
AS-TRM AND FUNCTIONAL SIZE WITH
COSMIC-FFP

Manar Abu Talib Olga Ormandjieva Alain Abran
Zayed University Concordia University École de Technologie Supérieure
manar.talib@zu.ac.ae ormandj@cse.concordia.ca alain.abran@etsmtl.ca

Abstract: COSMIC-FFP – ISO 19761 – is a functional size
measurement method developed by the Common Software
Measurement International Consortium (COSMIC). The
COSMIC-FFP measurement model and related definitions are
generic, and this paper investigates the feasibility of their
application in specification languages. More specifically, it
proposes a formalization of the COSMIC-FFP definition for the
Autonomic Systems Timed Reactive Object Model (AS-TRM).
This would allow the integration of functional complexity and
functional size monitoring during autonomic system specification
construction and/or evolution. The Steam Boiler case study is
introduced to demonstrate the applicability of functional size
measurement in terms of AS-TRM modeling.

Keywords: Autonomic Reactive Systems, Functional Size,
COSMIC-FFP, ISO 19761

I. INTRODUCTION

Software measurement is one of the key technologies for
controlling and managing the software development process.
Measurement is also the foundation of both the sciences and
engineering, and much more research on software is needed to
ensure that software engineering be recognized as a true
engineering discipline.

Fenton and Pfleeger [1] have defined software measurement
as the process of quantifying the attributes of software in order
to characterize them according to clearly defined rules. For
instance, it can be used to identify an anomaly within the
development phase in which it originated, as well as to
measure development progress. Thus, each software
development phase should contain measures to enable high
project visibility and quality control to be achieved [2].

The term “size” in software measurement can mean either
project size or software size. The first refers to total effort,
estimated or actual, and is expressed in units like work-hours
or staff-months. The latter refers to the size of the requirements
(functions) or the deliverables, and is expressed in units such
as modules or lines of code.

Fenton and Pfleeger [1] have identified three attributes of
software size, which are length, complexity and functionality.

Length refers to the physical size of the product. It is
meaningful to the technical staff, and useful for measuring
specifications, designs and codes. The lengths of the
specifications may help in predicting the length of the design,
and the length of the design may help in predicting the length
of the code. For example, software size can be measured by
counting the number of lines of code (LOC), a useful
measurement in deciding how big a file needs to be to store

code. However, it does not tell us anything about the
software’s functionality or about the quality of the coding.

Complexity is an essential characteristic of the software
process/product, and is a multifaceted notion which is context-
dependent [1], [3], [4], [5], [6]. As with the Whitmire [3]
classification, the complexity of a software system is viewed in
different dimensions, in this case four: computational,
representational, structural and functional. Computational
complexity is often associated with the study of algorithmic
efficiency. Representational complexity considers the tradeoffs
between graphical and textual notations for unambiguous
representations of the system model, system interactions and
system behavior. Structural complexity is viewed in terms of
coupling and cohesion, without considering the complexity of
the individual components. Functional complexity
characterizes the dynamic performance of the system seen as a
sequence of events required to fulfill a certain functionality of
the system.

Functionality, as discussed in [1], embodies the functions
supplied by a product. Many software engineers argue that
code length is a misleading indicator, and there is little
consensus on how to measure complexity. By contrast,
functionality is a meaningful way to measure software product
size as far as users and management are concerned, It must be
independent of the effort, the method and the technology.
There have been several approaches to measuring the
functionality of software products, among them:

• Albrecht’s function points [7].
• DeMarco’s specification weight [8].
• COSMIC-FFP [9].
All three approaches measure the functional size of software

specification documents, and they can all be applied later in the
life cycle. Functional size measurement (FSM) has been used
mostly for productivity, benchmarking and estimation
purposes, and it can be used very early in the software
development life cycle, such as when measuring the functional
user requirements which are known prior to the design,
architecture, code and test phases. There are some hints in the
literature and in practice that, in addition to measuring
productivity, and in benchmarking and effort estimation, FSM
could also be used for quality purposes. In this paper, we are
interested in the innovative use of the FSM method developed
by the Common Software Measurement International
Consortium (COSMIC), referred to as COSMIC-FFP, to
contribute to early assessment of software complexity and
quality. The COSMIC-FFP size measurement model and

http://www.novapdf.com

related definitions are generic, and we provide here an initial
investigation of the feasibility of their applicability in
specification methods. More precisely, we look into the initial
step in the formal definition of the COSMIC-FFP method in
the specific context of the Autonomic Systems Timed Reactive
Model (AS-TRM) specifications.

There are currently no adequate frameworks for measuring
size in autonomic systems with self-monitoring functionality.
Defining such a framework could allow integration of the FSM
derived during the specification construction phase into the
formal AS-TRM, and consequently its automatic self-
monitoring during the evolution of the autonomic system. Our
aim is to assess the size of an evolving AS-TRM system before
a change is authorized, in order to monitor the system’s
complexity and quality.

Integrating the COSMIC-FFP size measurement model into
the AS-TRM would ensure automatic and consistent feedback
on the functional size of the autonomic system. The Steam
Boiler case study is introduced next to illustrate the
applicability of the FSM in terms of AS-TRM modeling in the
specification phase.

The paper is organized as follows: Section II presents the
key elements of the AS-TRM, and section III the key elements
of COSMIC-FFP. Section IV discusses the mapping of
concepts across the two fields. In section V, the Steam Boiler
case study is introduced to illustrate the approach. Finally,
section VI identifies research directions for the formalization
of functional complexity and functional size during
specification construction.

II. AS-TRM

Here, we introduce the AS-TRM architecture for modeling
reactive autonomic distributed systems [17].

Reactive systems are computer systems that continuously
react to their physical environment, continually sensing and
responding to it, and at a speed determined by it. The behavior
of these systems is infinite, and they must always be able to
respond to a stimulus from that environment. Moreover, the
time lapse between a stimulus and its response must be
acceptable to the relative dynamics of the environment so that
the environment is still receptive to the response.

The AS-TRM architecture builds on the TROM formalism
[10] for modeling reactive systems by adding more tiers and
including the following specifications (see Figure 1):
 Data modeling
 Timed Reactive Object Model (TROM)
 Timed reactive autonomic component (AC);
 Group of synchronously interacting ACs (ACG);
 Autonomic system (AS), consisting of asynchronously

communicating ACGs.

Figure 1: AS-TRM Formal Model [17]

The lowest tier is the Larch Shared Language (LSL) tier,

which specifies the Abstract Data Types (ADTs) used in the
reactive classes [10]. The TROM tier specifies the reactive
classes, called Generic Reactive Classes (GRCs) [10]. A GRC
is a hierarchical finite state machine augmented with ports,
attributes, logical assertions on the attributes and time
constraints.

The AC tier encapsulates TROM objects into an AS-TRM
AC. The synchronous interaction between the ACs allows a
reactive task to be realized. The communication between an
AC and its upper tier ACG is realized through an interface, and
is asynchronous.

The ACG is a set of synchronously communicating ACs
cooperating in fulfillment of a group task. Each ACG can
independently accomplish a complete real-time reactive task.
The self-monitoring behavior in the ACG tier and the
asynchronous interaction between an ACG and the ACs is
realized by an ACG Manager (AGM). The responsibilities of
an AGM include the continuous monitoring of the ACG
quality level required by the evolving nature of the peer group.

The AS tier abstracts a set of asynchronously
communicating ACGs. The self-monitoring behavior and the
asynchronous interaction between AS and the ACGs is realized
by the Global Manager (GM). The GM consists of a set of
intelligent agents responsible for self-configuration, self-
healing and self-optimization, and self-protection of the ACGs.
The GM’s responsibilities include the continuous monitoring
of the AS quality level required to endure the quality
requirements of the autonomic system.

Every ACG communicates its status and measurements to
the GM. According to the input received from the ACGs, the
GM makes decisions based on policies, facts and rules (stored
in the AS repository) and communicates instructions to the
corresponding AGMs.

Figure 2 depicts the hierarchical structure of the
communicating entities of the AS-TRM.

http://www.novapdf.com

Figure 2: Hierarchical view of the AS-TRM [10]

The AS-TRM evolves: the composition of the ACs in the
peer group can be changed in terms of run time and
functionality, and synchronization axioms among ACs in the
peer group can be changed during run time. The FSM and
quality self-assessments at the AS level would allow the
reconfigured system to be deployed by the GM if and only if
the maximum functional size level is not reached and/or the
quality requirements are met.

The process of functional size self-assessment is based on
the concept of the Intelligent Control Loop [11][12][13] and
consists of the following steps:
(i) Monitor: continuously track changes within the AS-TRM,
either from the environment or from the GM, such as changes
in configuration, functional requirements or quality
requirements.
(ii) Analyze: assess functional size and quality requirements
according to the changes collected at the monitoring stage, and
make decisions as to whether or not those changes are
acceptable.
(iii) Plan: decide on how the changes will be adapted, such as
setting the appropriate timing and checkpoints to apply the
changes, and how the ACG status will be restored if the
execution fails.
(iv) Execute: apply the changes that were accepted at the
Analyze stage, and follow the plans made at the Plan stage.
The successful changes will be stored in the group repository,
and the assessment, along with execution result, will be
reported to the GM and stored in the AS repository.

The FSM method COSMIC-FFP has been chosen to monitor
the size of an evolving AS-TRM system because of its
objectiveness and solid theoretical foundation. In the following
section, the COSMIC-FFP method is introduced.

III. COSMIC-FFP MEASUREMENT METHOD

A. COSMIC-FFP OVERVIEW

COSMIC-FFP, the FSM method developed by COSMIC [9],
has now been adopted as an international standard (ISO 19761
[14]). It was designed to address some of the weaknesses of
earlier methods like FPA [15], the design of which dates back
almost 30 years to a time when software was much smaller and
much less varied.

In the measurement of software functional size using the
COSMIC-FFP method, the software functional processes and
their triggering events must be identified. In COSMIC-FFP, the

unit of measurement is the data movement, which is a base
functional component that moves one or more data attributes
belonging to a single data group. Data movements can be of
four types: Entry, Exit, Read or Write. The functional process
is an elementary component of a set of user requirements
triggered by one or more triggering events, either directly or
indirectly, via an actor. The triggering event is an event
occurring outside the boundary of the measured software and
initiates one or more functional processes. The sub processes
of each functional process are sequences of events, and
comprise at least two data movement types: an Entry plus at
least either an Exit or a Write. An Entry moves a data group,
which is a set of data attributes, from a user across the
boundary into the functional process, while an Exit moves a
data group from a functional process across the boundary to the
user requiring it. A Write moves a data group lying inside the
functional process to persistent storage, and a Read moves a
data group from persistent storage to the functional process.
See Figure 3 for an illustration of the generic flow of data
through software from a functional perspective.

Figure 3 Generic Flow of Data through Software from a
Functional Perspective [9]

A generic procedure for measuring software functional size

with COSMIC-FFP is illustrated in Figure 4. The measuring
process is performed through five steps.

First, the boundary of the software to be measured is
identified by the measurer based on the requirements and the
specifications of the interaction between the hardware and
software. Second, the measurer identifies all possible
functional processes, triggering events and data groups from
the requirements. These are considered as candidate items at
this stage. Third, the candidate items (i.e. functional processes,
triggering events and data groups) are mapped into the
COSMIC-FFP software context model (Figure 4) based on
COSMIC-FFP rules. In this mapping, each functional process
must be associated with a triggering event and with the data
group(s) manipulated by it. This mapping also allows
identification of the layers. Fourth, COSMIC-FFP sub
processes (i.e. data movements of the following types: Entry,
Exit, Read and Write) will be identified within each functional
process. The COSMIC-FFP measurement function will be

o
r

Engineered
Devices

Storage Hardware

SOFTWARE

ENTRIES

EXITS

« Front
end »

USERS

READS

WRITES

« Back
end »

EXITS

ENTRIES

I/O
Hardware

B
O
U
N
D
A
R
Y

http://www.novapdf.com

applied to the sub processes identified to determine their
respective COSMIC-FFP Cfsu1 size measure. Finally, the
measurer will compute an aggregate of the measurement
results to obtain the total functional size of the software being
measured.

Figure 4: General Procedure for Measuring Software Size

using COSMIC-FFP – ISO 19761 [14]

IV. ANALYSIS OF LINKAGES ACROSS MODELS

Since the COSMIC-FFP measurement model and related
definitions and rules are generic, it is of interest to investigate
the feasibility of their applicability in specification languages
to figure out whether or not the COSMIC-FFP method could
complement the complexity management in the AS-TRM,
which would allow early complexity assessment from the
formal specifications. To achieve this, it is necessary to
investigate a formalization of COSMIC-FFP within the AS-
TRM formal model.

This formalization of COSMIC-FFP for AS-TRM requires a
mapping of the COSMIC-FFP concepts (boundary, layer,
functional process, triggering event, data group, movement and
attributes, etc.) to the AS-TRM notation. Clear rules of
COSMIC-FFP measurement shall be defined for AS-TRM
specifications according to the COSMIC-FFP informal textual
definitions given in [9]. The rules for measurement of
autonomic elements and systems’ size have to be specified
formally and mapped to system behavior so that the functional
size can be monitored automatically.

The initial mapping analysis between COSMIC-FFP and
AS-TRM is presented in Table 1.

1 Cfsu = COSMIC-FFP functional size unit

 Table 1 COSMIC-FFP & AS-TRM

COSMIC-FFP concepts AS-TRM notations

Boundary Reactive Component interface

Layer Tier in the formal model

Functional process Reactive task or self-management
task

Triggering event Shared input event

Data group LSL trait

Data movement Internal & External event (input &
output)

Data attribute Operation in the LSL trait

The boundary concept in COSMIC-FFP corresponds
physically to the “Reactive Component interface” notation in
the formal AS-TRM. Since only the specification level is
considered here, the ports that model the interfaces of the
generic reactive classes (GRCs) [10] during the design phase
are therefore not considered, but rather the Reactive
Component interface. In specification, the user (either a human
or an engineered device) wants to communicate with the
software in order to receive/enter information. For example,
the user communicates with the elevator through buttons in
order to go either up or down. The communication design
details are not of interest at the specification level. As is also
shown in Table 1, the layer concept in COSMIC-FFP
corresponds to the tier in the formal AS-TRM, where each
upper tier communicates only with the tier immediately below
it. The tier structure describes the system configuration, the
ACGs, the ACs, the GRCs and their relative ADTs used to
model the attributes in the AS-TRM (see section II). The
functional process and the sub functional process concepts in
COSMIC-FFP are mapped to “Reactive task or self-
management task” notation in the formal AS-TRM. A reactive
task is carried out during the synchronous communication
between the ACs belonging to one ACG, which cooperates in
the fulfillment of a group task. Each ACG can independently
accomplish a complete real-time reactive task. A transition
specification describes the computational step associated with
the occurrence of an event. A transition is triggered by an event
and causes a reaction in the form of the occurrence of either an
internal event or an output event. There may be a timing
constraint on the occurrence of the reaction. Triggering event
and data movement (i.e. Entry) concepts in COSMIC-FFP
correspond to the external (input) event that occurs at a port,
and represent a message being transmitted in the formal AS-
TRM. Also, a data movement corresponds to an internal (Read
from internal storage, Write) or output (Exit) event in the AS-

Functional User
Requirements

(FURs)

Identify
Application’s

Boundary

Identify
Candidate
Functional
Processes

Identify
Candidate

Data Groups

Identify
Candidate
Triggering

Events

Map candidate
items into Model

Apply Measurement
Function

Aggregate Measurement
Results

Cfsu

STEP 1

STEP 2

STEP 3

STEP 4

STEP 5

Functional User
Requirements

(FURs)

Identify
Application’s

Boundary

Identify
Candidate
Functional
Processes

Identify
Candidate

Data Groups

Identify
Candidate
Triggering

Events

Map candidate
items into Model

Apply Measurement
Function

Aggregate Measurement
Results

Cfsu

STEP 1

STEP 2

STEP 3

STEP 4

STEP 5

http://www.novapdf.com

TRM. Finally, a data group corresponds to an LSL trait, the
lowest tier and the basic specification unit, and represents the
ADT used in modeling the system and generic reactive class
attributes. The operation in this LSL trait corresponds to a
Read or Write data movement in COSMIC-FFP, and an LSL
trait included in a given data movement corresponds to a data
attribute in COSMIC-FFP. The above mapping between the
COSMIC-FFP and AS-TRM concepts conforms to the AS-
TRM event-driven modeling paradigm, where the components
communicate through events and these events carry
information.

The applicability of the COSMIC-FFP FSM in terms of the
formal AS-TRM is illustrated in the next section.

V. CASE STUDY: STEAM BOILER

The Steam Boiler Control specification problem of J. R.
Abrial and E. Brger [16] was derived from an original text by
J. C. Bauer for the Institute for Risk Research at the University
of Waterloo, Ontario, Canada. The original text has been
submitted as a competition problem to be solved by the
participants at the International Software Safety Symposium
organized by the Institute for Risk Research. It provides the
specification design that will ensure safe operation of a steam
boiler by maintaining the ratio of the water level in the boiler
and the amount of steam emanating from it with the help of the
corresponding measurement devices. The Steam Boiler System
consists of the following physical units:

• Steam Boiler: the container holding the water;
• Pump: the device for pouring water into the steam

boiler;
• Valve: the mechanism for evacuating water from the

steam boiler;
• Water Level Measurement device: a sensor to

measure the quantity of water q (in liters) and inform the
system whenever there is a risk of exceeding the minimum or
maximum amounts allowed.

Figure 5 shows the Steam Boiler and the relationships
between its components. The Steam Boiler is assumed to start
up with a safe amount of water. The Controller runs a control
cycle every 5 minutes to check on the amount of water
currently in the system, and then triggers the Water Level
Measurement device and sends the result to the Controller. The
Controller receives the current level and checks whether it is
normal, above normal or below normal: if the water level is
normal, it will do nothing; if there is a risk that the minimum
safe level will be reached, the Pump will be triggered to pour
more water into the Steam Boiler; and if there is a risk that a
level higher than normal will be reached, the Valve will be
triggered to evacuate water from the Steam Boiler.

Figure 5: Steam Boiler Controller

It is of interest to measure the Steam Boiler Controller

component (Figure 6), which is located within the AC tier. The
Steam Boiler Controller is bounded by its interface, which
separates it from the other components.

Figure 6: Steam Boiler Controller and its Interface

There are two reactive (or self-management) tasks that the
Steam Boiler Controller has to accomplish. They are shown in
Figures 7 and 8 as a sequence of events (e.g. corresponding to
data movements in COSMIC-FFP) to be considered in FSM.
The total number of these events in one sequence diagram
corresponds to the total functional size for one reactive task. In
other words, one event corresponds to one data movement, the
basic elementary unit used in the COSMIC-FFP measurement
method.

Figure 7 shows the first reactive task accomplished by the
interactions of the Controller with other components, that is,
when the water level is below the minimum. The Controller
sends an “open” message to the Pump, which reacts
accordingly. It also sends a “close” message to the Valve. That
reactive task is triggered by a shared input event, which is the
“cycle” that is received on the request of Controller to check
the measurement level every 5 minutes.

Reactive Component interface

Steam
Boiler
Controll
er

Timer

Level

Pump

Valve

http://www.novapdf.com

Figure 7: Controller Reactive Task (1)

The second reactive task shown in Figure 8 is also triggered
by the “cycle” event. It checks the water level to note whether
or not that level is above the maximum. It sends a “close”
message to the Pump component and an “open” message to the
Valve component. As a result, they react accordingly.

Figure 8: Controller Reactive Task (2)

The total functional size for both tasks is shown in Table 2.

Table 2: Total Function Size for Steam Boiler using AS-
TRM terms

Tier Reactive task Sequence of
events

Type of
event

Corresponding
functional size

AC Acts when the
water level is
below, at or
above the
required level

(see Figures 7
& 8)

1. Receive data
from 5-minute
time cycle
check

2. Obtain the
water level
measurement
(value = below
normal, normal
or above
normal)

3. (Logic)
Check if any
action is
needed; if not,
terminate the
cycle

4. Send
message to
Pump (value =
open or close)

5. Send
message to
Valve (value =
open or close)

6. The Boiler
Controller
mode is set
(value = below
normal, normal
or above
normal)

Shared input
event

Internal
input event

External
output event

External
output event

Internal
output event

1

1

1

1

1

Total Functional size of Steam Boiler Controller software 5 Cfsu

VI. DISCUSSION AND NEXT STEPS

In this paper, the candidate linkages between the AS-TRM
and the COSMIC-FFP FSM method are investigated. We have
set out the initial step for formalizing COSMIC-FFP in the AS-
TRM context by mapping the COSMIC-FFP concepts
(boundary, layer, functional process, triggering event, data
group, movement and attributes, etc.) to the AS-TRM notation.
Clear rules of COSMIC-FFP measurement have been defined
for AS-TRM specifications according to the generic COSMIC-
FFP definitions.

Research in progress is looking into an automatic COSMIC-
FFP FSM in the AS-TRM context. This will allow a uniform
application of the rules of the COSMIC-FFP FSM method to
AS-TRM specifications across different case studies, making it
possible to analyze several case studies for validation purposes.
Moreover, based on this mapping, we may determine whether
or not there is a possibility of allowing for an automatic early
complexity self-assessment of evolving autonomic systems
from their formal specifications.

Controller Level

Time

1: cycle

2: obtain
level

3: level returned

4: send “open”
message

5: open

6: send “close”
message

7: close

Pump Valve

Controller Level

Time

1: cycle

2: get level

3: level returned

4: send “close”

5: close

6: send “open”

7: open

Pump Valve

http://www.novapdf.com

REFERENCES

1. N. E. Fenton and S. L. Pfleeger, Software Metrics: A Rigorous and
Practical Approach, 2nd ed: PWS Publishing Company, 1998.

2. O. Ormandjieva, "Deriving New Measurement for Real Time
Reactive Systems," in Computer Science & Software Engineering
Department. Montreal: Concordia University, 2002.

3. S. A. Whitmire, Object Oriented Design Measurement: John Wiley
& Sons, 1997.

4. B. Henderson-Sellers, Object Oriented Metrics: Measures of
Complexity. New Jersey: Prentice-Hall, 1996.

5. H. Zuse, Software Complexity Measures and Methods. Berlin, New
York: Walter de Gruyter, 1991.

6. J. S. Davis and R. J. Leblanc, "A Study of the Applicability of
Complexity Measures," presented at IEEE Transactions on
Software Engineering, 1988.

7. A. Abran and P. N. Robillard, "Function Points: A study of Their
Measurement Processes and Scale Transformations," Journal of
Systems and Software, vol. 25(2), pp. 171-184, 1994.

8. T. DeMarco, Controlling Software Projects. New York: Yourdon,
1982.

9. Abran, A., Desharnais, J.-M., Oligny, S., St-Pierre, D., Symons, C.,
(2003), COSMIC-FFP Measurement Manual: The COSMIC
Implementation Guide for ISO/IEC 19761: 2003, Version 2.2,
January 2003, The Common Software Measurement International
Consortium, École de technologie supérieure – Université du
Québec, Montréal, Canada http://www.gelog.etsmtl.ca/cosmic-
ffp/manual.html

10. R. Achuthan, “A Formal Model for Object-Oriented Development
of Real-Time Reactive Systems,” Ph.D. thesis, Department of
Computer Science, Concordia University, Montreal, Canada,
October 1995.

11. IBM, An Architectural Blueprint for Autonomic Computing. IBM
and Autonomic Computing, 2003.

12. IBM, An Architectural Blueprint for Autonomic Computing. IBM
and Autonomic Computing, 2004.

13. IBM, An Architectural Blueprint for Autonomic Computing. IBM
and Autonomic Computing, 2005.

14. ISO/IEC 19761. Software Engineering − COSMIC-FFP − A
functional size measurement method. International Organization for
Standardization − ISO, Geneva, 2003.

15. Albrecht, A. J. and Gaffney, J. E., Software Function, Source Lines
of Code, and Development Effort Prediction: A Software Science
Validation. IEEE Trans. Software Eng. vol. SE-9, no. 6, pp. 639-
648, Nov. 1983.

16. J. R. Abrial, "Steam Boiler Control Specification Problem,” 1991.
17. E. Vassev, H. Kuang, O. Ormandjieva, E., Paquet. Reactive,

Distributed and Autonomic Computing Aspects of AS-TRM. In the
proceedings of the 1st International Conference on Software and
Data Technologies-ICSOFT2006, September 11-14, 2006, Setubal,
Portugal

http://www.novapdf.com

