
 COSMIC-FFP & Functional Complexity (FC) Measures: A Study of
their Scales, Units and Scale Types

IWSM/Montreal 2005 1

COSMIC-FFP & Functional Complexity (FC) Measures: A Study of
their Scales, Units and Scale Types

Manar Abu Talib**, Alain Abran*, Olga Ormandjieva**
*École de Technologie Supérieure - ETS

1100 Notre-Dame Ouest, Montréal, Canada H3C 1K3

**Concordia University

1455 de Maisonneuve Blvd. W. Montreal, Quebec H3G 1M8, Canada

m_abutal@cse.concordial.ca , alain.abran@ele.etsmtl.ca , ormandj@cse.concordia.ca

Abstract:

This paper presents an overview of some measurement concepts across both
COSMIC-FFP, an ISO standard (ISO/IEC 19761) for functional size
measurement and Functional Complexity (FC), an entropy-based measure. It
investigates in particular three metrological properties (scale, unit and scale
type) in both of these measurement methods.

Keywords

COSMIC-FFP, ISO 19761, Entropy, Scale type, Measurement process model.

1 Introduction

The COSMIC-FFP [1] functional size measurement method was developed by
the Common Software Measurement International Consortium (COSMIC) and it
has been adopted as an international ISO standard: ISO 19761 [2]. COSMIC-
FFP measures the software functional user requirements and is applicable
throughout the development life cycle, right from the requirements phase to the
implementation and maintenance phases [1].

This method has been designed to measure the functional size of management
information systems, real-time software and multilayer systems. Since many of
the software systems targeted by the COSMIC-FFP method are large-scale and
inherently complex, feedback on this complexity would provide additional
information to improve their effective management throughout the software life
cycle: in [3] an entropy-based measure of functional complexity has been
proposed.
This paper presents a study of the scales, units and scale types of both
COSMIC-FFP and an entropy based functional complexity measure. Previous
studies have analyzed the scale types of many software measures (such as: Zuse

M. Abu Talib, A. Abran, O. Ormandjieva

2 Software Measurement Conference

[4], Fenton [5], Whitemire [6], but not the concept of ‘scale’ nor how it is used
in the design of a measurement method.
Well designed and well defined measures in sciences and engineering should have
most of the many characteristics as described in metrology [7], including
‘scales’, ‘units’ and ‘etalons’ to which should refer measuring instruments to
ensure meaningfulness of the numbers obtained from measurement. However,
some of these concepts, such as units, scale, and etalons , are not yet addressed
and discussed by researchers on empirical validation approaches [5] of software
measures: for instance, researchers on software measure have, to date, focused
on scale types rather than on the scale embedded within the definitions of these
measures. This could lead to less than optimally designed ‘software measures’.
Moreover, when these software measures are analyzed without taking into
account these metrological concepts, it can lead to improperly stated conclusions
about their strengths.

In this paper, section 2 presents the key elements of scale types, section 3 the
key elements of COSMIC-FFP and section 4, the key elements of FC, an
entropy-based measure of functional complexity measurement. In section 5 & 6,
the scale, units and scale types of the both measures are investigated and, finally,
a discussion and some future next steps are presented in section 7.

2 Scale Types

In measurement theory, the meaning of numbers is characterized by scale types
[], but measurement theory does not address directly the concept of scale, as
typically defined in metrology. A scale is defined as a set of ordered values,
continues or discrete, or a set of categories to which the attribute is mapped [8],
whereas scale type depends on the nature of the relationship between values on
the scale [8].

In a mathematical representation, a scale is defined by <E, N, F>, where E is the
empirical structure, N is the numerical structure and F is the mapping between
them []. On the other hand, a scale type is always defined by admissible
transformations. Relationships between mappings are described in terms of
transformations [6]. There are five major scale types: nominal, ordinal, interval,
ratio and absolute, which can be seen describing certain empirical knowledge
behind the numbers [6]. Knowing the characteristics of each type helps to
interpret the measures [5]. In the following subsections, the scale types are
summarized.

2.1 Nominal Scale Type
The nominal-scale measurement places elements in a classification scheme [5],
[6]. The classification partitions the set of empirical entities into equivalence
classes with respect to a certain attribute. Two entities are considered as

 COSMIC-FFP & Functional Complexity (FC) Measures: A Study of
their Scales, Units and Scale Types

IWSM/Montreal 2005 3

equivalent and therefore belonging to the same equivalence class if and only if
they have the same amount of the attribute being measured. The empirical classes
are jointly exhaustive and mutually exclusive. The classes are not ordered
because of a lack of empirical knowledge about relationships among the classes.
In nominal-scale measurement, each empirical class might be represented by a
unique number or symbol, and the only mathematical operation allowed in the
nominal scale type is “=”. The admissible transformations are one-to-one
mapping that preserve the partitioning.

2.2 Ordinal Scale Type

The ordinal scale type is the basis of software measurement. All other extended
measurement structures are based on the ordinal scale [4]. Ordinal scale assigns
numbers or symbols to the objects so they may be ranked and ordered with
respect to an attribute [6]. The characteristic of ordinal scale is that the numbers
represent ranking only, so addition, subtraction and other arithmetic operations
have no meaning. Also, any mapping that preserves the ordering is acceptable as
ordinal scale [5].

2.3 Interval Scale Type

Interval scale type is useful to augment the ordinal scale with information about
the size of the intervals that separate the classes. That is, the difference in units
between any two of the ordered classes in the range of the mapping is known,
but computing the ratio of two classes in the range does not make sense. This
scale type preserves order, as with an ordinal scale; however, in interval scales
addition and subtraction are acceptable operations. Multiplication and division
are not acceptable operations in this scale type [5].

2.4 Ratio Scale Type

A ratio scale type is an interval scale with ratio on which there exists an absolute
zero. This zero element represents the smallest scale value, where an object has a
null amount of the attribute. Therefore, the measurement mapping in ratio scale
must start at zero and increase at equal intervals, known as units. All arithmetic in
ratio scale can be meaningfully applied to the classes in the range of the mapping
[5].

2.5 Absolute Scale Type

Absolute scale type represents counts of objects in a specific class. There is only
one possible measurement mapping, namely the actual count, and a unique unit.
As in ratio scale, all arithmetic analysis of the resulting count is meaningful [5].
More details in these scale types can be found in [4], [5] and [6].

M. Abu Talib, A. Abran, O. Ormandjieva

4 Software Measurement Conference

3 COSMIC-FFP Measurement Method

3.1 COSMIC-FFP Overview

The COSMIC-FFP method has been designed to measure the functional size of
management information systems, real-time software and multi-layer systems. Its
design conforms to all ISO requirements (ISO 14143-1 [9]) for functional size
measurement methods, and was developed to address some of the major
weaknesses of the earlier method – that is Function Points Analysis - FPA [10],
the design of which dates back almost 30 years when software was much smaller
and much less varied. COSMIC-FFP focuses on the “user view” of software
functional requirements and is applicable throughout the development life cycle,
right from the requirements phase to the implementation and maintenance phases.

In the measurement of software functional size using the COSMIC-FFP method,
the software functional processes and their triggering events must be identified
[1], [2].
In COSMIC-FFP, the unit of measurement is a data movement, which is a base
functional component which moves one or more data attributes belonging to a
single data group. Data movements can be of four types: Entry, Exit, Read or
Write. The functional process is an elementary component of a set of user
requirements triggered by one or more triggering events either directly or
indirectly via an actor. The triggering event is an event occurring outside the
boundary of the measured software and initiates one or more functional
processes. The sub processes of each functional process are sequences of
events, and comprise at least two data movement types: an Entry plus at least
either an Exit or a Write. An Entry moves a data group, which is a set of data
attributes, from a user across the boundary into the functional process, while an
Exit moves a data group from a functional process across the boundary to the
user requiring it. A Write moves a data group lying inside the functional process
to persistent storage, and a Read moves a data group from persistent storage to
the functional process. See Figure [2] for an illustration of the generic flow of
data groups through software from a functional perspective.

 COSMIC-FFP & Functional Complexity (FC) Measures: A Study of
their Scales, Units and Scale Types

IWSM/Montreal 2005 5

Figure 1: Generic flow of data groups through software from a functional

perspective [1]

The COSMIC-FFP measurement method has two distinct phases: the mapping
of the software to be measured to the COSMIC-FFP generic software model and
the measurement of specific aspects of this generic software model. The
following subsections describe in more details these two phases and they are
summarized from COSMIC-FFP manual version 2.2.

3.2 COSMIC-FFP Mapping Phase

In all functional measurement methods, the functional size of software can not be
measured directly from the Functional User Requirements (FUR): certain rules
and procedures are to be applied to FUR of software to produce a specific
software model that is suitable for measuring functional size. That technique is
referred to as a “Mapping phase” in COSMIC-FFP. The general method for
mapping software to COSMIC-FFP generic model is described in the Figure 2.

or

Engineered
Devices

Storage Hardware

SOFTWARE

ENTRIES

EXITS

« Front

end »

USERS

READS

WRITES

« Back

end »

EXITS

ENTRIES

I/O
Hardware

B
O
U
N
D
A
R
Y

M. Abu Talib, A. Abran, O. Ormandjieva

6 Software Measurement Conference

Figure 2: COSMIC-FFP Mapping Phase [1]

From Figure 2, before getting into mapping phase, the measurer must define why
the measurement is being undertaken and/or what the measurement result will be
used for. That is called “Purpose of a Measurement”. The measurer also defines
the scope of the measurement through the set of FUR to be included in a specific
functional size measurement exercise. Finally, it is important for the measurer to
identify the measurement view of the FUR of software. More definitions and
principles regarding this context are provided in [1].

The COSMIC-FFP mapping phase takes the FUR of a piece of software as input
to produce the COSMIC-FFP generic model of that software as output. The
question: “Is there a need to size subsets of requirements?” will be raised as a
first step in the mapping phase. That is because the FUR may apply to software
in different layers or peer items. Therefore, the measurer needs to decide if the
FUR or the software comprises one or more layers or peer items. A layer is a
result of the functional partitioning of the software environment such that all
included functional processes perform at the same level of abstraction [1]. In a
multi-layer software environment, software in one layer exchanges data with
software in another layer through their respective functional processes. It is to be
noted that the layer identification is an iterative process. The exact layer will be
refined as the mapping process progresses.
After identifying the software layers, the measurer must identify the boundary of
each of each piece of software. According to COSMIC-FFP manual [1], the

Functional User
Requirements
embedded in
artifacts

FUR in the form
of the COSMIC-FFP

generic software
model

Section 3.1
IDENTIFY

SOFTWARE
LAYERS

Section 3.2
IDENTIFY

SOFTWARE
BOUNDARIES

Section 3.4
IDENTIFY

DATA
GROUPS

Section 3.5 (*)
IDENTIFY

DATA
ATTRIBUTES

COSMIC-FFP MAPPING PHASE

Section 3.3
IDENTIFY

FUNCTIONAL
PROCESSES

Need to
size subsets of
requirements ?

(*): This step is performed only when a sub
unit of measure is required

-

YES

NO

Section 2.5

PURPOSE
SCOPE and

MEASUREMENT
VIEWPOINT

 COSMIC-FFP & Functional Complexity (FC) Measures: A Study of
their Scales, Units and Scale Types

IWSM/Montreal 2005 7

boundary is defined as a conceptual interface between the software under
measurement and its users (human beings, engineered devices or other software).
The boundary allows the measurer to distinguish what is included inside the
measured software from what is part of the measured software’s operating
environment.

The third step in the mapping phase is identifying the set of functional processes
of the software to be measured from its FUR. A functional process is an
elementary component of a set of FUR comprising a unique cohesive and
independently executable set of data movements. It is triggered by one or more
triggering events either directly or indirectly via an actor. It is complete when it
has executed all that it is required to be done in response to the triggering event (-
type) [1]. Once identified, each functional process can be registered on an
individual line, under the appropriate layer, in the generic software model, under
the corresponding label.

Identifying the data groups referenced by the software to be measured is the
fourth step in mapping phase. A data group is a distinct, non empty, non ordered
and non redundant set of data attributes where each included data attribute
describes a complementary aspect of the same object of interest [1]. A data
attribute is the smallest parcel of information, within an identified data group,
carrying a meaning from the perspective of the software’s FUR [1] and that is
what will be identified in the last step of this phase. A data group must contain at
least one attribute, and might contain one data attribute if this is sufficient, from
the perspective of the functional requirements, to describe the object of interest.

3.3 COSMIC-FFP Measurement Phase

Measurement phase is the second phase considered in the COSMIC-FFP
method. As described in figure 3, this phase takes the COSMIC-FFP generic
model of software as input and produces a value of a quantity the magnitude of
which is directly proportional to the functional size of the model [1].

M. Abu Talib, A. Abran, O. Ormandjieva

8 Software Measurement Conference

Figure 3: COSMIC-FFP Measurement Phase [1]

For each functional process, the measurer needs to identify the data movements’
sub-process-types (entry, exit, read and write-types). That is the first step in this
phase. Next the measurement method applies the COSMIC_FFP measurement
function to each data movement identified in each functional process. According
to this measurement function, each instance of a data movement (entry, exit, read
or write) identified in step 1 receives a numerical size of 1 Cfsu. Finally, the
measurer aggregates the results of the measurement function, as applied to all
identified data movements, into a single functional size value arithmetically adding
them together (formula 1).

SizeCfsu (functional process i) =
Σ size(entriesi) + Σ size(exits i) + Σ size(readsi) + Σ size(writes i) . …… (1)

4 FC – A measure of functional complexity

Information theory-based software measurement was proposed in [11] to
quantify functional complexity in terms of an amount of information based on
some abstraction of the interactions between software components [12].
Entropy is one concept in information theory, and it was introduced by
Shannon [13] as a quantitative measurement of the uncertainty associated with
random phenomena. It is said that one phenomenon represents less uncertainty
than a second one if we are more sure about the result of experimentation
associated with the first phenomenon than we are about the result of
experimentation associated with the second one.

Functional Size
of the measured

software

Section 4.1

IDENTIFY
DATA MOVEMENTS

Section 4.2

APPLY
MEASUREMENT

FUNCTION

COSMIC-FFP MEASUREMENT PHASE

Section 4.3

AGREGATE
MEASUREMENT

RESULTS

recorded information

All
functional process

measured ?

YES

NO

FUR in the form
of the COSMIC-FFP

generic software
model

 COSMIC-FFP & Functional Complexity (FC) Measures: A Study of
their Scales, Units and Scale Types

IWSM/Montreal 2005 9

Considering any set of n events and their probability distribution { 1p , …, np },
the quantification of this uncertainty quantity is calculated using the following
entropy formula:

∑
=

=
n

i
ii ppH

1
2log- . …… (2)

In [14], a new method was proposed for quantifying functional complexity from
a software behavior description. The method characterizes the functionality of
the system as specified in the scenarios. Functional complexity is quantified in
terms of the entropy of an amount of information based on an abstraction of the
interactions among software components. Assuming that each message
represents an event, therefore, entropy-based software measurement is used to
quantify the complexity of interactions between the software and its environment
and within the software (between software classes) in terms of the information
content of the interactions, based on some abstraction of the interactions [15],
[16], [17] and [18].
The probability ip of the i-th event is equal to ip = if / NE, where if is the number
of occurrences of the i-th event and NE is the total number of events in the
sequence. The classical entropy calculation quantifies the average amount of
information contributed by each event. Therefore, the functional complexity in a
time slice is defined in [3] as an average amount of information in the
corresponding sequence of events and is computed as follows:

)/(log)/(-
1

2 NEfNEfFC
n

i
ii∑

=

= . …… (3)

where n is the number of different event types in the sequence.

We consider the COSMIC-FFP generic model of software as an abstraction of
the interactions, thus conceptually justifying the applicability of the entropy to
quantify the functional complexity in the COSMIC-FFP method. Functional
complexity (FC) is the quantification for the amount of information interchanged
in a given interaction (scenario). The functional complexity in a period of time
with higher average information content should, on the whole, be more complex
than another with lower average information content. That is, the FC measure is
intended to order the usages of system in a time period in relation to their
functional complexity.

The scale and scale types of both measurement methods are investigated next in
sections 5 and 6.

M. Abu Talib, A. Abran, O. Ormandjieva

10 Software Measurement Conference

5 Identification of COSMIC-FFP scale, unit and scale type

Measurement with COSMIC-FFP is more than counting and adding up the
data movements. To identify the types of scales and analyze their uses in
COSMIC-FFP measurement process, the procedure of the measurement
process must be broken down into sub steps and each sub step is further
analyzed in order to understand the transformation between the steps [10]. As
mentioned previously, two phases (mapping and measurement) are required to
measure the functional size of software in COSMIC-FFP. Basically, the
mapping phase is the process of abstracting a set of FURs, described with
whichever methodology, as a COSMIC-FFP generic model of the software.
That is similar as if you want to map the distance on water into a meter scale
or time into a dial of a mechanical clock. After that only, the measurer will be
able to read the distance on the scale or read the specific position on the scale
of the clock. Therefore, the mapping phase is an important step to map the
FUR set into a measurement scale. This then gets the measurer into the next
phase that is the measurement phase.
More specifically, the mapping phase is done by identifying software layers
(MAP 1) and then for each layer the following steps are carried out :

MAP 1.1: Identifying software boundaries.

MAP 1.2: Identifying functional processes.

MAP 1.3: Identifying data groups.

MAP 1.3.1: Identifying data attributes.

For MAP 1, the concept of software layers in COSMIC-FFP is meant as a
tool that identifies the separate components that have to be sized and their
boundaries [1]. In a specific measurement exercise, layers can be distinguished
and have an order where, for instance, software in any one layer can be a
subordinate to a higher layer for which it provides services. Also, the
measurement method defines “peer to peer” exchange, as two items of
software in the same layer exchanging data [1]. From this point on, it can be
said that a layer at level 2 is above a layer at level 1, which is used by the
above layer or we can say that two softwares are at the same level or layer.

Next step, MAP 1.1 is identifying the boundaries between each pair of layers
where one layer is the user of another, and the latter is to be measured. In the
same layer, there is also a boundary between any two distinct pieces of
software if they exchange data in “peer to peer” communications [1].

MAP 1.2 is identifying the set of functional processes of software to be
measured. In each layer, software delivers functionality to its own users. From
at least one identifiable FUR, a functional process can be derived. A functional

 COSMIC-FFP & Functional Complexity (FC) Measures: A Study of
their Scales, Units and Scale Types

IWSM/Montreal 2005 11

process comprises at least two data movements, an entry and either an exit or
a write [1].

Next, in (MAP 1.3) the data groups are identified . A data group is the object
of interest that may or may not survive the functional process using it [1]. Each
data group has a set of non empty and non ordered set of data attributes.

MAP 1.3.1 is the last step in the mapping phase. It considers identifying the
data attributes for each data group.
After this analysis of the steps that are taken in the mapping phase, it is to be
noted that the steps MAP 1 to MAP 1.3.1 by themselves are not taken into
account in the measurement of COSMIC-FFP functional size: only ‘data
movements’ are considered directly in the measurement with units of 1Cfsu as
will be seen later in the measurement phase.
Figure 4 explains the contribution of the mapping phase to the measurement
process. The measurand is basically the textual description of the text within
which the Functional User Requirements are embedded in any kind of format.
Then the ‘measurement signal’ would be basically the elements within the text
that are related to the Functional User Requirements.

Next, the mapping from ‘whichever format’ into the ‘generic COSMIC model
of software’ could be the ‘transformed value’. It is to this ‘transformed value’
(e.g. the identification of all Functional Processes recognized by COSMIC-
FFP) that the ‘measurement function’ would be applied with the
correspond ing measurement unit.

Figure 4: Measurement process - detailed topology of sub-concepts [19]

The second phase is the measurement phase where the measurer applies the
measurement to the required elements of the model produced in the mapping
phase. The Measurement phase is done for each functional process included
within the software boundary identified in the mapping phase (MAP 1.2) and it
is broken into three steps:

MSP1: Identifying data movements.

Measurement Procedure

Measurand Result of a
Measurement

Measurement
Signal

Transformed
Value

Operator
Measurement

Method
Influence
Quantity

M. Abu Talib, A. Abran, O. Ormandjieva

12 Software Measurement Conference

MSP2: Applying the measurement function.

MSP3: Aggregating the measurement results.

MSP1 identifies the data movements’ types (Entry, Exit, Read and Write
types) of each functional process [1]. It is to be noted that it not the sub-
processes that are directly taken into account, but the data movements within a
sub-process: in COSMIC a sub-process is defined as a combination of a
‘data movement’ & ‘data manipulation’.
Then by convention, only a portion of the sub-process is taken into account in
the use of a ‘measurement scale’, that is only the ‘data movement’ portion.
This could be similar to taking a sub-process, comparing it to a ‘scale’ of an
‘etalon’ and since the scale of the COSMIC etalon (defined by convention at a
conceptual, rather that at a material level as for the ‘meter’ or the ‘kilogram’
etalons) considers only ‘data movement’, taking only this portion as input into
the measurement function with its measurement unit, that is the 1Cfsu.

MSP2 is the next sub step in the measurement phase. It is applying the
measurement function by assigning a numerical value of 1 Cfsu to each
instance of a data movement (entry, exit, read or write). The results of this sub
step in COSMIC-FFP are interpreted in the following way: once the data
movements are identified, a ‘measurement scale’ is used and it is defined as ‘1
data movement of whichever type’. The measurer assigns to the data
movement being measured a measurement unit of 1 with respect to that
“etalon” and then assign to it a symbol of ‘1 Cfsu’ (Cosmic Functional Size
Unit). Therefore, those results are taken as numbers that are counted.

Finally, the last step MSP3, the results of assigning 1 to each data movement
are added together using formula 1, taking for granted that the results of
MSP2 can be ratio numbers to be added.
This measurement of a functional process is closely similar to a classic
measurement exercise: a measurement scale of ‘1 data movement’ is used and
this ‘read’ on the measurement scale is the equivalent of the marks (each mark
being 1 data movement = 1 Cfsu). The size is then figured out in terms of the
number of marks – or units read on the scale.

In conclusion, the COSMIC-FFP measure can be considered at least on the
ratio scale. Moreover, the zero is meaningful, which means that when size = 0,
a software does not have a size according to the measurement unit of
COSMIC-FFP

 COSMIC-FFP & Functional Complexity (FC) Measures: A Study of
their Scales, Units and Scale Types

IWSM/Montreal 2005 13

6 Identification of FC scale, unit, and scale type

As introduced previously, formula 3 quantifies the amount of information
interchanged in a given scenario. That is done through the following steps:

FC1: Calculating
if for each event in the given scenario.

FC2: Calculating NE for the given scenario.

FC3: Calculating if /NE for each event in the scenario.

FC4: Calculating 2log of FC3 for each event.

FC5: Multiplying FC3 with FC4.

FC6: Adding up FC5 for all events.

FC7: Multiplying FC6 with -1.

FC1 is simply counting the frequency of the events’ occurrences (that is
identifying an event occurrence, and then adding all of those occurrences
identified = frequency). Therefore we may suggest that it’s at least on the ratio
scale that depends on counting the frequency of events and as a result, the unit
will be ‘event’s occurrence’.

FC2 is adding the total number of events’ occurrences in a scenario, and it’s
also suggested to be defined at least on the ratio scale. The unit is ‘event’s
occurrence’.

FC3 is a derived measure dividing FC1 (ratio scale) by FC2 (ratio scale),
whose scale type will be the weakest one according to [5]. Therefore it can be
on the ratio scale. Division is done through the unified unit “event’s
occurrence” and according to the analysis that has been proposed in [20], a
ratio of quantities with the same dimensions is itself dimensionless. Therefore,
the end result is therefore a dimensionless number that is a %. It is to be noted
that FC3 is the probability of the i-th event to be happened in the scenario.
FC4 is applying the logarithmic function to FC3. The ratio value of the
logarithmic function n2log is exactly the number of binary digits (bits) required
to represent the probability n of the event’s occurrences. For instance, the
combinations of a three-digit binary number can represent n=8. Thus, this step
transforms the dimensionless probability value into the number of digits required
to represent it in “bits”.

In FC5, the representation size for probability in bits is multiplied by the
probability of occurrences of the same event type. Each bit is a designator of the
probability of one event’s occurrence. The result is the total number of bits
required for representing the probability of all occurrences of one event in the
sequence. Therefore, such a multiplication would normally produce a number

M. Abu Talib, A. Abran, O. Ormandjieva

14 Software Measurement Conference

with “bit” as a measurement unit. The scale type is suggested to be at least on the
ratio scale.

In FC6, the representational size for the probability of all occurrences of all
events is calculated.

The resulting number in FC6 is negative because of the logarithmic function’s
nature (it’s negative on values less than one), but the amount of information
shall be non-negative. In FC7, the multiplication by –1 is required to obtain the
non-negative value for the amount of information. It is a simple transformation
that doesn’t change the scale type since -1 does not have a unit itself.
In conclusion, the FC measure is quantifying the representational size of the
probabilities of all events’ occurrences in bits, and can be considered at least
on the ratio scale. Also, the absolute zero is meaningful since (theoretically)
one scenario may have zero functionality thus requiring 0 amount of bits for its
representation.

7 Discussion and Next Steps

In conclusion, it was seen how the “scale” concept is used in the COSMIC-FFP
method to ensure meaningfulness of the numbers obtained from its measurement
process. We also define the measurement unit for FC measure.
Whenever you do a ‘measurement’ in day-to-day life, you need a “scale”. For
instance, if you want to measure distance, you need a “measuring tape”, then you
map what you want to measure to the concept of “distance”, then you carry out
your measurement with a measurement procedure. The Mapping phase in
COSMIC-FFP and MSP1 (identifying the data movements) are our measurement
tape in order to map the set of FUR into a measurement scale. That is exactly F,
which maps the empirical structure E (FUR set in our case), into the numerical
structure N (size in Cfsu unit). Therefore, the number we get as a result of
applying MSP2 and MSP3 is the functional size for the corresponding set of
FUR. We can then say that there is no loss of measurement information from
MSP2 to MSP3 since both have a least a ratio scale type, as we have analyzed
before in section 5. Further work is required to investigate whether or not it
satisfies all the properties of an ‘absolute scale’.

Entropy based functional complexity measure FC has no change of scale types
through its steps. This could be interpreted as follows: FC transforms the
measurement of the functional complexity of a scenario, based initially on the
frequencies for each event, into quantification for the amount of information
interchanged in a given interaction. By such study, we also conclude that the
formula 3 has a measurement unit, which is “bit”.

 COSMIC-FFP & Functional Complexity (FC) Measures: A Study of
their Scales, Units and Scale Types

IWSM/Montreal 2005 15

In this paper, even though some insights have been gained in the identification
and analysis of the scale for the COSMIC-FFP measurement method, further
analysis might be required to ensure that all metrology related issues in this
measurement method have been adequately identified and analyzed.

Among some of the next steps is the investigation on how in some other software
measures scales embedded within the definition of these measures are tackled
and described. For example, how has the concept of “scale” been used in the
McCabe Cyclometic complexity measure and other object oriented measures.
The metrological concept of etalon presented in the introduction should also be
investigated for both of the measurement methods discussed in this paper.

References

1. Abran, A., Desharnais, Jm., Oligny, S.,St-Pierre, D. and Symons, C., Measurement
Manual COSMIC Full Function Points 2.2 , The COSMIC Implementation Guide for
ISO/IEC 19761, École de technologie supérieure, Université du Québec, Montréal,
Canada, 2003 - www.gelog.etsmtl.ca/cosmic-ffp.

2. ISO, ISO/IEC 19761:2003 Software Engineering - COSMIC-FFP - A functional
size measurement method, in International Organization for Standardization - ISO,
Geneva, 2003.

3. Alagar, V.S., Ormandjieva, O. and Zheng, M., Managing Complexity in Real-Time
Reactive Systems, Sixth IEEE International Conference on Engineering of Complex
Computer Systems, Tokyo, Japan, 2000.

4. Zuse, H. Software Complexity Measures and Methods, Walter de Gruyter, Berlin

New York, 1991.

5. Fenton, N. and Pfleege, S.L. Software Metrics: A Rigorous and Practical Approach.
PWS Publishing, 1998.

6. Whitmire, S.A. Object Oriented Design Measurement, John Wiley & Sons, 1997.

7. ISO, International Vocabulary of Basic and General Terms in Metrology (VIM),
International Organization for Standardization - ISO, Geneva,1993.

8. ISO, ISO/IEC IS 15939:2002 Software Engineering - Software Measurement
Process, International Organization for Standardization - ISO, Geneva, 2002.

9. ISO, ISO/IEC 14143-1:1998 Functional size measurement - Definitions of
concepts, in, International Organization for Standardization - ISO, Geneva, 1998.

10. Abran, A. and Robillard, P.N., Function Points: A study of Their Measurement
Processes and Scale Transformations, in Journal of Systems and Software, vol. 25, no.
2, 1994, pp. 171-184.

11. Khoshgoftaar, T. and Allen, E.B. Applications of information theory to software
engineering measurement, Software Quality Journal, 3 (2). 79-103.

12. Ormandjieva, O., Deriving New Measurement for Real Time Reactive Systems,
Department of Computer Science & Software Engineering, Concordia University,

Formatted: Font: Italic

Formatted: Left

Formatted: Font: Italic

Formatted: Font: Italic

Deleted: 8

M. Abu Talib, A. Abran, O. Ormandjieva

16 Software Measurement Conference

Montreal, Canada, 2002.

13. Shannon, C.E., Weaver and Warren, The Mathematical Theory of Communication .
the University of Illinois Press, Urbana, Chicago, 1969.

14. Abran, A., Ormandjieva, O. and Abu Talib, M., A Functional Size and Information
Theory-Based Functional Complexity Measures: Exploratory study of related
concepts using COSMIC-FFP measurement method as a case study, 14th International
Workshop of Software Measurement (IWSM-MetriKon 2004), Konigs Wusterhausen,
Germany, 2004, Shaker-Verlag,pp. 457-471.

15. Harrison, W. , An Entropy-Based Measure of Software Complexity , IEEE
Transactions on Software Engineering, 18 (11). November 1992

16. Davis, J.S. and Leblanc, R.J. A Study of the Applicability of Complexity Measures,
IEEE Transactions on Software Engineering, 14 (9). September 1988 , pp.1366-1372.

17. Alagar, V.S., Ormandjieva, O., and Liu, S.H., Scenario-Based Performance
Modelling and Validation in Real-Time Reactive Systems . In Proceedings of Software
Measurement European Forum 2004 (SMEF2004), Rome, Italy, 2004.

18. Shannon, Claude E., Weaver and Warren The Mathematical Theory of
Communication. the University of Illinois Press, Urbana, Chicago, 1969.

19. A. Abran and A. Sellami, Initial Modeling of the Measurement Concepts in the ISO
Vocabulary of Terms in Metrology, in Software Measurement and Estimation -
Proceedings of the 12th International Workshop on Software Measurement - IWSM
2002, Magdeburg (Germany), Shaker-Verlag, Aachen, 2002, ISBN 3-8322-0765-1, pp.
315.

20. Al Qutaish, R. and Abran, A., An Analysis of the Designs and the Definitions of the
Halstead’s Metrics, 15th International Workshop of Software Measurement (IWSM-
2005), Shaker-Verlag, Montreal, 2005.

