
Mapping the OO-Jacobson Approach into Function Point Analysis

Thomas Fetcke, Alain Abran and Tho-Hau Nguyen

Université du Québec à Montréal

Copyright 1998 IEEE.
Published in the Proceedings of TOOLS-23'97, 28 July – 1 August 1997,
Santa Barbara, CA.

Personal use of this material is permitted. However, permission to
reprint/republish this material for advertising or promotional purposes or for
creating new collective works for resale or redistribution to servers or lists, or
to reuse any copyrighted component of this work in other works, must be
obtained from the IEEE.
Contact: Manager, Copyrights and Permissions

IEEE Service Center
445 Hoes Lane
P.O. Box 1331
Piscataway, NJ 08855-1331, USA.
Telephone: + Intl. 908-562-3966.

Copyright 1998 IEEE. Published in the Proceedings of TOOLS-23'97. 1

Mapping the OO-Jacobson Approach into Function Point Analysis

Thomas Fetcke, Alain Abran and Tho-Hau Nguyen

Université du Québec à Montréal
Software Engineering Management Research Laboratory

Case postale 8888, succursale Centre-Ville
Montréal (Québec) Canada H3C 3P8

Phone: +1 (514) 987-3000 (8900)
Fax: +1 (514) 987-8477

E-mail: fetcke@cs.tu-berlin.de, abran.alain@uqam.ca
WWW: http://saturne.info.uqam.ca/Labo_Recherche/lrgl.html

Abstract

Function Point Analysis measures user requested
functionality independent of the technology used for
implementation. Software applications are represented
in an abstract model that contains the items that
contribute to the functional size. When Function Point
Analysis is applied to object-oriented software, the
concepts of the development method have to be mapped
into that abstract model.

This article proposes a mapping of the use case
driven Object-Oriented Software Engineering method by
Jacobson et al. into the abstract Function Point model.
The mapping has been formulated as a small set of
concise rules that support the actual measurement
process. Our work demonstrates the applicability of
Function Point Analysis as a measure of functional
software size to the OO-Jacobson approach. This
supports the thesis that Function Point Analysis
measures independent of the technology used for
implementation and that it can be used in the object-
oriented paradigm.

1. Introduction

Function Point Analysis (FPA) was introduced by
Albrecht [1] as a measure of the functional size of
information systems. Since then, the use of Function
Points has grown worldwide and the counting procedures
have been modified and improved several times since
their initial publication. Function Point Analysis is now
maintained by the International Function Point Users
Group (IFPUG). The current version of the counting
rules is recorded in the Counting Practices Manual [5].

Function Point Analysis as a measurement technique
is intended to be independent of the technology used for
implementation. It is formulated as a counting method of
several steps in the Counting Practices Manual. This
counting method is implicitly based on a high-level
model of software applications. Any software
requirements documentation has to be mapped into this
model. The actual measurement, the mapping into
numbers, takes then place in the context of the abstract
model. Nevertheless, both abstraction and assignment of
numbers are defined as a cohesive process in the
Counting Practices.

Though independent of implementation, the
counting rules are thus based on implicit assumptions on
the abstract model of software applications. The items in
the abstract model that are then counted include
transaction and file types. These items are typically
identified from the documents of traditional, structured
design techniques, e. g. data flow diagrams, hierarchical
process models or database structures.

1.1. Function Point Analysis with object-oriented
design methods

Object-oriented design methods, by contrast, model
software systems as collections of cooperating objects.
The models created with OO methods are different,
especially in the early phases. They typically do not
provide the traditional documentation in data flow
diagrams or database structures.

However, the goal of measuring the functionality
that the user requests and receives is still valid for
applications developed with object-oriented technology.

In the early phases of the software cycle, distinct
object-oriented methods differ in the types and structures

Mapping the OO-Jacobson Approach to Function Point Analysis

Copyright 1998 IEEE. Published in the Proceedings of TOOLS-23'97. 2

of the models developed. It is therefore necessary to
discuss individual counting approaches for each method
(see [8]).

In this project, we focused on the approach of
Jacobson et al. [7]. The authors call their method Object-
Oriented Software Engineering (OOSE).

The OOSE method defines a process to transform
formalized requirements into a sequence of models. The
steps include the requirements, analysis, design,
implementation and testing models. The use case model
is the basis on which all other models are developed.
Together with the domain object model it forms the
requirements model (see Fig. 1).

The objectives of our project were:
1. The application of Function Point Analysis

following the IFPUG standard.
2. To measure for software developed with the OOSE

method.
3. To count early in the life cycle, in the requirements

analysis phase.

1.2. Related work

Little work has been published on Function Point
Analysis in the context of object-oriented software
engineering techniques. None of the approaches
published applies the IFPUG standard for Jacobson's
OOSE method.

On the one hand, the majority of the approaches do
not use the standard FPA defined by IFPUG, but defines
variants or new measures. In consequence, the functional

size measured with these approaches is not comparable
with that of standard FPA counts.

On the other hand, only one publication was based
specifically on the OOSE method. Given the early
models developed with the Jacobson approach, none of
the other approaches can be applied, as those measures
cannot handle use cases.

Whitmire bases his approach on a class diagram
including messages sent between classes [10]. He
considers each class as an internal logical file and treats
messages sent outside the system boundary as
transactions. He rejects the existence of external
interface files, because externally maintained data are
never accessed directly. The standard FPA, however,
understands under an external interface file a group of
data that is read but not maintained by the measured
application.

We also disagree with the view that every message
should be a transaction. The FPA concept of transactions
is based on smallest activities meaningful to the users. A
single message is not necessarily meaningful to the user.

The ASMA paper [2] takes an approach similar to
that of Whitmire. Services delivered by objects to the
client are considered as transactions. The complexity of
services is weighted based on accessed attributes and
communications. Objects are treated as files, their
attributes determining their complexity.

The paper refers to the IFPUG standard, but it
replaces the items that count and their internal structures
with objects and services. Again, it is questionable if
there exists a simple one-to-one relationship between

'RPDLQ REMHFW

PRGHO

$QDO\VLV �REMHFW�

PRGHO

8VH FDVH PRGHO

'HVLJQ PRGHO

,PSOHPHQWDWLRQ

PRGHO 7HVWLQJ PRGHO

FODVV ��� RN

RN

IDLO

Figure 1: The use case model is the basis on which all other models of the OOSE approach are
developed.

Mapping the OO-Jacobson Approach to Function Point Analysis

Copyright 1998 IEEE. Published in the Proceedings of TOOLS-23'97. 3

original FPA concepts and objects and services. The
ASMA article also discusses internal size measurement
that is not considered in FPA.

IFPUG is working on a case study [6] which
illustrates the use of the counting practices for object-
oriented analysis and design. This case study, which is
currently in draft form, uses object models in which the
methods of classes are identical with the services
recorded in the requirements. Under this assumption, the
methods can be directly counted as transactions.

While the case study has the objective to comply
with the FPA standard, it is based on an object model. It
cannot be used with the OO-Jacobson approach, because
the assumption that the required services are represented
in object methods does not hold for early life cycle
phases.

Karner proposes a new measure called Use Case
Points for projects developed with the OOSE method [9].
The structure of this measure is similar to Function
Points, but it is not based on the items that represent
functional size in FPA.

Its results cannot be compared directly to size
measured in Function Points.

Gupta and Gupta define Object Points as a new
measure which is different from Function Points [4]. The
overall structure is similar to FPA. But instead of user
functionality, objects are the items that are counted.
Objects are weighted based on their “complexity”,
derived from so called effective attributes, instance and
message connections.

Again, the results obtained with this measure
proposed by Gupta et al. cannot be compared to size
measured in Function Points.

1.3. Function Point Analysis with OOSE

In order to apply the counting rules for Function
Points to the software applications developed with
OOSE, the Function Point and OOSE concepts and
terminologies have to be set in relation to each other.
The challenge of this research project is to identify and
clarify this relationship and then to transform it into a
mapping of respective concepts. The mapping must then
be transformed into a set of rules and procedures. This
set of rules and procedures will facilitate the counting of
Function Points by practitioners in the field, helping
them to apply the procedures of the Counting Practices
Manual.

Two factors will have an impact on the ease of
counting Function Points based on the results of this
research work.

The first factor will be the ease of use of the
mapping of the OOSE models to Function Point

concepts, i. e. how easy it is to use the rules and
procedures developed in this research project in order to
identify and measure, from the OOSE documents, the
components that contribute to functional size.

The second factor will, of course, be the degree of
conformity between the project documentation and
OOSE standards, as well as its quality and completeness.
The measurement process is indeed very dependent on
the quality and completeness of the project
documentation, i. e. completeness in terms of the parts
that are required for the count: if, for the project to be
measured, important parts of the method are not used, it
may be necessary to augment the formally documented
items with information recorded differently, and
determine their additional contribution to the Function
Point count according to the counting rules.

2. Brief introduction to OOSE

The OOSE method is divided into three major
consecutive processes: analysis, construction and testing.
The analysis phase is further divided into two steps,
called requirements analysis and robustness analysis (see
Fig. 2). The first step derives the requirements model
from the informal customer requirements. This model is
expressed in terms of a use case model, and may be
augmented by a domain object model. The second step,
robustness analysis, then structures the use case model
into the analysis model. The succeeding processes
further transform these models, as indicated in Figure 1.

At the focus of our work are the models developed
in the analysis phase. As Jacobson et al. state, the
requirements model can be regarded as formulating the
functional requirements specification based on the needs
of the users. Our goal is to count Function Points early in
the life cycle, measuring the functionality requested by
the user from these models.

In the following paragraphs, we give a short
overview of the three models.

5HTXLUHPHQWV

PRGHO

� 8VH FDVH PRGHO

� 'RPDLQ REMHFW PRGHO

$QDO\VLV PRGHO

5HTXLUHPHQWV

DQDO\VLV

5REXVWQHVV

DQDO\VLV

&XVWRPHU

UHTXLUHPHQWV

Figure 2: Analysis ph ase of the OOSE life cycle.

Mapping the OO-Jacobson Approach to Function Point Analysis

Copyright 1998 IEEE. Published in the Proceedings of TOOLS-23'97. 4

2.1. Use case model

The central model of OOSE is the use case model
(cf. Fig. 1), and therefore Jacobson et al. call their
approach “use case driven”. This model has two types of
entities, actors and use cases.

Actors represent subjects that interact or exchange
information with the system. They are outside the system
being described. When an actor uses the system, he
follows a course of behaviorally related actions in dialog
with the system. Each such special sequence of actions is
called a use case and defines a specific way of using the
system. The set of all use case descriptions specifies the
complete functionality of the system. Figure 3 gives a
small example of a use case model.

Use cases can be refined with the uses and extension
relationships. Common parts of use cases can be
extracted and modeled as abstract use cases, that are
then used by other use cases, for example Print in Fig. 3.

With the extension relationship a use case may be
inserted into the flow of action of an existing use case.
The extension adds functionality independently of the
existing, in itself complete use case. Exceptional
situations can be handled in this way.

2.2. Domain object model

As an augmentation of the use case model, the
domain object model consists of the objects found in the
problem domain. These objects can be structured with
the inheritance and aggregation relationships. Some
examples of domain objects are shown in Figure 4.

This model is meant to support the development of
the requirements model. The OOSE method does not
explicitly require a domain object model.

2.3. Analysis (object) model

The analysis model is based on typed objects. The
three object types are entity, control and interface. The
purpose of the typing is to support the creation of a
structure that is adaptable to changes. Thus, for example,
changes to the interface requirements can be limited to
interface objects.

Entity objects model information that exists in the
system for a longer time, typically surviving a use case.
Domain objects often become entity objects, but this is
not necessarily the case. Entity objects can be structured
with inheritance and aggregation relationships as
described above for domain objects.

Interface objects model behavior and information
related to the presentation of the system to the outside
world.

$GG &XVWRPHU
FRPPXQLFDWLRQ

2SHUDWRU 'DWDEDVH

3ULQW /LVW RI

&XVWRPHUV

3ULQWHU

3ULQWXVHV

3ULQW &XVWRPHU 'DWD

XVHV

Figure 3: Use case model with four use cases
and three associated actors. Print is an abstract
use case.

&XVWRPHU 8VHU

&XVWRPHU

*URXS

,QGLYLGXDO

&XVWRPHU

&XVWRPHU

%DVH

FRQWDLQV

LQKHULWV

LQKHULWV

>���1@

Figure 4: Domain object model with inheritance
and aggregation.

,QWHUIDFH

&XVWRPHU &XVWRPHU

%DVH
2SHUDWRU

&XVWRPHU

FRQWURO

$GG &XVWRPHULQWHUIDFH REMHFW

FRQWURO REMHFW

HQWLW\ REMHFW

Figure 5: Analysis model for the Add Customer
use case.

Mapping the OO-Jacobson Approach to Function Point Analysis

Copyright 1998 IEEE. Published in the Proceedings of TOOLS-23'97. 5

Control objects model functionality that is not
naturally tied to the other object types. A control object
could, for example, operate on several entity objects,
perform a computation and return the result to an
interface object that would present it to the user.

The analysis model is derived from the use case
model. The functionality of each use case is partitioned
and allocated to the typed objects.

The use case example Add Customer in Figure 5 is
structured into four objects that will perform this service.
The Operator interacts with the Interface when adding
customer data. This data is stored in the entity objects
Customer and Customer Base. The Customer control
object controls the process.

3. Function Point concepts

3.1. Function Point model

A high-level view of the FPA model is given in
Figure 6. The Function Point model specifies which
component types of the software application will be
measured and from which viewpoint this will be done.
What is to be counted, and measured, are the internal
files and external files of the application, together with
the inputs, outputs and inquiries from and to the user.
Software components or deliverables which are not
visible from a user viewpoint are not considered part of
the Function Point measurement model.

However, within the Function Point model, the user
concept is not equivalent to, nor restricted to, a human
being as the user of the software, and other types of users
are therefore admissible within its measurement model,
such as mechanical devices or other software
applications. Figure 6 also illustrates that, within the
Function Point model, inputs, outputs and inquiries
coming from, and going to, other software applications
qualify as admissible items to be counted and measured.

3.2. Function Point measurement procedure

The Function Point measurement procedure for a
software application consists of four major steps of
abstraction of user-visible components of the software.
The first abstraction step is identification of the
application's boundary. The second major step is
identification, within the previously identified boundary,
of the files and transactions that have to be counted. The
third step classifies the files and transactions identified
in the second step into classes of file and transactional
types respectively. In the last major step, the items to be
counted are assigned weights based on their number of
sub-components.

The next section describes the proposed mapping of
OOSE models to Function Points along these four major
steps. The mapping has been formulated as rules to
support their practical application.

8VHUV

0HDVXUHG

DSSOLFDWLRQ

2WKHU

DSSOLFDWLRQV

,QWHUQDO ORJLFDO

ILOHV

([WHUQDO

LQWHUIDFH ILOHV

,QWHUQDO ORJLFDO

ILOHV

([WHUQDO

LQSXWV

([WHUQDO

RXWSXWV

([WHUQDO

LQTXLULHV

([WHUQDO

LQSXWV

([WHUQDO

RXWSXWV

([WHUQDO

LQTXLULHV

)XQFWLRQ 3RLQW 0RGHO

$SSOLFDWLRQ ERXQGDU\

Figure 6: High-l evel view of the abstract Function Point model with u sers and links to other
applications. The dotted line marks the a pplication bound ary.

Mapping the OO-Jacobson Approach to Function Point Analysis

Copyright 1998 IEEE. Published in the Proceedings of TOOLS-23'97. 6

4. Mapping of concepts

4.1. Step 1: Boundary concepts

The viewpoint of the user is essential in Function
Point Analysis to determine which parts of the
application contribute to the delivered functionality. The
concept of the counting boundary is the high-level
abstraction of an application which determines the
artifact under measurement. Before any measurement
can take place, the object of the measurement process
has to be specified.

The Function Point counting boundary indicates
the border between the project or application
being measured and the external applications or
user domain.1

In Figure 7, this counting boundary is indicated. The
boundary is always dependent on the purpose and the
viewpoint of the count.

The view of the OOSE use case model corresponds
to the boundary concept of Function Points, as the actors
are outside the application and the use cases define the
application's functionality2. The similarities of these
concepts, however, are not exact equalities. We therefore
have to discuss a mapping of the use case model into
FPA.

Actors, users and external applications. Since the
OOSE concept of actors is broader than the concept of
users and external applications in FPA, there cannot be a
one-to-one mapping of actors to users or external
applications. However, each user of the application has
to appear as an actor. Similarly, every other application
which communicates with the application under
consideration must appear as an actor too.

In this sense, the set of actors gives us the complete
view of the users and external applications outside the
counting boundary. But the set may contain actors that
are not considered as users in the Function Point view, as
OOSE makes it possible to view the “functionality of the
underlying system as an actor.” Therefore we have to

1 See [5, p. 4-2].
2 Jacobson et al. call this boundary the “system delimitation”.

select those actors that fall into the Function Point
categories of users and external applications.

The following rules have therefore been formulated
to ensure a consistent and coherent mapping between the
OOSE model and the Function Point measurement
procedures.

Proposed mapping rules.

1) Accept each human actor as a user of the system.
2) Accept each non-human actor which is a separate

system not designed to provide functionality solely to
the system under consideration as an external
application.

3) Reject each non-human actor which is part of the
underlying system, e. g. a relational database system
or a printing device.

The documentation required for this step is the use
case model displaying actors and use cases on a
relatively high level.

The result is a representation of the application
boundary as a set of users and applications external to
the one under consideration.

4.2. Step 2: Identification of items within the
boundary

In Function Point Analysis, two sorts of items
determine functional size: transactional functions and
files (see Fig. 8). To identify these different sorts of
items, we divide this step into two sub-steps.

Step 2a: Transactional functions. The Function Point
rules have two concepts of items that have to be counted.
The first of these concepts is a user-visible elementary
process which leaves the system in a consistent state,
called a transaction. However, which user-visible
deliverables have to be counted as transactions is
determined by detailed counting rules. There can be a
one-to-one, one-to-many or many-to-one relation
between deliverables visible to the user and transactions,
e. g. a single input screen can correspond to one external
input, while a complex screen can contain masks for

8VHUV
0HDVXUHG

DSSOLFDWLRQ

2WKHU

DSSOLFDWLRQV

$SSOLFDWLRQ ERXQGDU\

Figure 7: Step 1 – Identification of the counting
bound ary.

8VHUV

0HDVXUHG

DSSOLFDWLRQ

2WKHU

DSSOLFDWLRQV

)LOHV)LOHV

7UDQVDFWLRQDO

IXQFWLRQV

$SSOLFDWLRQ ERXQGDU\

7UDQVDFWLRQDO

IXQFWLRQV

Figure 8: Step 2 – Identification of it ems within
the counting bound ary.

Mapping the OO-Jacobson Approach to Function Point Analysis

Copyright 1998 IEEE. Published in the Proceedings of TOOLS-23'97. 7

input and produce output from it. Furthermore, an input
may have so many fields that it is split up into several
screens.

Determining what is a transactions is therefore a
process that requires analysis according to the Function
Point counting rules.

Use cases are the OOSE concept corresponding to
transactions. However, there is no one-to-one relation
between them. As stated above, the view defined in the
counting rules may imply that one use case has to be
counted as one or as many transactions, depending on
the tasks it performs3. Nevertheless, the set of use cases
is the set of candidates for transactional functions.

Use cases and transactions. The level of detail in the
use case model may vary. On the one hand, different
flows of interaction may be grouped in one use case. On
the other hand, use cases can be broken down into
further detail, using the uses and extension relationships.
Generally, the use case model does not provide enough
information to make decisions, whether and how to
count a specific use case according to the Function Point
rules. For this purpose, the use cases have to be
described in further detail. But, if use cases are
hierarchically ordered using the uses relationship, it is
possible to choose those use cases that directly
communicate with users or external applications, i. e. the
actors that have been identified as users or external
applications respectively.

These use cases are candidates for transactions.
Which of the candidates identified in these and the rules
later on will be counted is due to evaluation of the actual
Function Point rules.

Determining how many transactions of which types
one use case corresponds to has to be made with more
detailed information from use case descriptions.

The mapping is formulated explicitly in the
following rules.

Proposed mapping rules.

4) Select every use case that has a direct relation to an
actor accepted by rule 1 or 2. This use case will be a
candidate for one or several transactions.

5) Select every use case that extends a use case
selected by rule 4 as a candidate. The extension may
include interaction with a user or external application.

6) No other use cases will be selected.

The documentation required for this step is the use
case model displaying actors and use cases on a

3 This notion is not related to the number of actors that can execute one
use case (cardinality of relationships), but to the abstract concept of
different transactions performed.

relatively high level, the same as for rules 1-3.
Additionally, the application boundary identified by
rules 1-3 is needed as input.

The result is a set of candidates for transactions. In
step 3 we will decide whether to count a candidate as a
transaction, based on the original Counting Practices
Manual. Furthermore, a candidate may then be counted
as one or several transactions.

Step 2b: Files. The second concept of Function Point
items that have to be counted is the file, and the
corresponding object-oriented concept is the object. As
pointed out in section 2, we have to consider two types
of object-models.

The model of domain objects identifies the data
concepts which are relevant for the application domain.

A model of domain objects is an optional part of the
requirements analysis in the Jacobson approach. The
domain objects are candidates for files.

In the analysis model, the objects are typed into
three groups, namely entity, interface and control
objects. Among these, the entity objects correspond to
the Function Point notion of files, while interface objects
relate to a (technical) presentation of data to the actor
and control objects model the internal processes.

If the analysis model of typed objects is provided,
the set of objects that have to be analyzed is limited to
the entity objects and is thus typically smaller. In this
case, rules 7a and 8a can be applied.

If, however, only the (untyped) domain object
model exists, the set of candidates for files is the entire
set of domain objects (rules 7b and 8b).

In either case, the items to be counted will be
selected from the candidates in the third step (see section
4.3 below).

As mentioned in section 2.2 and 2.3, objects can be
structured with two relationships, these structures have
to be analyzed in detail.

Aggregation relationships. Aggregation orders objects
hierarchically in structures similar to traditional
approaches. In Function Point terms the parts of an
object do not correspond to files themselves, but to the
logical structure of the file concept. Optional and
mandatory subgroups of files are called record element
types (RET). An object that is aggregated into (part of)
another object constitutes such a subgroup. Even if the
relationship is nested over several levels, the objects on
various levels can be interpreted as subgroups of the top-
level object.

Both [6] and [10] assign one RET for every class
that is part of another class, counting these as subgroups

Mapping the OO-Jacobson Approach to Function Point Analysis

Copyright 1998 IEEE. Published in the Proceedings of TOOLS-23'97. 8

of a single file rather than as logical files themselves.
We agree to this view and formulate it in rule 9.

Inheritance relationships. Inheritance is a genuine
object-orientated concept and does not have a direct
representation in FPA. However, as this relationship
realizes a specialization, it can be translated into terms
of mandatory and optional subgroups.

In [6] the complete hierarchy is taken as a single file
with RETs for each subclass.

[10] states that in general one class should represent
one internal file. For classes that are part of an
inheritance structure, Whitmire states: “If the
generalization is truly part of the application domain, it
is counted as a separate logical file.” If the
generalization was built for the ease of modeling,
Whitmire counts the general class with each specialized
class.

In our view, however, there is no general mapping
for this case, different intentions have to be represented
differently.

Abstract objects that represent common attributes
are not visible to the user and do not relate to logical
files themselves. They rather define a subgroup in each
of their sub-objects.

Concrete super-objects, visible to the user, are
candidates for files. Their sub-objects can be visible to
the user and are then candidates for files themselves.
Otherwise, they are an optional subgroup of their super-
object and will be represented as a RET for the file
related to the super-object.

We formulate rules 10 and 11 to represent
inheritance.

Proposed mapping rules.

(a) for typed objects
7a) Select every object of entity type as a candidate for a

logical file, unless rules 9-11 state otherwise.
8a) No other objects will be selected.

The documentation required for this step is the typed
analysis (object) model.

(b) for untyped objects
7b) Select every domain object as a candidate for a

logical file, unless rules 9-11 state otherwise.
8b) No other objects will be selected.

The documentation required for this step is the
domain object model.

for aggregation relationships
9) A domain or entity object that is a part of another

object (is aggregated into another object) is not a
candidate for a logical file, but it is a candidate for a

record element type (RET) for the file related to the
aggregating top-level object.

The documentation required for this step is the
object model used under (a) or (b).

for inheritance relationships
10) An abstract object is not a candidate for a logical file.

It is a candidate for a RET for each object that
inherits its properties.

11) Sub-objects of a concrete object are candidates for a
logical file or for a RET of that object. If these sub-
objects are not counted as logical files themselves,
they are optional subgroups of the file related to their
super-object.

The documentation required for this step is the
object model used under (a) or (b).

Additional candidates for files. Some data that are by
Function Point convention considered as
internal/external files may be not represented in an
object model, although that functionality is required by
the user. Error messages or help texts, for example, may
be a requirement and need a representation according to
Function Point rules. These data are not normally
modeled as objects, however.

12) If use cases make implicit use of logical files that are
not represented in the object model, these files have
to be included in the set of files.

The documentation required for this step are the use
case descriptions and the object model used under (a) or
(b).

Results of step 2b. Rules 7-12 identify a set of
candidates for files. Which of these candidates will
actually be counted as a file has to be determined in step
3 with the original rules from the Counting Practices
Manual. From the set of candidates for record element
types, RETs are determined in step 4. The original
counting rules are used in step 4 as well.

4.3. Step 3: Determination of types of the items

The items identified in step 2 will now be classified.
Transactional function types are external inputs, external
outputs and external inquiries. File types are internal
logical files and external interface files (see Fig. 6).

Step 3a: Transactional function types. Determining the
types of transactions is based on a set of detailed rules in
FPA. This process involves interpretation of the rules.
The basis for the decisions made is the project
documentation.

Mapping the OO-Jacobson Approach to Function Point Analysis

Copyright 1998 IEEE. Published in the Proceedings of TOOLS-23'97. 9

It should be noted that the directions of the arrows in
the use case model give no indication of the transaction
type, they represent a view different from the FPA
model.

The rules are recorded in the IFPUG Counting
Practices Manual. The relevant sections are:

x “External Input Counting Rules”,
x “External Output Counting Rules”, and
x “External Inquiry Counting Rules”.

This step requires detailed documentation for the
use cases. The set of candidates identified in rules 4-5 in
step 2a forms the basis for the analysis.

The result determines the set of transaction types
that have to be counted in FPA.

Step 3b: File types. Determining file types is also based
on a set of detailed rules in FPA, and this process also
involves interpretation of the rules. The basis for the
decisions made is the project documentation.

The rules are recorded in the IFPUG Counting
Practices Manual. The relevant section is “ILF/EIF
Counting Rules”.

The basis for this step is the set of candidates
determined by rules 7-12 in step 2b. The rules have to be
evaluated for each candidate. Detailed documentation
from the domain object or analysis model, respectively,
is therefore needed.

The resulting set of file types forms the items to be
counted with FPA.

4.4. Step 4: Weighting factors

The weights of transactions and files are based on
detailed rules in the Counting Practices Manual. The
rules require the determination of data element types
(DET), record element types (RET) and file types that
are referenced (FTR), illustrated in Figure 9. This
information has to be extracted from detailed

documentation of the use cases for transactions and of
the domain objects for files.

The concept corresponding to DETs is the attribute
of an object. DETs for a file are the attributes of the
corresponding object. RETs are determined by
subgroups in these DETs and by the rules 9-11.

DETs for transactions are strongly related to the
DETs maintained and/or read by the transaction in files.
Additionally to the documentation of use cases, the
DETs identified for files will thus support the
determination of DETs for transactions. The number of
file types referenced results from the number of files
maintained and/or read by the transaction.

However, if the necessary level of detail in the
documentation is not (yet) available, the weights can be
estimated, based on expert judgment or experience. This
makes it possible to obtain an estimate of the Function
Point count in an early development phase.

Proposed mapping rules.

13) Attributes of objects are candidates for data element
types (DET) for files and for the transactions by
which it is read and/or maintained.

14) Candidates for record element types (RET) are
determined by subgroups of files and by rules 9-11.

15) Each object maintained and/or read by a use case
counts as a file type referenced (FTR) for the
associated transaction(s), if and only if the object has
been identified as a file in step 3.

Input for this step are the sets of transaction and file
types determined in step 3, detailed documentation of
use cases and the relevant objects as well as the results
of rules 9-11 in step 2b.

DETs, RETs and FTRs are determined from their
sets of candidates with the “Complexity and
Contribution Rules” for the appropriate function types in
the Counting Practices Manual. The results are the
components of file and transaction types that determine
the weighting factors.

5. Counting experiments

The rules proposed in section 4 have been used to
count three ongoing industry projects that were
developed with the OOSE approach. The documentation
provided included use case models and domain or
analysis object models together with textual descriptions
of these models.

The result obtained in the four steps of section 4 is
the unadjusted Function Point count. Function Point
Analysis defines an adjustment factor that takes so called
global system characteristics into account, e. g. data

,QSXWV

2XWSXWV

'(7

'(7

'(7

'(7

'(7

'(7

'(7

'(7

,QTXLULHV

'(7

'(7

'(7

'(7

,QWHUQDO)LOHV

([WHUQDO)LOHV

5(7

5(7

'(7

'(7

'(7

'(7

'(7

'(7

5(7

5(7

'(7

'(7

'(7

'(7

'(7

'(7

)75

)75

)75

)75

)75

)75

Figure 9: Step 4 – Det ermination of weights.

Mapping the OO-Jacobson Approach to Function Point Analysis

Copyright 1998 IEEE. Published in the Proceedings of TOOLS-23'97. 10

communications, performance or end-user efficiency.
This adjustment is external of and independent from the
concepts of the abstract FPA model. The global system
characteristics determine an adjustment factor that is
multiplied with the unadjusted count. Adjustment factors
were not calculated for the three sample projects.

The calculated sizes of the projects in unadjusted
Function Points were:

Project 1 265
Project 2 181
Project 3 215

Compared with the approaches proposed in
literature, our mapping rules have certain advantages.
x The mapping rules are based on the standard FPA

defined in the IFPUG Counting Practices Manual.
This widely used measure for functional size is
designed to measure independent of technology and
to be consistent among various projects and
organizations. Measurement results can be
compared between different development methods.

x The count is based on requirements models, which
are the first models available in the life cycle. For the
purpose of effort estimation based on Function
Points, this is an essential prerequisite.

x The approach is formulated in a set of mapping rules
that supports the actual counting process. The
approach is thus explicit and can be understood and
criticized in detail.

Our approach also has some limitations.
x We did not consider the type of count defined in

FPA, i. e. whether an application or a project is
counted. This concept sits on top of the FPA model
presented in section 3 and does not influence it. We
also left the general system characteristics out of
consideration, because there determination rules are
independent of any development models. They
rather formulate general requirements like
performance, reusability, etc.

x Additional research issues with FPA have been
ignored. Those issues include real-time software
characteristics and measurement of functional reuse.
These areas would have exceeded the scope of the
project. They are also not solely relevant with object-
oriented systems.

x The main limitation is the focus on the Jacobson
OOSE method. Our mapping rules are based on the
requirements models of this approach and cannot be
applied to methods that do not develop these
models. However, it is an advantage of this focus on
OOSE, that the models used are unambiguously
defined in the method.

6. Summary

In this work we have demonstrated the applicability
of Function Point Analysis as a measure of functional
software size to the object-oriented Jacobson approach,
OOSE. This supports the thesis that Function Point
Analysis measures independent of the technology used
for implementation and that it can be used in the object-
oriented paradigm.

Our solution is based on the standard FPA defined in
the IFPUG Counting Practices Manual. Measurement
results are therefore comparable with software developed
with other methodologies.

The focus on the OOSE approach binds the use of
our mapping to software developed in this approach.
While this certainly is a limitation, it is also an
advantage, because the models used are defined
unambiguously in the OOSE method. Furthermore, our
mapping rules support the counting from the OOSE
requirements model, which no other approach in the
literature allows.

Finally, the mapping rules that describe the four
FPA steps directly support the actual counting
procedure.

Future work in the field has to deal with the
application of FPA to other object-oriented design
techniques. This would make the measure available for
these techniques, and would make it possible to compare
the counts of projects that were developed with different
techniques. The resulting mappings of concepts could be
incorporated in a future release of the IFPUG case
studies.

Acknowledgments

We thank Ericsson for the support and funding of
this work. This research was carried out at the Software
Engineering Management Research Laboratory at the
Université du Québec à Montréal. The opinions
expressed in this article are solely those of the authors.

Literature

[1] Albrecht, A. J. Measuring Application Development
Productivity. IBM Applications Development
Symposium, Monterey, CA, 1979.

[2] Sizing in Object-Oriented Environments. Victoria,
Australia, Australian Software Metrics Association
(ASMA), 1994.

[3] Goh, F. Function Points methodology for object oriented
software model, Ericsson Australia Pty Ltd., 1995.

[4] Gupta, R. and S. K. Gupta. Object Point Analysis. IFPUG
1996 Fall Conference, Dallas, Texas.

Mapping the OO-Jacobson Approach to Function Point Analysis

Copyright 1998 IEEE. Published in the Proceedings of TOOLS-23'97. 11

[5] Function Point Counting Practices Manual, Release 4.0.
Westerville. Ohio, International Function Point Users
Group, 1994.

[6] Function Point Counting Practices: Case Study 3 - Object-
Oriented Analysis, Object-Oriented Design (Draft),
International Function Point Users Group, 1995.

[7] Jacobson, I., M. Christerson, et al. Object-Oriented
Software Engineering. A Use Case Driven Approach,
Addison-Wesley, 1992.

[8] Jones, J. FP Issues for O-O and K-B Systems. IFPUG
1995 Spring Conference, Masville.

[9] Karner, G. Resource Estimation for Objectory Projects,
Objectory Systems, 1993.

[10] Whitmire, S. A. Applying function points to object-
oriented software models. in Software engineering
productivity handbook. J. Keyes, McGraw-Hill, pp. 229–
244, 1992.

About the authors

Thomas Fetcke received his diploma (master's
degree) in computer science from the Technische
Universität Berlin in 1995. From September to
December of 1994, he was with the Gesellschaft für
Mathematik und Datenverarbeitung (GMD), where he
studied object-oriented software metrics. Currently, he is
pursuing his Ph.D. on the Function Point software
measure in the context of object-oriented software at the
Otto-von-Guericke-Universität Magdeburg. In April of
1996, he joined the Software Engineering Management
Research Laboratory at the Université du Québec à
Montréal. He is also a Certified Function Point
Specialist.

Alain Abran is currently professor at the Université
du Québec à Montréal. He is the research director of the
Software Engineering Management Research Laboratory
and teaches graduate courses in Software Engineering.
He has been in a university environment since 1993.

He has over 20 years of industry experience in
information systems development and software
engineering. The maintenance measurement he
developed and implemented at Montreal Trust
(Montreal, Canada) has received one of the 1993 Best of
the Best awards from the Quality Assurance Institute
(Orlando, Florida, USA).

Dr. Abran received his MBA and Master of
Engineering degrees from University of Ottawa, and
holds a Ph.D. in software engineering from École
Polytechnique de Montréal. His research interests
include software productivity and estimation models,
software metrics, function points measurement models
and econometrics models of software reuse. He has
given presentations in various countries including
Canada, USA, France, Germany, Italy and Australia.

Tho-Hau Nguyen graduated in Computer Science,
and Management from École Polytechnique de
Montreal, McGill university and Université du Québec à
Montréal. Since 1979 he has worked in computer science
in private and educational sectors. In 1983, he joined the
Université du Québec à Montréal as a regular faculty
member of the department of Computer Science. His
research areas include object-oriented database design,
and metrics.

