In search of software engineering principles:

1996-1998 Delphi studies to develop a group consensus

Robert Dupuis - Pierre Bourque Alain Abran - James W. Moore

List of topics

- Introduction: Standards & Principles
- Delphi Studies Objectives & Rounds
- Criteria and Participants
- Outcomes

Standards Strive to Balance Principles and Practice

Standards strive to integrate and organize strengths of *a priori* principles with 'best' practices observed in the messy real-world.

In many disciplines, *a priori* considerations are provided by science and mathematics. Sometimes they are provided by 'traditions' or by market forces. In software engineering, there is no agreement on such *a priori* and we have to discover and figure out what are its principles.

L1 We have to invent 'what'? LOG, 20/08/2007

Fundamental Principles of Software Engineering

A collaborative Effort: IEEE Computer Society & Université du Québec (UQAM-ETS)

The 1996-1998 Search Process

Criteria: Principles must be ...

- Less specific than methodologies
- More durable than methodologies and techniques
- Extracted from practice
- Linked to at least one underlying concept of SE
- Not involve a trade-off
- Be specific enough to be able to demonstrate experimentally that not applying the principle leads to bad consequences (e.g. undesirable outcomes).

L2

L2 Est-ce le bon mot en anglais? LOG, 20/08/2007

Objectives of Delphi I (Three rounds)

- Evaluation of criteria
- Identify and evaluate candidate principles
- Propose recommendations on criteria & principles

Participants

- M. Azuma, Waseda University, Japan
- F.P. Brooks, U. of North Carolina, USA
- R.N. Charette, ITHABI Corp., USA
- P. DeGrace, Consultant, USA
- C. Ghezzi, Politecnico di Milano, Italie
- T. Gilb, Result Planning Ltd, Norway
- B. Littlewood, City University, G-B

Participants

- S. MacDonell, U. of Otago, New-Zealand
- T. Matsubara, Matsubara Consulting, Japan
- J. Musa, Consultant, USA
- R. Pressman, R.S. Pressman & Associates, USA
- M. Shaw, Carnegie-Mellon U. USA
- Two participants chose to remain anonymous

ROUND 1

- Objectives
 - Get candidate principles
 - Get justifications
 - «Formulate what you would consider five Fundamental Principles of Software Engineering»
- Results
 - 13 participants contributed
 - 65 suggestions
- Outcome
 - Consolidated into 16 PFs

(Including elimination of duplicates)

ROUND 2

- Objectives
 - Evaluate (on a scale 1-10) the 16 candidates
 - Get additional justifications on the score
- Results
 - 10 participants contributed

ROUND 3

- Objectives
 - Measure the level of consensus on the average scores from Round 2 outcome
 - 12 participants contributed

Fundamental Principles of SE

- A. Apply and use quantitative measurements in decision-making
- B. Build with and for reuse
- C. Control complexity with multiple perspectives and multiple levels of abstraction
- D. Define software artifacts rigorously
- E. Establish a software process that provides flexibility
- F. Implement a disciplined approach and improve it continuously
- G. Invest in the understanding of the problem
- H. Manage quality throughout the life cycle as formally as possible
- I. Minimize software component interaction
- J. Produce software in a stepwise fashion
- K. Set quality objectives for each deliverable product
- L. Since change is inherent to software, plan for it and manage it
- M. Since tradeoffs are inherent to software engineering, make them explicit and document them

14

- N. To improve design, study previous solutions to similar problems
- O. Uncertainty is unavoidable in software engineering. Identify and manage it Engineering Foundations of Software Engineering ICEE Workshop – Coimbra Sept 2, 2007

Recommandations

- Validate the list through a second Delphi study with experts of the IEEE software engineering community
 - [Walnut Creek, CA, June 1997]
- Cross-check with practitioners
 - members of the IEEE Computer Society

Recommendations

- Improve the list by using it to analyze:
 - the current SE standards portfolio [Walnut Creek, CA, June 1997]
 - the SE body of knowledge as stated in current textbooks
 - the SE curriculum

Modifications for Delphi II

- Removal of three candidates
- Addition of:
 - To improve design, study previous solutions to similar problems
 - Control complexity with multiple perspectives and multiple levels of abstraction

Delphi II

- 72 experts of the Computer Society:
 - Technical Council on Software Engineering
 - Editorial committees:
 - 'Software'
 - 'Transactions on Software Engineering'
- 30 participants contributed
- Results very similar to Delphi I

Last step : Web-based Survey of practitioners

- Participants from 48 countries
- Employers: R&D, software development, education, ...
- Education level:
 - 43% : Ph.D.,
 - 35% : Masters,
 - 19% : Undergraduates

Last step: Web-based Survey

- # of years of experience in industry: :
 - -9% : 30+ years
 - 30% : 20-29 years
 - 48% : 10-19 years
 - 13% : 1-9 years

Data

- Quantitative:
 - Scores on each of the 15 candidate principles
 - Measures of consensus level relative to each score
- Qualitative:
 - Comments on candidate principles

Quantitative data analysis

- Average and median scores for each principle
- Assessment of consensus level on each principle
 - including standard deviation

Most popular

- L. Since change is inherent to software, plan for it and manage it.(9.1-12)
- G. Invest in the understanding of the problem. (8.7-10)
- M. Since, trade-offs are inherent to software engineering, make them explicit and document them. (8.4-11)
- P. Uncertainty is unavoidable in software engineering. Identify and manage it. (8.0-11)

Least popular...

- N. The requirements must be firm and fixed (3.3 9)
- O. The tools, methods, and support systems must be designed and selected to support the software engineers. (4.2 10)
- C. Deal with different individual aspects of the problems by concentrating on each separately. (4.9 6)

Conclusions

- Delphi method proved appropriate when expert opinion is the main source of information
- Results form Delphi study can be used for surveys or experimentation

Some surprises...

- A. Apply and use quantitative measurements in decision-making. (7.6 9)
- F. Implement a disciplined approach and improve it continously. (6.9 7)
- D. Define software artifacts rigourously. (6.4 -8)
- H. Manage quality throughout the life cyle as formally as possible. (7.8 9)

Others...

- B. Build with and for reuse. (8,0 9)
- E. Establish a software process that provides flexibility. (7,6 10)
- I. Minimize software components interaction. (7,3 11)
- J. Produce software in a stepwise fashion. (7,7 8)
- K. Set quality objectives for each deliverable product. (7,7 11)

Importance of 'Measurement' in SE: quantitative data analysis

- Selection of comments relative to measurement
- Issues identified from analysis of comments
- Links to literature
- Statement of research issues

Importance of 'Measurement' in SE : Analysis of qualitative data

Comments:

- « Measurement is important, but it should deliver value commensurate with the cost of collecting and analyzing information »
- « While I am a proponent of quantitative measurement, decisions should be based on the amount of information that is cost-effective to acquire given the importance (\$) of the decision »

Importance of 'Measurement' in SE : Analysis of qualitative data

- *Issue*: Value attributed to measurement may not be higher that its costs
- *Link to literature*: How much effort should one invest in software defects measurement? (Weller 1994)
- *Question*: Is there a method to evaluate costs/benefits of measurement ?