
AN INTEGRATED GRAPHICAL ASSESSMENT FOR MANAGING
SOFTWARE PRODUCT QUALITY

Luigi Buglione
Nihal Kececi

Software Engineering Management Research Laboratory
Université du Québec à Montréal
Montréal, Québec, CANADA

Alain Abran

Ecole de Technologie Supérieure
Université du Québec

Montréal, Québec, CANADA

ABSTRACT

Assessing software product quality has become more and more relevant
and important to managers, even though it is still challenging to define and
measure the detailed quality criteria and to integrate them into quality
models. Software engineering standards can help establish a common
language for these detailed criteria and, in parallel, implement a model of
quality from its high-level concepts down to its lowest level of measurable
details; in particular, the revised ISO/IEC 9126 suite of standards
represents a useful taxonomy and framework for specifying software
product quality. Several frameworks and techniques are being built on the
basis of these standards. In particular, the GDQA (Graphical Dynamic
Quality Assessment) framework and the QF2D (Quality Factor through
QFD) technique have been proposed to tackle software product quality
analysis and measurement. This paper examines the structure of both and
integrates them into an Integrated Graphical Assessment of Quality (IGQ)
technique supporting quality assessments and related improvements
through the full software lifecycle.

1. Introduction

Many software product assessment taxonomies have been proposed since the
late ‘70s (McCall, 77) (Boehm, 78) including the ISO/IEC 9126 (ISO/IEC, 1991) standard
on software product quality which, at that time, included only the ISO quality taxonomy
and glossary. Some of the weaknesses of these initial taxonomies are the following:

2 ASQ Software Division 12ICSQ

• Their structure is hierarchical structure, and some have no standards for
measurement or for causal (cause-effect) relationships;

• They have a static viewpoint, as they were initially structured for assessment at the
end of the development process;

• In some instances, proposed checklists for identifying potential problems were based
on the first two layers (characteristics and sub-characteristics) of the taxonomies,
without taking into account the third layer (measures) for analyzing software quality
and for investigating casual relationships in a quantitative manner.

Since then, the ISO in particular has developed, and is publishing in the 2001-2002
timeframe, a whole suite of improved 9126 standards, including a large body of measures
specified from the ISO multiple viewpoints on software quality and on the basis of implicit
high-level relationships across the phases of the development lifecycle. However, this
new suite of ISO 9126 standards does not formally address the causal relationships of
quality at the detailed level of measurement, either within one development phase or
across phases.

In parallel, research has been carried out to represent and make use of the implicit causal
quality relationships. This is done by setting up a graphical hierarchy to represent such
relationships in specific quality assessments:

• Graphical Dynamic Quality Assessment (GDQA), and

• Quality Factors through QFD (QF2D)

The aim of this paper is to investigate how these two pieces of research can be
combined into a more robust approach for measuring and assessing overall software
quality: IGQ (Integrated Graphical Assessment of Quality).

Section 2 presents a high-level review of some of the software product quality
taxonomies, their commonalties and differences. Sections 3 and 4 introduce the GDQA
framework and the QF2D technique respectively, while Section 5 reviews their strengths
and limitations, as well as their complementarities. The result of this analysis is
summarized in an IGQ technique, supporting quality assessments and related
improvements throughout the software lifecycle.

2 Software Product Quality Models

Software can be assessed using a series of predefined quality criteria
(characteristics) by means of measurement. Since the end of the '70s, several quality
models and taxonomies have been proposed (Table 1), some with 2 layers and others
with 3:

• 2 layers (Boehm, 1978) (McCall, 1977) (Dromey, 1995): these models and
taxonomies comprise a set of characteristics, further subdivided into a set of sub-
characteristics;

• 3 layers (IEEE, 1992): this taxonomy comprises a set of characteristics and sub-
characteristics, and a set of specific measures for each.

12 ICSQ ASQ Software Division 3

Table 1 illustrates how various authors, as well as ISO and IEEE standards-setting
bodies, have used different terms and taxonomies for the various levels of their quality
models. In Table 1, the parentheses around “Metrics” (lower row) indicate that the model
architecture does not formally mention that layer, even though it is required for
assessment.

Table 1. Terminology used in Software Quality Models

LAYER MCCALL BOEHM ISO-9126:1991 IEEE1061 DROMEY

1 Factor H-Level Charact. Characteristic Factor H-Level Attribute
2 Criteria Primitive Charact. Sub-characteristic Sub-factor Subordinate Attribute
3 (Metrics) (Metrics) (Metrics) Metrics -

Another classification of QMs is based on how many relationships there are

between the first two layers:

• 1:n relationship, such as in ISO/IEC 9126:1991, where every characteristic has its
own set of sub-characteristics;

• n:m relationship, such as in McCall’s Factor-Criteria Model, where any quality sub-
characteristic can be linked to one or more characteristics.

The 2001-2002 revision of ISO/IEC 9126 proposes three viewpoints of quality
(Figure 1): internal quality, external quality and quality in use. For each quality viewpoint,
a significant number of measures is proposed. This revision recognizes that there can be
multiple quality viewpoints in the assessment of software. Each of these viewpoints can
be associated with different groups of stakeholders, and can be taken into account
concurrently in comprehensive assessment (the Manager, User and Developer groups) in
order to determine the most important quality product attributes within each of their
respective viewpoints 1. Of course, other viewpoints could also be taken into account.
However, the ISO 9126 model does not propose any technique for handling more than
one viewpoint at the same time.

Figure 1. ISO/IEC 1926:2002 Software Product Quality Model

1 An example in a totally different field is wine evaluation, in which "organolectic analysis" is used. Before expressing a final

normalized value (on a 100 maximum point rating), three viewpoints must be taken into account at the same time: sight
(20%), smell (28%), taste (52%), each classified into three or four subcriteria, to be rated on a 5-level scale (from 0 to 4)
and then multiplied by a corrective coefficient.

4 ASQ Software Division 12ICSQ

3 GDQA: Graphical Dynamic Quality Assessment

3.1 Overview

GDQA is a framework (Kececi, 2001) in which it is assumed that any high-level
software quality requirement can be a function of many variables of whole-system
characteristics; that is, there are causal relationships across the various quality
characteristics and sub-characteristics. In any specific quality assessment, the relevant
set of selected software quality characteristics, which can be process-, product-,
management- and/or human-related, are classified into a hierarchical tree structure, as
illustrated in Figure 2. The highest level of this structure consists of quality characteristics
and the lowest level consists of measurable software quality attributes. The main focus in
this approach is the identification of the relationships between the high-level quality
characteristics and the primary data required to observe them in a quantitative manner
(the top and left-hand sides of Figure 2 respectively). This representation of the
implementation of the measures for the ISO 9126 model is described in Figure 2 and is
based on three sets of concepts:

• The selection of a quality model (taxonomy and topology): The GDQA framework
provides a hierarchical representation of the quality requirements of an existing quality
model taxonomy, and topology: this is represented in the top portion of Figure 2 by the
quality characteristics and quality sub-characteristics, and by the selection of specific
measurable attributes of what must be assessed (including the identification and
selection of quality requirements from multiple viewpoints).

• Primary data (direct measure/single numerical value): Primary data are generally
single values collected from process documentation or system/software
specifications, testing reports, etc. (e.g. number of errors, review effort in hours, etc.).
The data can also come from the applications of well-documented measurement
methods, such as is the case for the measurement of the functional size of the
software (ISO/IEC 19761: 2002) (Abran, 2001). In the GDQA framework, the dots
represent the numerical values derived from the primary data, which can then be
used for calculating the numerical value of one or more attributes, as illustrated in
Figure 2.

• Functions. Functions are defined as the transformation of some measures to
represent the expected causal relationship of quality. They can be simple functions –
simple ratios, for instance, based on primary data. They can also be complex
functions with parameters combined according to predefined formulas. The functions
represent the relationships in the hierarchies between the quality requirements, the
measurable attributes and their values in specific instantiations. With GDQA, the
relationships can be characterized as logical mathematical operations, as illustrated
in Figure 2: the mathematical operators being represented by logical connectors, and
their inputs by the dots indicating which primary datum contributes as a parameter in
any specific function.

12 ICSQ ASQ Software Division 5

Figure 2.The Graphical Dynamic Quality Analysis (GDQA) framework

 The GDQA framework has been derived from the core concepts of
functional modeling techniques to identify the relationships between quality characteristics
and primitive measures (data). The GDQA framework, as applied here to a software
engineering context, captures core concepts of many of the 'systems' engineering
approaches that are being widely used for analyzing complex engineering systems; as in
system engineering. GDQA makes extensive use of hierarchy theory, the success/failure
mechanism and functional modeling. Of course, multiple types of functional modeling
from the system engineering of complex systems are available, such as the Goal Tree
Success Tree (GTST), Dynamic Master Logic Diagram (DMLD) and GTST-DML (Kececi,
2001) (Modarres, 1999) (Kececi, 1998) (Kececi, 1999-a, b, and c).

3.2 Strengths

GDQA provides clear and dynamic views to stakeholders on how quality
requirements, as specified in a specific quality model and taxonomy, can be defined and
represented quantitatively. Such a graphical framework representation facilitates:

1) An understanding of the quality requirements, as defined in any quality model
taxonomy;

2) The design of corresponding quality assessment strategies;

Software Quality Assessment

Measure n

Measure 1

Measure 2

Measure 3

Data n

Data 1

Data 2

Data 3

Internal Attribute (1) Internal Attribute (2) Internal Attribute (n)

Sub-Characteristic (1) Sub- Characteristic(2) Sub- Characteristics (n)

Functional Size Measurement

Procedure,
Standard

Requirement Specification

Measurable Attributes

Quality Sub- Characteristics

Quality Characteristics

Size

Characteristic (2) Characteristic (n)Characteristic (1)

Software Quality Assessment

Measure n

Measure 1

Measure 2

Measure 3

Measure n

Measure 1

Measure 2

Measure 3

Data n

Data 1

Data 2

Data 3

Internal Attribute (1) Internal Attribute (2) Internal Attribute (n)

Sub-Characteristic (1) Sub- Characteristic(2) Sub- Characteristics (n)

Functional Size Measurement

Procedure,
Standard

Requirement Specification

Measurable Attributes

Quality Sub- Characteristics

Quality Characteristics

Size

Characteristic (2) Characteristic (n)Characteristic (1)

6 ASQ Software Division 12ICSQ

3) The use of a broad range of quality characteristics, sub-characteristics and
attributes, and their measures – direct/indirect, external/internal – for the whole
system;

4) Identification of the interrelationships between software-, hardware- and human-
related characteristics which have an influence on the quality of the product;

5) Identification, through the dynamic nature of GDQA, of trends in quality by
observing the time behavior of the variables;

The identification of common measures used to compute more than one quality attribute.

3.3 Limitations

Although GDQA focuses on the integration of quality characteristics and their
measurable characteristics, as well as necessary data collection, it does not specify how
they could be useful for different interest groups. Furthermore, multiple stakeholders can
build their own individual and distinct quality models; GDQA does not tackle the issue of
integrating multiple viewpoints of quality and, in such instances, does not provide for a
consolidated assessment of the quality of a software product.

3.4 An example: Analyzing internal reliability measures using GDQA

In the ISO 9126 standard, software ‘reliability’, a characteristic of software quality,
is subdivided into 6 sub-characteristics, one of which is labeled as 'maturity'; a number of
distinct candidate measures are proposed to derive a numerical value for this sub-
characteristic (see Table 2). ISO 9126, however, provides only a sequential, albeit
extensive, inventory of candidate measures within its quality model; it is basically a
catalogue of candidate measures. For a specific quality assessment, candidate measures
from this ISO inventory must then be selected and the GDQA approach applied for the
hierarchical representation of the quality requirements

Figure 3 illustrates an application of the GDQA framework for the ‘reliability’
characteristic of ISO-9126:2002. ISO 9126 defines the following as the sub-
characteristics of reliability: maturity, fault tolerance and recoverability. The numerical
functions proposed by ISO 9126 for these sub-characteristics are listed in Table 2. It can
be observed in Table 2 that the measurable attribute defined as the “number of faults
detected in review” is needed to compute three different measurable attributes, and their
relevant measurement functions (i.e.: fault exposure rate in review, fault removal and
remaining fault density). Each measurable attribute contributes in a distinct way to system
reliability. This contribution is usually represented by a weight derived from the quality
requirements. By contrast, the definitions of the measurement functions are defined by
conventions in the selected quality models. Once both have been selected in a specific
context of quality assessment, GDQA provides a graphical representation to visualize the
expected complex relationships between the quality characteristics, sub-characteristics,
measurable attributes, measurement functions and the base detailed measures required
for its instantiation. This representation helps stakeholders (and developers) to develop a
project measurement plan and to monitor software quality at any time during the
development phases.

12 ICSQ ASQ Software Division 7

Table 2. Candidate measures for the 'maturity' sub-characteristic of the 'reliability' characteristic

Measurable attribute Data or Measures

Name Identifier Measurement
Function

Identifier Data Description

A1 Number of faults detected in review Fault exposure
rate in review

MX1 MX1 = A1/B1
B1 Number of estimated faults to be detected in

review
A2 Numbers of corrected faults in design/c oding….
B2 Number of estimated faults to be detected in

review…

Fault Removal MX2Y2

MX2Y2=MX2/MY2

MX2=-A2/B2
MY2=A2/B3 B3 Number of faults detected in review

A3 Number of estimated faults to be detected in
review

A4 Number of faults detected in review

Remaining
Fault Density

MW3 MX3=(A3-A4)/B4

B4 Estimated program size
MX4=A5/B4 A5 Number of test items, which designed test cases

covered, conformed in review
Test Coverage MX4

 B4 Number of test items which should be covered by
adequate test cases

Figure 3. The GDQA framework for the ISO 9126 ‘maturity’ measurement function

Internal Maturity

A1

B1

A2

B2

A3

A4

MXI MX2 MY2

MX3

MX4

B3

B4

A5

B5

MX2Y2

W1 W4

W3

W2

∑

Internal Maturity

A1

B1

A2

B2

A3

A4

MXI MX2 MY2

MX3

MX4

B3

B4

A5

B5

B4

A5

B5

MX2Y2

W1W1 W4

W3

W2W2

∑∑

DDiirreecctt MMeeaassuurree

WWeeiigghhtt FFaaccttoorr

RRaattiioo oorr ssuubbttrraaccttiioonn

SSuummmmaattiioonn

W
8

∑

8 ASQ Software Division 12ICSQ

4 QF2D: Quality Factor through QFD

4.1 Overview

The original QF technique (Buglione, 1999) allows the integration of multiple sets
of quality assessment measures from several organizational viewpoints to derive a
consolidated quality value; the next QF version (Buglione, 2001) makes available source
data or intermediate results in addition to the consolidated final quality value. This
provides the quality analyst with multiple levels of detail to enable him to understand the
relationships across the many characteristics and sub-characteristics that impact quality.
For his causal analysis, the quality analyst then needs to access all the sources of data
for each different viewpoint which had been taken into account in the final consolidated
result of the quality assessment. With QF2D, it is possible to take into account several
levels of analysis, depending of the objectives of the assessment and the level of
granularity desired. QF2D uses the key concepts of the House of Quality (HoQ) and of its
related matrices to keep track of the intermediate results and calculations. QF2D also
uses Quality Function Deployment (QFD), a well-known method in the manufacturing field
for better management of the initial product requirements prior to the production phase.

QF2D provides
for a normalized
quality value and
profile both prior to
and following
development of a
software product,
based on the
assessment of a
number of stakeholder
viewpoints, and
throughout the software lifecycle, along two main phases we called the D (development)
and I (improvement) phases, as shown in Figure 4. The first matrix allows the targets (e.g.
requirements) for the quality of the software product to be quantified and defined from the
viewpoints (M, U, D)2 on the basis of the ISO product quality characteristics, and
corresponding quality sub-characteristics. These quality goals and quality indications will
be taken into account in the development of the software product. Next, the software is
analyzed, designed, coded, tested and assessed.

In the second matrix, the list of product features delivered is matched to the ISO
sub-characteristics selected as target for the assessment of the product. Moving values
between the two matrices provides feedback based on testing (from D to I matrix). In this
way, QF2D gives a company the opportunity to monitor the quality of a software product in
a dynamic way throughout its lifecycle.

Figure 5 illustrates the structure of the two matrices with the three viewpoint
dimensions (M, U, D) on the left (n possible people per group), together with their sets of
quality requirements (Targets DESi). Then, for each, a priority is assigned on a Likert
scale (from 1 to 5), and then a rating is assigned for each of the sub-characteristics.

2 M = Managers; U = Users; D = Developers

Figure 4. Development (D) and Improvement (I) matrices and QF2D lifecycle

12 ICSQ ASQ Software Division 9

Table 3 presents the elements in the QF2D matrices, which may be different
depending on the lifecycle phases. For example, in the rows of the
development/maintenance matrices, the requirements are the objects of assessment,
while in the Improvement matrices, it is the features of the software product implemented
that are being assessed. By contrast, for both sets of matrices, the elements of the
columns, the list of ISO/IEC 9126 standard sub-characteristics (parts 2, 3 and 4) are the
same. All targets specified in the requirements for the quality sub-characteristics are
expressed using the ISO/IEC 14598-1 scale (from 0 to 3), rather than the usual QFD
symbols used in the HoQ.

Table 3. Elements of the Development (D) and Implementation (I) matrices

 DEVELOPMENT (D) MATRIX IMPROVEMENT (I) MATRIX
Software Lifecycle
phases

• Requirements
• Maintenance

• Testing (V&V Activities)

Object of analysis Software Product (via process) through a TQM approach
Whats (rows) Targets of Requirements Product Features implemented (after coding)
How’s (columns) ISO/IEC 9126:2002 sub-characteristics ISO/IEC 9126:2002 sub-characteristics

Figure 5 Example of the application of the HoQ for the Development Matrix

4.2 Strengths

The main QF2D strengths are:

• Quality assessment profile available throughout the software lifecycle;

• Multiple-viewpoint assessment (M, U, D) of software quality with possible extension to
more than three viewpoints;

10 ASQ Software Division 12ICSQ

• Good tailorability in terms of number of requirements (SRS/FUR3) and groups of
stakeholders;

• Use of the updated version of ISO/IEC 9126 (ISO/IEC, 2000) (with 7 quality
characteristics and 31 sub-characteristics)4;

• Can be used to focus on a particular perspective and a much more in-depth analysis
when required. For example, for an in-depth assessment of usability, another
standard, such as ISO 9241-11, would be used, considering every characteristic as a
separate dimension;

• Can be used with multidimensional performance models (Buglione, 2001-b).

4.3 Limitations

QF2D was designed initially in the context of qualitative assessments based on
expert judgment, both for targets of requirements and for achievements. Its
implementation did not depend on the implementation of measurement programs. While
QF2D uses the key concepts of ISO 9126, it does not use the detailed measures
proposed in the new version of ISO 9126, which had not been published at that time.

5 Integrated Graphical Assessment of Quality

How to integrate the graphical framework and the QF2D technique

The strengths of the graphical framework and the QF2D technique can be
combined to integrate multiple viewpoints taken into account when assessing software
quality. We refer to this as IGQ (Integrated Graphical Quality). For simplicity's sake, the
integration of the two original methods into IGQ are presented here in a high-level view,
referring to a single application phase, even though the approach can be easily expanded
to the desired number of SLC phases.

Four main tasks to be performed:

• Selection of the quality requirements: selection of their most relevant systems and
software functional requirements, from several stakeholder viewpoints;

• Identification and selection of quality characteristics and sub-characteristics, and of
their priority in the implementation of requirements;

• Identification of the measurable attributes to use for monitoring the software project
until its delivery to the customer;

• Calculation of the related numerical value for quality.

3 Software Requirement Specification / Functional User Requirement.
4 Considering ISO/IEC 9126:2002, parts 2 and 3, and also part 4 on “Quality in Use”.

12 ICSQ ASQ Software Division 11

Neither GDQA nor QF2D can accomplish all these tasks, and they cannot do so from all
the possible viewpoints stressed, as illustrated in Table 4.

Table 4. Handling of multiple viewpoints in QF2D and GDQA, in each task

Task
Viewpoint

1. Quality
Requirements

Selection

2. Quality (sub)
Characteristics

Selection

3. Measurable
Attributes
Selection

4. Quality Value
Calculation

Managers QF2D QF2D … QF2D
Users QF2D QF2D QF2D

Developers QF2D / GDQA QF2D / GDQA GDQA QF2D

On the one hand, GDQA provides a means for building a structured and visual
model of the quality requirements on the basis of measurements, and then integration of
the various measures, from the bottom up, through functions. This is usually done from a
single viewpoint; that is, from the Developer viewpoint.

On the other hand, QF2D allows for viewpoints other than the Developer viewpoint
(D) to be taken into account, and then for their integration into a single consolidated value
for quality (with all the sub-levels for analysis). In addition, with QF2D, the inputs to the
quality models do not necessarily need to come from measurement programs; QF2D
allows the collection of 'opinions' about the values of the sub-characteristics, and these
opinions are collected using questionnaires (and the processing, in a quantitative manner,
of the values collected in these questionnaires).

The integration of GDQA and QF2D is illustrated in Figure 6 with an IDEF0
diagram (NIST, 1993).

Figure 6. High-Level IDEF0 diagram for the “IGQ calculation” procedure

IDEF0 methodology takes into account four basic element types, the so-called
ICOM (Input-Control-Output Mechanism), graphically represented with a series of arrows,
into and out of the process box. The main inputs are the software requirement

12 ASQ Software Division 12ICSQ

specifications from the assessed project and the questionnaires completed by
stakeholders on their quality priorities and targets. The Mechanisms used are the data
collection forms, filled in by the stakeholders from the Manager, User and Developer
viewpoints, and the HoQ matrix, managed by the quality analyst (e.g. the measurer). The
Control is given by the standard chosen for software product quality, the new four-part
ISO/IEC 9126:2002. Finally, the Outputs are the IGQ numerical values, expressed as
percentages, the most relevant relationships between project requirements and the 9126
sub-characteristics, in order to derive the quality measures for monitoring the
implementation of the project.

The repeatability of these main tasks in each SLC phase makes it possible to
manage the quality of a software project in a practical way, with a graphical analytical
tool, starting from the ISO quality model and determining the more relevant measures
from this model.

6 Conclusions & Next Steps

Assessing software product quality has become more and more relevant and
important to managers, even though it is still challenging to define and measure the
detailed quality criteria and to integrate them into quality models. One of the main
challenges is to define and use them taking into account multiple stakeholders at the
same time, balancing different – and sometime opposing – requirements and trying to
maximize the organizational target goals, always keeping in mind the “big picture”.

Software engineering standards can help encourage the use of a common
language for the detailed criteria and, in parallel, implement a model of quality from its
high-level concepts down to its lowest level of measurable details; in particular, the
ISO/IEC 9126:2002 suite of standards represents a useful model and taxonomy for
specifying and measuring software product quality. Several tools and techniques are
being built on the basis of this standard. In particular, the GDQA framework and the QF2D
technique have been proposed to tackle software product quality analysis and
measurement. Their main strengths are – respectively – the dynamic analysis of quality
through quality measures from ISO 9126 and the management of quality using a QFD-like
structure.

This paper has examined the structure of both and proposed a way in which to
integrate them into what we call an IGQ (an integrated graphical assessment of quality),
which supports quality assessments and related improvements throughout the full
software lifecycle. The main improvements are given by the utilization of the quality
measures of the quality sub-characteristics chosen in each HoQ matrix for controlling the
development for continuous improvement. IGQ, as QF2D, can be used alone or in
combination with other quantitative frameworks for software performance assessment,
such as QEST/LIME. IGQ can be easily implemented throughout the software lifecycle,
using the data analysis from the development phase as a main input for the maintenance
phase, and again, data analysis from the latter as a main input for the next iterative
development phase.

12 ICSQ ASQ Software Division 13

References

Abran A., Desharnais J.M., Oligny S., St-Pierre D. & Symons C. (2001) COSMIC-FFP
Measurement Manual version 2.1, May 2001, www.lrgl.uqam.ca/cosmic-ffp

Boehm B.W., Brown J.R., Lipow H., MacLeod G.J. & Merrit M.J. (1978). Characteristics of
Software Quality, Elsevier North-Holland.

Buglione L. & Abran A. (1999). A Quality Factor for Software, Qualita99 (3rd International
Congress on Quality and Reliability), Paris, France, March 25-26, 1999,ISBN 2-
900-781-43-4,335-344

Buglione L. & Abran A. (2000). QF2D: a different way to measure Software Quality,
included in: New Approaches in Software Measurement, 10th International
Workshop on Software Measurement, IWSM 2000, Berlin, Germany, October 4-6,
2000. Proceedings, Dumke R. & Abran A. (Eds.), ISBN 3-540-41727-3.

Buglione L. & Abran A. (2001-a). QF2D: Quality Factor through QFD application,
Qualita2001 (4th International Congress on Quality and Reliability), Annecy,
France, March 22-23, 2001, ISBN 2-9516453-0-0, 34-39.

Buglione L. & Abran A. (2001-b). Multidimensionality in Software Performance
Measurement: the QEST/LIME models, SSGRR 2001 (2nd International
Conference on Advances in Infrastructure for Electronic Business, Science, and
Education on the Internet), L'Aquila, Italy.

Dromey R.G. (1995), A Model for Software Product Quality, IEEE Transactions on
Software Engineering, Vol. 21, No. 2, 146-162.

IEEE, Std 1061-1992 (1992). Standard for a Software Quality Metrics Methodology.

ISO/IEC, International Standard 9126 (1991). Information Technology - Software product
evaluation – Quality characteristics and guidelines for their use, Geneva.

ISO/IEC-9126 (2000). Software Engineering- Software product quality, -Part 1: Software
quality model Geneva.

ISO/IEC 9126 (2002) Software Engineering- Software product quality, , Part 2: External
metrics Part 3: Internal metrics, Part 4: Quality In use, (to be published), Geneva.

ISO/IEC 19761 (2002) Software Engineering – COSMIC-FFP: A Functional Size
Measurement Method (to be published), Geneva.

Kececi N. & Modarres M. (1998). Software Development Life Cycle Model to Ensure
Software Quality, International Conference on Probabilistic Safety Assessment
and Management, New York City, NY.

14 ASQ Software Division 12ICSQ

Kececi N., Li M. & Smidts C. (1999-a). Function Point Analysis: An Application to a
Nuclear Reactor Protection System, International Topical Meeting on Probabilistic
Safety Assessment –PSA’99, Washington, DC.

Kececi N., Modarres M., and & Smidts C. (1999-b). System Software Interface for Safety-
Related Digital I&C Systems, European Safety and Reliability – ESREL’99
Conference, TUM Munich- Garching.

Kececi N. & Abran A. (2001), Analysing, Measuring & Assessing Software Quality in a
Logic Based Graphical Model, Qualita2001 (4th International Congress on Quality
and Reliability), Annecy, France, March 22-23, 2001, ISBN 2-9516453-0-0.

McCall J.A., Richards P.K. & Walters G.F. (1977). Factors in Software Quality, Voll. I, II,
III: Final Tech. Report, RADC-TR-77-369, Rome Air Development Center, Air
Force System Command, Griffiss Air Force Base, NY.

Modarres M., Y-S. Hu. (1999). Applying Fuzzy-Logic-Based Hierarchy for Modeling
Behaviors of Complex Dynamic Systems. System & Software Computing in
Nuclear Engineering. Da Ruan ed., Springer-Verlag.

NIST, Integration Definition for Function Modeling (IDEF0), Draft Federal Information
Processing Standard Publication 183, Dec 21 1993.

