
Design of a diagnostic tool to improve the quality of the functional
measurement

Jean-Marc DESHARNAIS1, Tim Küssing2, Alain ABRAN3 André MAYERS4

1 Software Engineering Laboratory in Applied Metrics,

Desharnais.jean-marc@uqam.ca,
2 Department of Data and Information Technology

University of Applied Science, Nuremberg (Germany)
tim.kuessing@gmx.de

3 Département de génie électrique
École de Technologie Supérieure (ETS)

aabran@ele.etsmtl.ca
4 Département de Mathématique et d'Informatique

Université de Sherbrooke
andre.mayers@DMI.USherb.CA

Accepted for publication at IWSM 2002 – Magdeburg (Germany)

Abstract - This document presents the design of a diagnostic tool to assist measurers in applying
consistently and systematically a functional measurement method. The design of the diagnostic
tool is based on the UML (Unified Mark-up Language) method [7] and a specific application of
van Heijst knowledge modeling method [3]. The result is a hybrid diagnostic tool using CBR and
rule based techniques.

1. INTRODUCTION

The application of a software functional measurement method is an intellectual process carried
out on a complex abstract artifacts: this process includes both a mapping phase between the
measurement model and a model of the software, and a measurement phase for the instantiation
of the measurement rules to the derived model of the software to be measured. The application of
a software functional size measurement method in general, and the COSMIC-FFP method in
particular for a given set of software artifacts, is equivalent to solving a specific “problem”, a
measurement “problem” from the measurer’s point of view. The main parameters of the
“problem” are the artifacts of the software (these artifacts are some outputs of the software
development process) and the measurement method concepts and rules. To produce a quality
measure i.e. to insure the accuracy1 of measurement and the repeatability2 of the results of
measurements, the parameters of the “problem” need to be clearly identified, adequately
interpreted, then and only then the “problem” can be solved using appropriate rules. Figure 1
presents the measurer’s cognitive path for solving the “problem” [1, 10]:

- In the understanding phase, the measurer has to gain an adequate understanding of
both types of parameters of the problem on hand.

- In the interpretation phase, the measurer must identify the artefacts which are relevant
to the measurement according to measurement method concepts.

- In the 'using' phase, the measurer must next establish a link between an ontology
related to the software development process and ontology related to the measurement
method. According to Grüber, “ontology is an explicit specification of a
conceptualization” [2].

- In the last phase, solving his measurement “problem”, the measurer must rely on his
implicit knowledge about the software development process and on his knowledge
about the different measurement tasks he must perform to solve his “problem”.

It is challenging for any measurer to apply consistently and systematically a functional
measurement method to software applications that can be quite complex and/or from various
application domains. To support the measurers, we propose here a diagnostic tool to improve the
quality of the measurement results, and of course the performance of the measurers in terms of
ease of use and consistency of the measurement results. This paper discusses the knowledge
modelling methodology use to design the framework to map the software development process
concepts to the functional measurement method tasks, and to embed it into a diagnostic tool.

Understanding UsingInterpreting Solving

Figure 1: Measurer cognitive path

1 Accuracy of measurement: closeness of the agreement between the result of a measurement and a true
value of the measurand (qualitative) [9].
2 Repeatability of results of measurements: closeness of the agreement between the results of successive
measurements of the same measures carried out under the same conditions of measurements (quantitative)
[9].

2. CLASS DIAGRAM, USE CASES AND SCENARIOS

A class is “a description of a set of objects that share the same attributes, operations, methods,
relationships, and semantics. A class may use a set of interfaces to specify collections of
operations it provides to its environment” [7]. There are a number of classes in our class diagram
(figure 2) (“diagram that shows a collection of declarative - static- model elements, such as
classes, types, and their contents and relationships” [7]:

Session
*Session Id

Session Date
Starting time
Ending time

Name of measurer (note)*

Case problem

*Problem Id
Case description

Reference Id*
Session Id*

Topological

*Topological concept
Topological description

Reference Id*
Diagnostic model Id

Identification (standard)
Characterictics

Problem Id*
% relation TC-P

Themes

*Theme Id
% relation Q-CP

Theme Description
Reference Id*
Problem Id*

Is associate to

Recommendation

*Recommendation no
Recommendation description

Reference no*
Case no*

Soulèvent des

Brings up

Fact

*Fact Id
Type of fact
Theme no*

Reference no*
Fact description
Info quality (%)

Adjustment

*Adjustment Id
Choice Id*

% Believe choice
% Info qualityCorrespond to

Measurer follow-up
*User Id

Session Id*
Session date*

Start time*
End time*
Keyword

Topological concept Id*
Problem Id*
Theme Id*

Fact (choice)
Info quality answer %
Recommendation Id*

/Results Recommendation %

Are element of
information of

Is an element of information of

Error messages

*Error Id
Text

Class Diagram

References

*Reference Id
Hypertext link

File name
Text

Problem
Themes
Actions

Parameters
Facts

Recommend

had

Group of class
(Facilitate the reading)

has

Parameters

*Parameters Id
Diagnostic model Id

Reference Id*

Topology
Case problem

possess

Password

*Password Id
User (note) name*

Status

Language

Language no
Word description
Language 1,2 3...

Keyword
*Keyword Id

Keyword
Keyword description

Reference Id*
Topological concept*

% relation K-TC

Answers
*Measurers
*Sessions

*Topological concept
*Case problem Id

*Theme Id
Answers

1,n

Results
*Measurers
*Sessions
*Problem
*Answers

Results Problem
Results Recommendation

1,n

All

Note: User= Expert or Measurer

Figure 2 Class Diagram

A use case is “the specification of a sequence of actions, including variants that a system (or other
entity) can perform, interacting with actors of the system. Our use case diagram (diagram that
shows the relationships among actors and use cases within a system) is the following:

Expert

Topological concept
management

UC-3

Problems management
UC-4

Theme management
UC-5 S-2 S-3

Recommendation
management
UC-6 S-2 S-3

Manage assignment of
theme to a problem

UC-5 S-1

Assign a
recommendation to a

problem
UC-6 S-1

Global parameters
management

UC-7

MeasurerThemes and facts
UC-4

Use cases diagrams
UC = Use cases S= Scenarios

Enter a keyword
UC-2 S-2

Find topological
concept

UC-2 S-1

References
UC-5

use use

use

use

assign

assign

User and password
management

Starting a session
UC-1

Choose problems
UC-3

use

Messages management
UC-9

References
management

UC-8

Reports on sessions
and measurer follow-up

UC-10 UC-11

Keyword management
UC-9

Figure 3 : Uses case diagram

There are two actors (or agent): the measurer and the expert. An actor is “a coherent set of roles
that users of use cases play when interacting with these use cases. An actor has one role for each
use case with which it communicates” [7].
A scenario is “a specific sequence of actions that illustrates behaviors”. There are many
scenarios in our software. This is an example describing the registration of a measurer in a
session.
Use case 1: Measurer registration to a session
Scenario 1: Session registration
Description A screen allowing to enter the identification of the measurer and the password
Primary education actor: Measurer
Secondary actor No
Pre condition No
Short description The measurer enter his name (recognized by the software) and his password.
The identification of the session is created automatically by the software.
Exception If the name and the password do not correspond to the content of the class password,
there is an error message
Post-condition (rules of termination) Access to the software
Classes used: session, measurer
Data exchanged: Identification of the measurer, password, identification of the session
User interface: see table 1
Calculation Yes: No: X

Table 1 Example of a scenario

3. KNOWLEDGE MODELING

To ensure consistency of the measurement results (and of the teaching of such a measurement
method) it is useful to describe in a more explicit manner both types of knowledge. In this
section, we take a look at the relationships between the different types of knowledge identified in
the literature and the measurer’s path for solving the “problem”. According to van Heijst [3],
there are at least five different types of knowledge to be taken into account when constructing a
diagnostic tool: tasks, problem-solving methods, inferences, ontologies and domain knowledge.
For each type, we provide in [8] examples of the elements we integrated into the design of the
tool for software functional size measurement.

4. TASK MODEL FOR ESTABLISHING A DIAGNOSTIC TOOL

Van Heijst [3] suggests the following approach for building a knowledge model3:
- Construct a task model for the diagnostic tool;
- Select and configure appropriate ontologies, and, if necessary, refine them;
- Map the application ontology onto the knowledge roles (figure 1) in the task model;
- Instantiate the application ontology with domain knowledge.

For now we will concentrate on the construction of the task model and then show in the next
section, as an example, how the user interface looks like. Selection, mapping and instantiation
are presented in [8].

NO. TASK DESCRIPTION
1. Entering a keyword The measurer will enter a keyword that will help the tool find the topological

concepts related to the case problem

2. Searching a topological
concept

The tool will present the topological concepts to the measurer

3. Giving priority to
topological concepts

The tool will present the topological concepts in order of priority to the measurer

4. Choosing a topological
concept

The measurer chooses one or multiple topological concepts

5. Finding a case problem The tool will find the case problems related to the topological concepts chosen by
the measurer

6. Giving priority to the
case problems

The tool will present the case problems in order of priority to the measurer

7. Choosing case
problems

The measurer will choose the case problems corresponding with his/her
interpretation of the problem

8. Displaying themes The tool will show all the themes related to the case problems to the measurer

9. Answering the themes The measurer will find facts for each theme

10. Rating the facts An algorithm will rate the fact chosen

11. Displaying the results The percentage will be presented to the measurer

12. Assessing the results The tool will assess the results based on the heuristics

13. Recommending The tool will recommend either a solution to each case problem, another case
problem and/or an explanation to the case problem not solved

14. Displaying others case
problems

The tool will suggest one or more new case problems to the user

15. Displaying an
explanation

The tool will give an explanation about the solution if necessary

3 In the context of our project, the way we used van Heijst approach is not as generic as the way he propose
it.

16. Acceptable The measurer will decide if the recommendation is acceptable

17. Choosing case
problems (new)

The measurer will choose another case problem, either one already suggested by the
tool or his own.

Table 2: Task Model

The link between each task is the following:

Entering a
keyword

Choosing
topological
concepts

Searching a
topological

concept

Finding case
problems

Showing
themes

(for all retain case
problems)

Choosing
case

problems

Answering to
the themes
using facts

Interpreting
the answers
(using facts)

Showing
results

Acceptable?

End

From
measurer

From logic

Heuristic
formula

Measurer
decision

EndGiving priority
to topological

concepts

Giving priority
to the

case problems

Assessing
the results

RecommendingProblem solve

With recommendationNo

Yes

No

Choosing
case

problems
(new)

New keyword

No choice

Showing others
case problems

Showing
explanation

Figure 4 Task model

Figure 4 shows the dynamic of the role of the measurer when going through each task. Each
square box shows where the measurer needs to intervene (entering a keyword, choosing
topological concepts, choosing case problems, answering to the themes using facts). The first
part is more CBR type, while the second part is rule based. There are heuristics formulas
represented by a pentagon (giving priority to topological concept, giving priority to the case

problems, interpreting the answers, assessing the results). Some of them used certainty theory
formulas proposed in MYCIN.

5. MEASURER INTERFACE

The measurer, using the interface, is following the task model.

Figure 5 Measurer interface

The measurer selects a list of keyword (right at top) and then the interface populates topological
concept, case problem and theme. The measurer could choose which topological concept he/she
wants to keep. If so, this will change the list of case problems. Again the measurer can choose
case problem to keep. This will affect the themes. The measurer will then choose the facts
appropriated to each theme. This will lead to a calculation to provide recommendations with a
percentage of probability. The inference used is based on certainty theory. We do not have
enough space to explain it in this article. There are also sub tasks not describe. For example, it is
possible for the measurer to have a definition of the key concepts using the ontology button. It is
also possible to obtain a definition of each keyword. Also, the interface can be interchangeable,
using different languages.

6. REFERENCES

[1] Desharnais J.-M., Abran A., Applying a Functional Measurement Method:
Cognitive Issues, International Workshop on Software Measurement - IWSM 2001,
in Current Trends in Software Measurement, Shaker Verlag, Aachen (Germany),
2002, pp. 26-50.

[2] Grüber T.R., A translation approach to portable ontologies specifications,
Knowledge Acquisition, 5:199-220, 1993.

[3] Van Heijst G., Schreiber A.Th. & Wielinga B.J., Using Explicit Ontologies in
KBS Development, 1997.

[4] Boehm, B., Software Engineering Economics, Prentice Hall, 1981.
[5] Abran, A., Moore, J., Bourque, P., Dupuis, R. L. Tripp, L., Guide to the Software

Engineering Body of Knowledge – SWEBOK, Trial Version, IEEE-Computer
Society Press, Dec. 2001, URL: http://www.swebok.org

[6] Abran, A, Desharnais, JM, Oligny, S., St-Pierre, D.,Symons, C.,COSMIC-FFP
Measurement Manual version 2.1, May 2001, URL:
http://www.lrgl.uqam.ca/cosmic-ffp

[7] Rational Software Corporation, UML Semantics Appendix M1-UML Glossary,
version 1.0 , 13 January 1997

[8] Desharnais J.M., Abran, Mayers A., Buglione L., Bevo V., Knowledge Modeling
for the Design of a KBS in the Functional Size Measurement Domain, KES 2002,
Italy, 7 pages.

[9] Vocabulaire international des termes fondamentaux et généraux de métrologie
Accord international sur la terminologie, résultant de la collaboration entre des
experts nommés par le BIPM, la CEI, la FICC, l'ISO, l'OIML, l'UICPA, et
l'UIPPA, 60 p., bilingue1993.

[10] Desharnais J-M, Abran A., Mayers A., Buglione L., Bevo V., A Knowledge-Based
System in Functional Size Measurement, Departemental document, University of
Quebec in Montreal, 2002, 15 p.

On the WEB:
http://smi-web.stanford.edu/projects/history.html#MYCIN

