
 6-1

WHAT DO YOU NEED TO KNOW ABOUT SOFTWARE
MAINTENANCE

Alain April, A. Abran and R. Dumke

Software accounts now for a increasing share of the content of modern equipments and tools, and must
similarly be maintained to ensure its continuous operational efficiency. Although the maintenance of the
equipments is discussed extensively, very little is published about software maintenance and how it affects
us. This paper presents an overview of key topics of software engineering maintenance.

Has your production ever been stopped because of a software problem?

Software maintenance is indeed required to support many key equipment and product lines throughout their
daily operational cycles. For instance, software-related problems and modification requests are sent to the
supplier of the product where it is logged and tracked, the impact of proposed changes is determined,
software code is modified, testing is conducted, and a new version of the software product is released. This
looks quite simple, but if it were that simple, the software fix would be applied in minutes. Then why does it
often take days, weeks and sometimes months to dot it? Because software is sometimes quite complex and
that even a seemingly very minor change to an element might have a very sextensive impact throughout the
whole structure, should such element be used across the structure of either the software itself or throughout
the operation system linked to such software.

Software maintenance is often perceived merely as fixing bugs, that is re active to errors and omissions.
However, studies and surveys over the years have indicated that there is much more to software
maintenance than merely fixing bug. Some studies have even reported that a corrective software
maintenance represents less than 20% of the maintenance workload. . The consensus on the key
components of the software maintenance process has been documented in the ISO/IEC 14764 the
International Standard for Software Maintenance. This ISO this standard, although as well known as
ISO900:2000, is important to the software maintainers and to general management for understanding better
the services provided on the software you own and that you are about to service or modify.

 Correctio
n

Enhancement

Proactive Preventive Perfective

Reactive Corrective Adaptive

Figure 1: ISO14764 software maintenance categories

The ISO/IEC standard recognizes four categories of maintenance work(see figure 1) :

• Corrective maintenance: Reactive modification to a software product, performed after delivery to
correct the problems identified.

• Adaptive maintenance: Modification to a software product, performed after delivery to keep a
software product usable in a changed or changing environment.

• Perfective maintenance: Modification to a software product, after delivery to improve performance
or maintainability.

• Preventive maintenance: Modification to a software product, after delivery to detect and correct
latent faults in the software product before they become effective faults.

In well-managed software organizations, most of the changes to software are carried out to adapt such
software to the changing business or technology environment. Because the business context now moves
very quickly the equipments must also improve constantly, new and better functionality need to be inserted
in the existing software. The software does not deteriorate physically with time and does not age when it
operates. It. However, due to continuous additions or modifications, it gets more complex and patched with
the numerous changes and progressively becomes more difficult to maintain.

These are some of the issues that have to be recognized and understood for maintaining management
control over the maintenance budget of both the software and of the related equipment. So next time you
look into the list of software problem try to separate them and identify the real % of corrections. You’ll see
that it does not account to so much. It’s the changes that take the most out of your budgets. And changes ,
by definition, have more to do wit h maintenance projects than routine maintenance. It becomes evident that
some of those requests will take longer because they are not routine work!

But why does it take so long to change the software?

A number of very complex issues must be dealt with to ensure adequate maintenance of software systems.
For example, it is most challenging for a software maintainers to analyzed a 500,000 or 2,000,000 lines of code
software system that the maintainer did not develop himself to find a hidden defect or to identify where a
specific change must be implemented. Furthermore, software engineering is far from a mature engineering
disciplined and unlike mechanical engineering, still too little is provided in terms of professional and
accredited training to the software maintainers. Instead it is often observed that software maintainers have a
limited understanding of the products they must maintain. Over the years, both practitioners and
researchers have reported that up to 60% time spent on maintenance is indeed devoted to developing a
good understanding the software to be modified, prior to initiating any change to it. This of course leaves
much less time to carry out the change and to test it extensively

If it’s not the maintainer’s fault whose is it?

Why is software so hard to maintain? Many of such difficulties can be traced back to the software
development process itself which often does not take into account the maintainability requirements: too
often software is developed in uncontrolled environments (e.g. read 'hackers style') and not to professional
engineers standards. In industry, if a product or an equipment is not built to the proper quality standard,
and without adequate maintenance documentation, then maintenance will be abnormally high when
compared to products or equipments developed to the highest maintenance standards.

Because software is often embedded (that is, hidden) into industrial products it lacks visibility, suffers from
lack of management attention, then from lack of resources, which often leads to lower quality: for instance,
when a trade-off must be made in a situation of schedule compression, then software is often where
development cuts happen rather than on the more visible hardware related components. Of course, software
vendors are part of the problem; in making you believe that their software is better, faster and
…maintainable (but with little supporting evidence).

The software maintainability issue is often quoted in the Information Technology industry. The IEEE
Computer Society [IEEE610.12] defines "maintainability" as the ease with which software can be maintained,
enhanced, adapted, or corrected to satisfy specified requirements. ISO/IEC defines maintainability as one of
the main quality characteristics of a software [ISO9126].

Maintainability of software must be specified, reviewed and controlled during the software development
activities if we wish to ever properly manage the maintenance process and subsequently reduce the
maintenance costs. If this is done successfully, the quality of maintenance of the software (its
maintainability) will likely improve.

 6-3

Unfortunately, there is often a lack of attention to maintainability during the software development process.
Often software disregards this key business and engineering requirement. Time and time again a software is
implemented and send to the operations without adequate maintenance documentation, unduly adding later
on considerable maintenance cost wherever a software change must be implemented.

Aren’t there best practices for improving software maintenance?

The need and benefits of mature engineering processes is well documented, including for software
development. Similarly, there is a well recognize link the levels of process maturity and related costs savings
in software maintenance. For example, the Software Maintenance Capability Maturity model (SMCMM)
identifies the best practices associated with the software processes unique to a maintainer. SMCMM was
designed as a customer-focused benchmark for either:

• Auditing the software maintenance capability of a software maintenance service supplier or
outsourcer; or

• Internal software maintenance organizations.

Some of the activities unique to software maintainers are:

• Transition: Is a controlled and coordinated sequence of activities during which a system is
transferred progressively from the developer to the maintainer;

• Service Level Agreement (SLA’s) & specialized maintenance contracts: Maintainers negotiate
SLA’s and domain specific contracts;

• Help Desk handling of MR’s and PR’s: Maintainers use a problem handling process to prioritize,
document and route the requests they receive;

• Acceptance/rejection of MR’s: Maintainers will not accept modification requests work over a
certain size/effort/complexity and will reroute thes e requests to a developer;

• Impact Analysis (refer to II.1 impact analysis);

• Regression Testing: Maintainers need to “perform regression tests on the software so that the new
changes do not introduce errors into the parts of the software that were not altered”.

The SMCMM has been developed from a customer perspective.. The ultimate objective of software
maintenance improvement programs initiated as a result of a SMCMM assessment is increased customer (and
shareholder) satisfaction, rather than rigid conformance to such a model.

A higher capability level, in the SMCMM context, means, for customer organizations:

a) Reaching the target service levels and delivering on customer priorities;
b) Implementation of the best practices available to software maintainers;
c) Obtain transparent software maintenance services and at costs that are competitive;
d) The shortest possible software maintenance service lead times.

For a software maintenance organization, achieving a higher capability can result in:

a) Lower maintenance and support costs;

b) Shorter cycle time and intervals;

c) Increased ability to achieve service levels; and

d) Increasing ability to meet quantifiable quality objectives at all stages of the maintenance process and
services.

In the SMCMM model, the key software maintenance processes have been grouped into three classes (Figure

2).

a) Primary processes (operational);

b) Support processes (supporting the primary processes); and

c) Organizational processes offered by the IT unit or by other departments of the organization (for
example: finance, human resources, purchasing, etc.).

Figure 2: A classification of the Software Maintainer’s Key Processes

The key operational processes (also called primary processes) that a software maintenance organization
uses must be init iated at the start of software project development and then maintained subsequently,
beginning with the transition process. The Transition process ensures that the software project is
controlled and that a structured and coordinated approach is used to transfer the software to the maintainer.
In this process, the maintainer will focus on the maintainability of this new software.

Once the software has become the responsibility of the maintainer, the Issue and Service Request
Management process handles all the daily issues, problem reports, change requests and support requests.
These are the daily services that must be managed efficiently. The first step in this process is to assess
whether a request is to be addressed, re -routed or rejected (on the basis of the service-level agreement and
the nature of the request and its size). Accepted requests are documented, prioritised, assigned and
processed in one of the service categories: 1) Operational Support process (which typically does not
necessitate any modification of software); 2) Software Correction process; or 3) Software Evolution
process.

It is to be noted that a number of service requests do not lead to any modification to the software. In the
SMCMM model, they are referred to as ‘operational support’ activities, and these consist of: a) answering to
questions; b) providing information and counselling; and c) helping customers to better understand the
software, a transaction or its documentation.

O
pe

ra
ti

on
al

 P
ro

ce
ss

es
O

ps
. S

up
po

rt
Pr

oc
es

se
s

Review
Process

SLA and
Supplier

Management
Maintenance

Training

Measurement

Transition
Issue and
Request

Management

Configuration
Management

and document
control

Internal Audit
And Quality
Assurance

Process
Improvement

Maintenance
Planning

Version Mngmt
Restart and
Upgrades

Operational
Support
Service

Corrective
Service

Evolutive
Services

Purchasing
and Human
Resources

Causal
Analysis and

Problem
Resolution

O
rg

an
iz

at
.

Pr
oc

es
se

s

Software
Rejuvenation

and
Retirement

Environnement,
Verification
- Validation

Production
Surveillance

O
pe

ra
ti

on
al

 P
ro

ce
ss

es
O

ps
. S

up
po

rt
Pr

oc
es

se
s

Review
Process
Review
Process

SLA and
Supplier

Management

SLA and
Supplier

Management
Maintenance

Training
Maintenance

Training

Measurement

Transition
Issue and
Request

Management

Issue and
Request

Management

Configuration
Management

and document
control

Configuration
Management

and document
control

Internal Audit
And Quality
Assurance

Process
Improvement

Process
Improvement

Maintenance
Planning

Maintenance
Planning

Version Mngmt
Restart and
Upgrades

Operational
Support
Service

Corrective
Service

Evolutive
Services

Operational
Support
Service

Corrective
Service

Evolutive
Services

Purchasing
and Human
Resources

Causal
Analysis and

Problem
Resolution

O
rg

an
iz

at
.

Pr
oc

es
se

s

Software
Rejuvenation

and
Retirement

Software
Rejuvenation

and
Retirement

Environnement,
Verification
- Validation

Environnement,
Verification
- Validation

Production
Surveillance

 6-5

The last two main operational processes are the Version Management process, to move items to production
in a controlled fashion, and the Production Surveillance process, which will ensure that the operational
environment has not been degraded. Maintainers must also monitor the behaviour of the operational system
and its environments for signs of degradation. They will quickly warn other support groups when
something unusual happens (operators, technical support, scheduling, networks and desktop support) and
judge whether or not it is an instance of service degradation which needs to be investigated.

A process which is used, when required, by an operational process is said to be an operational support
process. In this classification, we include: a) the many maintenance planning processes; b) the maintainer’s
education and training; c) the maintenance environments and testing; d) management of the contractual
aspects and service level agreements; e) rejuvenation or retirement of software; and, finally, f) resolution of
problems. These are all key activities, which are available to support some operational process activities.

Organizational processes are typically offered by the IT department and by other departments in the
organization (for example: human resources, finance, quality assurance and ISO9001). While they are
important to measure and assess, it is often easier for the maintainer to start defining the operational and
operational support processes.

This generic model should help understand and position the various key software maintenance processes.
What is important is that these processes be explicitly listed and classified based on their type (operational,
support or organizational). The SMCMM was developed in an industrial environment with practices
recognised as useful).

In summary software maintenance is not all that simple and a maturity model might be helpful at assessing
your suppliers maintenance maturity. Its proven …in engineering, better maintenance leads to lower
operational costs.

