

3. The model provides a mapping from inputs to 
outputs into a multi-level detailed system and 
software functionality. It can help identify and 
define various modules of software or demonstrate 
the intended functionality of any FUR.  

4. The modular structure can be built into, and 
verified in, the architecture of the model. The 
model provides the interconnections between 
module, functional block, functions and 
subfunctions and/or subprocesses.   

5. The model captures most of the characteristics of a 
high quality SRS, and the criteria that are 
recommended in the literature and in various 
standards can be built into the architecture of the 
model.    

6. The model provides a means by which to verify 
clarity and its presence/absence. 
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