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Abstract: COSMIC-FFP – ISO 19761 – is a functional size 
measurement method developed by the Common Software 
Measurement International Consortium (COSMIC). The 
COSMIC-FFP measurement model and related definitions are 
generic, and this paper investigates the feasibility of their 
application in specification languages. More specifically, it 
proposes a formalization of the COSMIC-FFP definition for the 
Autonomic Systems Timed Reactive Object Model (AS-TRM). 
This would allow the integration of functional complexity and 
functional size monitoring during autonomic system specification 
construction and/or evolution. The Steam Boiler case study is 
introduced to demonstrate the applicability of functional size 
measurement in terms of AS-TRM modeling. 

Keywords: Autonomic Reactive Systems, Functional Size, 
COSMIC-FFP, ISO 19761 

I. INTRODUCTION 

Software measurement is one of the key technologies for 
controlling and managing the software development process. 
Measurement is also the foundation of both the sciences and 
engineering, and much more research on software is needed to 
ensure that software engineering be recognized as a true 
engineering discipline. 

Fenton and Pfleeger [1] have defined software measurement 
as the process of quantifying the attributes of software in order 
to characterize them according to clearly defined rules. For 
instance, it can be used to identify an anomaly within the 
development phase in which it originated, as well as to 
measure development progress. Thus, each software 
development phase should contain measures to enable high 
project visibility and quality control to be achieved [2]. 

The term “size” in software measurement can mean either 
project size or software size. The first refers to total effort, 
estimated or actual, and is expressed in units like work-hours 
or staff-months. The latter refers to the size of the requirements 
(functions) or the deliverables, and is expressed in units such 
as modules or lines of code.  

Fenton and Pfleeger [1] have identified three attributes of 
software size, which are length, complexity and functionality.  

Length refers to the physical size of the product. It is 
meaningful to the technical staff, and useful for measuring 
specifications, designs and codes. The lengths of the 
specifications may help in predicting the length of the design, 
and the length of the design may help in predicting the length 
of the code. For example, software size can be measured by 
counting the number of lines of code (LOC), a useful 
measurement in deciding how big a file needs to be to store 

code. However, it does not tell us anything about the 
software’s functionality or about the quality of the coding. 

Complexity is an essential characteristic of the software 
process/product, and is a multifaceted notion which is context-
dependent [1], [3], [4], [5], [6]. As with the Whitmire [3] 
classification, the complexity of a software system is viewed in 
different dimensions, in this case four: computational, 
representational, structural and functional. Computational 
complexity is often associated with the study of algorithmic 
efficiency. Representational complexity considers the tradeoffs 
between graphical and textual notations for unambiguous 
representations of the system model, system interactions and 
system behavior. Structural complexity is viewed in terms of 
coupling and cohesion, without considering the complexity of 
the individual components. Functional complexity 
characterizes the dynamic performance of the system seen as a 
sequence of events required to fulfill a certain functionality of 
the system. 

Functionality, as discussed in [1], embodies the functions 
supplied by a product. Many software engineers argue that 
code length is a misleading indicator, and there is little 
consensus on how to measure complexity. By contrast, 
functionality is a meaningful way to measure software product 
size as far as users and management are concerned, It must be 
independent of the effort, the method and the technology. 
There have been several approaches to measuring the 
functionality of software products, among them: 

• Albrecht’s function points [7]. 
• DeMarco’s specification weight [8]. 
• COSMIC-FFP [9]. 
All three approaches measure the functional size of software 

specification documents, and they can all be applied later in the 
life cycle. Functional size measurement (FSM) has been used 
mostly for productivity, benchmarking and estimation 
purposes, and it can be used very early in the software 
development life cycle, such as when measuring the functional 
user requirements which are known prior to the design, 
architecture, code and test phases. There are some hints in the 
literature and in practice that, in addition to measuring 
productivity, and in benchmarking and effort estimation, FSM 
could also be used for quality purposes. In this paper, we are 
interested in the innovative use of the FSM method developed 
by the Common Software Measurement International 
Consortium (COSMIC), referred to as COSMIC-FFP, to 
contribute to early assessment of software complexity and 
quality. The COSMIC-FFP size measurement model and 
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related definitions are generic, and we provide here an initial 
investigation of the feasibility of their applicability in 
specification methods. More precisely, we look into the initial 
step in the formal definition of the COSMIC-FFP method in 
the specific context of the Autonomic Systems Timed Reactive 
Model (AS-TRM) specifications. 

There are currently no adequate frameworks for measuring 
size in autonomic systems with self-monitoring functionality. 
Defining such a framework could allow integration of the FSM 
derived during the specification construction phase into the 
formal AS-TRM, and consequently its automatic self-
monitoring during the evolution of the autonomic system. Our 
aim is to assess the size of an evolving AS-TRM system before 
a change is authorized, in order to monitor the system’s 
complexity and quality.  

Integrating the COSMIC-FFP size measurement model into 
the AS-TRM would ensure automatic and consistent feedback 
on the functional size of the autonomic system. The Steam 
Boiler case study is introduced next to illustrate the 
applicability of the FSM in terms of AS-TRM modeling in the 
specification phase. 

The paper is organized as follows: Section II presents the 
key elements of the AS-TRM, and section III the key elements 
of COSMIC-FFP. Section IV discusses the mapping of 
concepts across the two fields. In section V, the Steam Boiler 
case study is introduced to illustrate the approach. Finally, 
section VI identifies research directions for the formalization 
of functional complexity and functional size during 
specification construction. 
 

II. AS-TRM 

Here, we introduce the AS-TRM architecture for modeling 
reactive autonomic distributed systems [17].   

Reactive systems are computer systems that continuously 
react to their physical environment, continually sensing and 
responding to it, and at a speed determined by it. The behavior 
of these systems is infinite, and they must always be able to 
respond to a stimulus from that environment. Moreover, the 
time lapse between a stimulus and its response must be 
acceptable to the relative dynamics of the environment so that 
the environment is still receptive to the response. 

The AS-TRM architecture builds on the TROM formalism 
[10] for modeling reactive systems by adding more tiers and 
including the following specifications (see Figure 1):  
 Data modeling  
 Timed Reactive Object Model (TROM)  
 Timed reactive autonomic component (AC); 
 Group of synchronously interacting ACs (ACG); 
 Autonomic system (AS), consisting of asynchronously 

communicating ACGs. 
 

 
 

Figure 1: AS-TRM Formal Model [17] 
 
The lowest tier is the Larch Shared Language (LSL) tier, 

which specifies the Abstract Data Types (ADTs) used in the 
reactive classes [10]. The TROM tier specifies the reactive 
classes, called Generic Reactive Classes (GRCs) [10]. A GRC 
is a hierarchical finite state machine augmented with ports, 
attributes, logical assertions on the attributes and time 
constraints.  

The AC tier encapsulates TROM objects into an AS-TRM 
AC. The synchronous interaction between the ACs allows a 
reactive task to be realized. The communication between an 
AC and its upper tier ACG is realized through an interface, and 
is asynchronous.  

The ACG is a set of synchronously communicating ACs 
cooperating in fulfillment of a group task. Each ACG can 
independently accomplish a complete real-time reactive task. 
The self-monitoring behavior in the ACG tier and the 
asynchronous interaction between an ACG and the ACs is 
realized by an ACG Manager (AGM). The responsibilities of 
an AGM include the continuous monitoring of the ACG 
quality level required by the evolving nature of the peer group.  

The AS tier abstracts a set of asynchronously 
communicating ACGs. The self-monitoring behavior and the 
asynchronous interaction between AS and the ACGs is realized 
by the Global Manager (GM). The GM consists of a set of 
intelligent agents responsible for self-configuration, self-
healing and self-optimization, and self-protection of the ACGs. 
The GM’s responsibilities include the continuous monitoring 
of the AS quality level required to endure the quality 
requirements of the autonomic system.  

Every ACG communicates its status and measurements to 
the GM. According to the input received from the ACGs, the 
GM makes decisions based on policies, facts and rules (stored 
in the AS repository) and communicates instructions to the 
corresponding AGMs. 

Figure 2 depicts the hierarchical structure of the 
communicating entities of the AS-TRM.  
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Figure 2: Hierarchical view of the AS-TRM [10] 
 

The AS-TRM evolves: the composition of the ACs in the 
peer group can be changed in terms of run time and 
functionality, and synchronization axioms among ACs in the 
peer group can be changed during run time. The FSM and 
quality self-assessments at the AS level would allow the 
reconfigured system to be deployed by the GM if and only if 
the maximum functional size level is not reached and/or the 
quality requirements are met.  

The process of functional size self-assessment is based on 
the concept of the Intelligent Control Loop [11][12][13] and 
consists of the following steps: 
(i) Monitor: continuously track changes within the AS-TRM, 
either from the environment or from the GM, such as changes 
in configuration, functional requirements or quality 
requirements.  
(ii) Analyze: assess functional size and quality requirements 
according to the changes collected at the monitoring stage, and 
make decisions as to whether or not those changes are 
acceptable.  
(iii) Plan: decide on how the changes will be adapted, such as 
setting the appropriate timing and checkpoints to apply the 
changes, and how the ACG status will be restored if the 
execution fails.  
(iv) Execute: apply the changes that were accepted at the 
Analyze stage, and follow the plans made at the Plan stage. 
The successful changes will be stored in the group repository, 
and the assessment, along with execution result, will be 
reported to the GM and stored in the AS repository.  

The FSM method COSMIC-FFP has been chosen to monitor 
the size of an evolving AS-TRM system because of its 
objectiveness and solid theoretical foundation. In the following 
section, the COSMIC-FFP method is introduced. 

 

III. COSMIC-FFP MEASUREMENT METHOD 

A. COSMIC-FFP OVERVIEW 

COSMIC-FFP, the FSM method developed by COSMIC [9], 
has now been adopted as an international standard (ISO 19761 
[14]). It was designed to address some of the weaknesses of 
earlier methods like FPA [15], the design of which dates back 
almost 30 years to a time when software was much smaller and 
much less varied.  

In the measurement of software functional size using the 
COSMIC-FFP method, the software functional processes and 
their triggering events must be identified. In COSMIC-FFP, the 

unit of measurement is the data movement, which is a base 
functional component that moves one or more data attributes 
belonging to a single data group. Data movements can be of 
four types: Entry, Exit, Read or Write. The functional process 
is an elementary component of a set of user requirements 
triggered by one or more triggering events, either directly or 
indirectly, via an actor. The triggering event is an event 
occurring outside the boundary of the measured software and 
initiates one or more functional processes. The sub processes 
of each functional process are sequences of events, and 
comprise at least two data movement types: an Entry plus at 
least either an Exit or a Write. An Entry moves a data group, 
which is a set of data attributes, from a user across the 
boundary into the functional process, while an Exit moves a 
data group from a functional process across the boundary to the 
user requiring it. A Write moves a data group lying inside the 
functional process to persistent storage, and a Read moves a 
data group from persistent storage to the functional process. 
See Figure 3 for an illustration of the generic flow of data 
through software from a functional perspective.  

Figure 3 Generic Flow of Data through Software from a 
Functional Perspective [9] 

 
A generic procedure for measuring software functional size 

with COSMIC-FFP is illustrated in Figure 4. The measuring 
process is performed through five steps.  

First, the boundary of the software to be measured is 
identified by the measurer based on the requirements and the 
specifications of the interaction between the hardware and 
software. Second, the measurer identifies all possible 
functional processes, triggering events and data groups from 
the requirements. These are considered as candidate items at 
this stage. Third, the candidate items (i.e. functional processes, 
triggering events and data groups) are mapped into the 
COSMIC-FFP software context model (Figure 4) based on 
COSMIC-FFP rules. In this mapping, each functional process 
must be associated with a triggering event and with the data 
group(s) manipulated by it. This mapping also allows 
identification of the layers. Fourth, COSMIC-FFP sub 
processes (i.e. data movements of the following types: Entry, 
Exit, Read and Write) will be identified within each functional 
process. The COSMIC-FFP measurement function will be 
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applied to the sub processes identified to determine their 
respective COSMIC-FFP Cfsu1 size measure. Finally, the 
measurer will compute an aggregate of the measurement 
results to obtain the total functional size of the software being 
measured. 

 

 
Figure 4: General Procedure for Measuring Software Size 

using COSMIC-FFP – ISO 19761 [14] 
 

IV. ANALYSIS OF LINKAGES ACROSS MODELS 

Since the COSMIC-FFP measurement model and related 
definitions and rules are generic, it is of interest to investigate 
the feasibility of their applicability in specification languages 
to figure out whether or not the COSMIC-FFP method could 
complement the complexity management in the AS-TRM, 
which would allow early complexity assessment from the 
formal specifications. To achieve this, it is necessary to 
investigate a formalization of COSMIC-FFP within the AS-
TRM formal model.  

This formalization of COSMIC-FFP for AS-TRM requires a 
mapping of the COSMIC-FFP concepts (boundary, layer, 
functional process, triggering event, data group, movement and 
attributes, etc.) to the AS-TRM notation. Clear rules of 
COSMIC-FFP measurement shall be defined for AS-TRM 
specifications according to the COSMIC-FFP informal textual 
definitions given in [9]. The rules for measurement of 
autonomic elements and systems’ size have to be specified 
formally and mapped to system behavior so that the functional 
size can be monitored automatically.  

The initial mapping analysis between COSMIC-FFP and 
AS-TRM is presented in Table 1. 

 
 
 

                                                        
1 Cfsu = COSMIC-FFP functional size unit 

 Table 1 COSMIC-FFP & AS-TRM 

COSMIC-FFP concepts AS-TRM notations 

Boundary Reactive Component interface 

Layer Tier in the formal model 

Functional process Reactive task or self-management 
task 

Triggering event Shared input event 

Data group LSL trait 

Data movement Internal & External event (input & 
output) 

Data attribute Operation in the LSL trait 
  

The boundary concept in COSMIC-FFP corresponds 
physically to the “Reactive Component interface” notation in 
the formal AS-TRM. Since only the specification level is 
considered here, the ports that model the interfaces of the 
generic reactive classes (GRCs) [10] during the design phase 
are therefore not considered, but rather the Reactive 
Component interface. In specification, the user (either a human 
or an engineered device) wants to communicate with the 
software in order to receive/enter information. For example, 
the user communicates with the elevator through buttons in 
order to go either up or down. The communication design 
details are not of interest at the specification level. As is also 
shown in Table 1, the layer concept in COSMIC-FFP 
corresponds to the tier in the formal AS-TRM, where each 
upper tier communicates only with the tier immediately below 
it. The tier structure describes the system configuration, the 
ACGs, the ACs, the GRCs and their relative ADTs used to 
model the attributes in the AS-TRM (see section II). The 
functional process and the sub functional process concepts in 
COSMIC-FFP are mapped to “Reactive task or self-
management task” notation in the formal AS-TRM. A reactive 
task is carried out during the synchronous communication 
between the ACs belonging to one ACG, which cooperates in 
the fulfillment of a group task. Each ACG can independently 
accomplish a complete real-time reactive task. A transition 
specification describes the computational step associated with 
the occurrence of an event. A transition is triggered by an event 
and causes a reaction in the form of the occurrence of either an 
internal event or an output event. There may be a timing 
constraint on the occurrence of the reaction. Triggering event 
and data movement (i.e. Entry) concepts in COSMIC-FFP 
correspond to the external (input) event that occurs at a port, 
and represent a message being transmitted in the formal AS-
TRM. Also, a data movement corresponds to an internal (Read 
from internal storage, Write) or output (Exit) event in the AS-
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TRM. Finally, a data group corresponds to an LSL trait, the 
lowest tier and the basic specification unit, and represents the 
ADT used in modeling the system and generic reactive class 
attributes. The operation in this LSL trait corresponds to a 
Read or Write data movement in COSMIC-FFP, and an LSL 
trait included in a given data movement corresponds to a data 
attribute in COSMIC-FFP. The above mapping between the 
COSMIC-FFP and AS-TRM concepts conforms to the AS-
TRM event-driven modeling paradigm, where the components 
communicate through events and these events carry 
information.  

The applicability of the COSMIC-FFP FSM in terms of the 
formal AS-TRM is illustrated in the next section. 

 
 

V. CASE STUDY: STEAM BOILER 

The Steam Boiler Control specification problem of J. R. 
Abrial and E. Brger [16] was derived from an original text by 
J. C. Bauer for the Institute for Risk Research at the University 
of Waterloo, Ontario, Canada. The original text has been 
submitted as a competition problem to be solved by the 
participants at the International Software Safety Symposium 
organized by the Institute for Risk Research. It provides the 
specification design that will ensure safe operation of a steam 
boiler by maintaining the ratio of the water level in the boiler 
and the amount of steam emanating from it with the help of the 
corresponding measurement devices. The Steam Boiler System 
consists of the following physical units: 

• Steam Boiler: the container holding the water; 
• Pump: the device for pouring water into the steam 

boiler; 
• Valve: the mechanism for evacuating water from the 

steam boiler; 
• Water Level Measurement device: a sensor to 

measure the quantity of water q (in liters) and inform the 
system whenever there is a risk of exceeding the minimum or 
maximum amounts allowed. 

Figure 5 shows the Steam Boiler and the relationships 
between its components. The Steam Boiler is assumed to start 
up with a safe amount of water. The Controller runs a control 
cycle every 5 minutes to check on the amount of water 
currently in the system, and then triggers the Water Level 
Measurement device and sends the result to the Controller. The 
Controller receives the current level and checks whether it is 
normal, above normal or below normal: if the water level is 
normal, it will do nothing; if there is a risk that the minimum 
safe level will be reached, the Pump will be triggered to pour 
more water into the Steam Boiler; and if there is a risk that a 
level higher than normal will be reached, the Valve will be 
triggered to evacuate water from the Steam Boiler. 

 
 
 

 

 
Figure 5: Steam Boiler Controller 

 
It is of interest to measure the Steam Boiler Controller 

component (Figure 6), which is located within the AC tier. The 
Steam Boiler Controller is bounded by its interface, which 
separates it from the other components. 

 

Figure 6: Steam Boiler Controller and its Interface 
 

There are two reactive (or self-management) tasks that the 
Steam Boiler Controller has to accomplish. They are shown in 
Figures 7 and 8 as a sequence of events (e.g. corresponding to 
data movements in COSMIC-FFP) to be considered in FSM. 
The total number of these events in one sequence diagram 
corresponds to the total functional size for one reactive task. In 
other words, one event corresponds to one data movement, the 
basic elementary unit used in the COSMIC-FFP measurement 
method. 

Figure 7 shows the first reactive task accomplished by the 
interactions of the Controller with other components, that is, 
when the water level is below the minimum. The Controller 
sends an “open” message to the Pump, which reacts 
accordingly. It also sends a “close” message to the Valve. That 
reactive task is triggered by a shared input event, which is the 
“cycle” that is received on the request of Controller to check 
the measurement level every 5 minutes.   
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Figure 7: Controller Reactive Task (1) 
 

The second reactive task shown in Figure 8 is also triggered 
by the “cycle” event. It checks the water level to note whether 
or not that level is above the maximum. It sends a “close” 
message to the Pump component and an “open” message to the 
Valve component. As a result, they react accordingly. 
 
 

 
Figure 8: Controller Reactive Task (2) 

 
The total functional size for both tasks is shown in Table 2.  

 
 
 
 
 
 
 

Table 2: Total Function Size for Steam Boiler using AS-
TRM terms 

Tier Reactive task  Sequence of 
events 

Type of 
event 

Corresponding 
functional size 

AC Acts when the 
water level is 
below, at or 
above the 
required level  

(see Figures 7 
& 8) 

1. Receive data 
from 5-minute 
time cycle 
check 

2. Obtain the 
water level 
measurement 
(value = below 
normal, normal 
or above 
normal) 

3. (Logic) 
Check if any 
action is 
needed; if not, 
terminate the 
cycle 

4. Send 
message to 
Pump (value = 
open or close) 

5. Send 
message to 
Valve (value = 
open or close) 

6. The Boiler 
Controller 
mode is set 
(value = below 
normal, normal 
or above 
normal) 

Shared input 
event 

 

Internal 
input event 

 

 

 

 

 

 

 

 

External 
output event 

 

 

External 
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1 
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1 

Total Functional size of Steam Boiler Controller software 5 Cfsu 
 

VI.  DISCUSSION AND NEXT STEPS 

In this paper, the candidate linkages between the AS-TRM 
and the COSMIC-FFP FSM method are investigated. We have 
set out the initial step for formalizing COSMIC-FFP in the AS-
TRM context by mapping the COSMIC-FFP concepts 
(boundary, layer, functional process, triggering event, data 
group, movement and attributes, etc.) to the AS-TRM notation. 
Clear rules of COSMIC-FFP measurement have been defined 
for AS-TRM specifications according to the generic COSMIC-
FFP definitions. 

Research in progress is looking into an automatic COSMIC-
FFP FSM in the AS-TRM context. This will allow a uniform 
application of the rules of the COSMIC-FFP FSM method to 
AS-TRM specifications across different case studies, making it 
possible to analyze several case studies for validation purposes. 
Moreover, based on this mapping, we may determine whether 
or not there is a possibility of allowing for an automatic early 
complexity self-assessment of evolving autonomic systems 
from their formal specifications. 
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