
A case study using the COSMIC-FFP Measurement
Method for Assessing Real-Time System Specifications

Manar Abu Talib1, Adel Khelifi2, Alain Abran3 and Olga Ormandjieva4

1Zayed University, P.O. Box 4783, Abu Dhabi, UAE
2Al Hosn University, P.O. Box: 38772, Abu Dhabi, UAE

3École de technologie supérieure, Université du Québec, Montreal, Canada
4Concordia University, 1455 de Maisonneuve Blvd. W., Montreal, Canada

manar.talib@zu.ac.ae, a.khelifi@alhosnu.ae, aabran@ele.etsmtl.ca,
ormandj@cse.concordia.ca

Abstract. The success of a system development project largely depends on the
nonambiguity of its system-level requirements specification document, where
the requirements are described at the system level rather than at the software
and hardware level. There may be missing details about the allocation of
functions between hardware and software, both for the developers who will
have to implement such requirements later on, and for the software measurers
who have to immediately attempt to measure the software functional size of
such requirements.. The result of different interpretations of the specification
problem would lead to different software being built, and of different functional
size. The research described in this paper is concerned with the challenges
inherent in understanding the initial system requirements in textual form and
assessing the codesign decisions using the functional size measurement. This
paper aimed at understanding the applicability of the COSMIC-FFP functional
size measurement method in assessing the hardware-software requirements
allocation, and illustrates the approach on a Steam Boiler Controller case study.

Keywords: COSMIC-FFP, ISO 19761, system-level requirements
specification, codesign, functional size measurement.

1 Introduction

Writing system requirements that unambiguously define the hardware/software
allocation of the functionality is critical in the system life cycle. If not detected early,
ambiguities can lead to misinterpretations at the time of requirements analysis and
specification, or at a later phase of the software development life cycle, causing an
escalation in the cost of requirements elicitation and software/hardware development.
Detecting ambiguities at an early stage of the system requirements elicitation process
can therefore save a great deal of aggravation, not to mention cost. The importance of
detecting ambiguity earlier in the system development process is also outlined in
IEEE Standard 830-1998 [1], which describes the practices, recommended by the
IEEE for writing a Software Requirements Specification (SRS) document, and defines

132 Proceedings of the IWSM - Mensura 2007

the quality characteristics of a “good” SRS document. These are that the requirements
be: (1) Correct, (2) Unambiguous, (3) Complete, (4) Consistent, (5) Ranked according
to importance, (6) Verifiable, (7) Modifiable and (8) Traceable. Here, “unambiguous”
as defined by the standard means that each of the statements in an SRS document has
only one interpretation. The IEEE standard further mentions that the inherently
ambiguous nature of natural language can make the text of an SRS document fail to
comply with the above definition, making it ambiguous, and thereby degrading the
overall quality of the document.
Even though the documented requirements used for many case studies for real-time
systems come from known sources, such as universities and trusted industrial
organizations, there is no documented information about the quality of these
requirements.
Specifically, in the documentation of the available case studies, there is generally no
claim that their sets of documented requirements meet some quality criteria, such as
those specified in IEEE 830. When the requirements do not meet such quality
standards, it means that there may be unclear text or missing details from the
specification problem, which would impact:
- the developers, who would have to implement such requirements later on, and
- the measurers, who have to measure the software functional size of such
requirements.
The result of different interpretations of the specification problem would lead to
different software being built, and of different functional size.
In recent work aimed at measuring the software functional size of real-time
requirements case studies of unknown quality, measurers have found it necessary to
make some assumptions about the specification problem in order to clarify the
software requirements. This was because the specification problems in these case
studies had been described at the system level, which meant that what was to be done
by the hardware and what was to be done by the software was not clearly spelled out.
The research described in this paper is concerned with the challenges inherent in
understanding the initial system requirements in textual form and assessing the
codesign decisions using the functional size measurement. Our hypothesis is that
functional size measurement feedback will help the developers in their tradeoff
analysis when allocating functionality to software and hardware. Our approach is
based on the COSMIC-FFP method, which not only helps clarify the allocation
process while modeling system functionality, but also provides theoretically valid,
and thus objective, size measurement results. Based on the functional size results, the
effort associated with a given allocation can be further assessed.
The remainder of this paper is organized as follows: section 2 provides background
information on the COSMIC-FFP (ISO 19761) measurement method; section 3
introduces the steam boiler case study; section 4 identifies how requirements at the
system level and related assumptions made based on unclear text can lead to different
functional sizes of the desired software; and, finally, section 5 presents a discussion
and observations.

133 Proceedings of the IWSM - Mensura 2007

2 Background

This section introduces key notions of COSMIC-FFP as a functional size
measurement method.

The COSMIC-FFP functional size measurement method [3] was developed by the
Common Software Measurement International Consortium (COSMIC) and is a
recognized international standard (ISO 19761 [2]). Its was developed to address some
of the major weaknesses of earlier methods, like FPA [4], for example, the design of
which dates back almost 30 years to a time when software was much less varied.

In the measurement of software functional size using COSMIC-FFP, the software
functional processes and their triggering events must be identified. The unit of
measurement in this method is the data movement, which is a base functional
component that moves one or more data attributes belonging to a single data group.
Data movements can be of four types: Entry (E), Exit (X), Read (R) or Write (W).
The functional process is an elementary component of a set of user requirements
triggered by one or more triggering events, either directly or indirectly, via an actor.
The triggering event is an event occurring outside the boundary of the measured
software and initiates one or more functional processes. The subprocesses of each
functional process constitute sequences of events, and a functional process comprises
at least two data movement types: an Entry plus at least either an Exit or a Write. An
Entry moves a data group, which is a set of data attributes, from a user across the
boundary into the functional process, while an Exit moves a data group from a
functional process across the boundary to the user requiring it. A Write moves a data
group lying inside the functional process to persistent storage, and a Read moves a
data group from persistent storage to the functional process. See Figure 1 for an
illustration of the generic flow of data groups through software from a functional
perspective.

Fig. 1. Generic flow of data through software from a functional perspective [2].

o

r

Engineered

Devices

Storage Hardware

SOFTWARE

ENTRIES

EXITS

« Front

end »

USERS

READS

WRITES

« Back

end »

EXITS

ENTRIES

I/O

Hardware

B

O

U

N

D

A

R

Y

134 Proceedings of the IWSM - Mensura 2007

3 Case Study: Steam Boiler

The Steam Boiler Control specification problem of J. R. Abrial and E. Brger [5] was
derived from an original text by J. C. Bauer for the Institute for Risk Research at the
University of Waterloo, Ontario, Canada. The original text had been submitted as a
competition problem to be solved by the participants at the International Software
Safety Symposium organized by the Institute for Risk Research. It provides the
specification design that will ensure safe operation of a steam boiler by maintaining
the ratio of the water level in the boiler to the amount of steam emanating from it with
the help of the corresponding measurement devices. The Steam Boiler System
consists of the following physical units:
• Steam Boiler: the container holding the water;
• Pump: the device for pouring water into the steam boiler;
• Valve: the mechanism for evacuating water from the steam boiler;
• Water Level Measurement device: a sensor to measure the quantity of water
q (in liters) and inform the system whenever there is a risk of exceeding the minimum
or maximum amounts allowed.
Figure 2 shows the Steam Boiler and the relationships between its components. The
Steam Boiler is assumed to start up with a safe amount of water. The Controller runs a
control cycle every 5 seconds to check on the amount of water currently in the
system, and then triggers the Water Level Measurement device and sends the result to
the Controller. The Controller receives the current level and checks whether it is
normal, above normal or below normal: if the water level is normal, it will do
nothing; if there is a risk that the minimum safe level will be reached, the Pump will
be triggered to pour more water into the Steam Boiler; and if there is a risk that a level
higher than normal will be reached, the Valve will be triggered to evacuate water
from the Steam Boiler.

Fig. 2. Steam Boiler controller.

4 Identification of Software-Related Ambiguities in the
Specifications

The way the specification problem is written is ambiguous from a software viewpoint:
at the system level, the specification text talks about a single controller, which is the

135 Proceedings of the IWSM - Mensura 2007

system controller; however, in practice, this system controller consists of two
controllers: a hardware part and a software part, which are not specified at the system
level. The specifications about the interactions between the hardware and the software
are sometimes ill-defined in real-time applications: what is really to be done by the
hardware, and what is really to be done by software? For instance, in this case study,
the above requirements are at the system level, not at the software level. For this case
study, a number of hardware/software allocation alternatives of can be proposed, with
their corresponding specific requirements (see Table 1).

Table 1. Hardware/software allocation alternatives.

#. Hardware controller Software controller
1 Generates the five-second signal

Activates the measuring device
Reads the output of the measuring
device
Determines if it is at min, max or
normal
Sends the value (min, max or normal)
to the software controller

Receives the current water level signal value
(min, max or normal)
Based on the values received, it activates the
pump or valve.

2 Generates the five-second signal
Activates the measuring device
Reads the output of the measuring
device
Sends the reading to the software
controller

Receives the current water level signal value
Determines if it is min, max or normal
Based on analysis (min, max or normal), it
activates the pump or valve.
Comment:
From the system requirements, it is not clear
whether this min-max is constant or variable
based on some context.
If it is constant, this should be clarified in the
system’s software requirements.
If it varies, then additional software
requirements are needed to provide the ability
to manage/update it (see the 4th option)

3

Receives the get-level signal to activate
the measuring device
Activates the measuring device
Reads the output of the measuring
device
Sends the reading to the software
controller

Generates the five-second signal
Generates the get-level signal

Receives the current water level signal value
Determines if it is min, max or normal
Based on analysis (min, max or normal), it
activates the pump or valve.

4 Additional options could be generated:
for example, a database containing the
min-max values, which can be updated
by human users.

From the software viewpoint, the text about the controller in the specification

problem is ambiguous: for instance, how will the software controller determine
whether it is a min or a max?

136 Proceedings of the IWSM - Mensura 2007

Alternative 1- The min-max values are specified as constants: then an Entry of
these values is needed for the software controller.

Alternative 2- The min-max values are specified as stored values: then a Read of
these stored values is needed for the software controller.

Alternative 3- The min-max values are specified as stored updatable values: then
an update function is needed (with corresponding data movements).

Alternative 4 - Additional options could be specified: for example, there could be a
requirement for a database containing the min-max values, which can be updated
by a human operator.

Alternative 1 states that it is the hardware part of the controller that reads the water
level, makes the decision (calculation) about the min-max (and the risk of getting
close to the min-max) and then sends the outcome (min, max or normal) to the
software part of the controller. The software controller is then only responsible for
sending close/open messages to the valve and pump.

This alternative thus describes the interactions of the software controller with other
components, that is, when the water level is below the minimum, is normal or is
above the maximum. This interaction begins when it receives a signal from the
hardware measurement device (under the control of the hardware controller every 5
seconds). The basic flow therefore is described as follows (see Figure 3):

1. The software controller receives data from the hardware controller.
2. The software controller obtains the water level measurement outcome (min,

max or normal).
3. The software controller sends an open/close message to the pump, which

reacts accordingly.
4. The software controller sends a close/open message to the valve.
The sequence diagram for this alternative is presented in Figure 3.

Fig. 3. Alternative 1 – Sequence diagram of interactions of the software controller

with other components.

Software
Controller Hardware

Controller

1: Data received

2: Send
Open/Close message

3: Send
Close/Open message

Pump Valve

137 Proceedings of the IWSM - Mensura 2007

This alternative 1 would lead to a functional size of 3 Cfsu (Cfsu = COSMIC
functional size units) for the corresponding software (see Table 2).

Table 2. List of COSMIC-FFP data movements – Alternative 1.

Process
description

Triggering
event

Sub-process Description Data
Group

Data
movement

Type

Cfsu

Maintain
water level

Water level
signal

Obtain water level
measurement (value =
below normal, normal or
above normal)

Controller
Sensor E 1

 (Logic) Check if any
action is needed; if not,
terminate the cycle

Controller

 Send message to pump
(value = open or close)

Controller
Pump X 1

 Send message to valve
(value = open or close)

Controller
Valve X 1

Total functional size in Cfsu 3
Cfsu

Alternative 3, as the next example, states that it is the hardware part of the con-

troller that receives the five-second signal from the software controller to activate the
water level measuring device. Then, the hardware reads the water level and makes the
decision (calculation) about the min-max (and the risk of getting close to it), and then
sends the outcome (min, max or normal) to the software part of the controller. The
software controller is then responsible for generating the five-second signal,
activating the measuring device and sending close/open messages to the valve and
pump.

The interaction starts when it receives data from the water level measurement de-
vice (under the control of the software controller every 5 seconds). Figure 4 shows the
basic flow of such an interaction, as follows:

1. The software timer sends the 5-second signal to software controller.
2. The software controller sends a get-level request for the current water level

to the hardware controller.
3. The software controller obtains the current water level from the hardware

controller.
4. The software controller reads the range of the water (min to max) and

compares the current water level with the min and max.
5. The software controller checks if any action is needed; if not, the cycle is

terminated.
6. The software controller sends the new status to the pump (value = open or

close).
7. The software controller sends the new status to the valve (value = open or

close).
This alternative 3 would lead to a functional size of 6 Cfsu for the corresponding

software – see Table 3.

138 Proceedings of the IWSM - Mensura 2007

Similarly, other alternative mixes of hardware/software functions for the same
specification problem would lead to different software being built, each of a different
functional size.

Fig. 4. Alternative 3 – Sequence diagram of interactions of the software controller
with other components.

Table 3. List of COSMIC-FFP data movements – Alternative 3.

Process
description

Triggering
event

Data Movement
Description

Data
Group

Data
movement

Type

Cfsu

Maintain
water level

5-second
signal

Send 5-second signal to
Controller

5-second
signal E 1

 Request current water
level

Get level
signal X 1

 Obtain current water level Water
level
signal

E 1

 Read the range of the
water (min to max) and
compare the current water
level with the min and
max.

Water
level
range R 1

 (Logic) Check if any
action is needed; if not,
terminate the cycle

 Send new status to pump
(value = open or close)

Pump
status
signal

X 1

Software
Controller

 Hardware
Controller

Pump Valve Timer

Cycle

Get level

Valve status
(Close/Open)

Water level

Pump status
(Open/Close)

Check level
above/below
/normal

139 Proceedings of the IWSM - Mensura 2007

 Send new status to valve
(value = open or close)

Valve
status
signal

X 1

Total functional size in Cfsu 6 Cfsu

5 Discussion

When a requirements case study is written at the system level, there may be
missing details about the allocation of functions between hardware and software, both
for the developers who will have to implement such requirements later on, and for the
software measurers who have to immediately attempt to measure the software
functional size of such requirements. As a result, different interpretations of a
specification problem would lead to different functional sizes for the corresponding
software.

This paper has explored in the well known steam boiler case study different
alternatives for hardware/software allocation from the system requirements.
Implementing alternative 1 in the steam boiler application, for example, the total
functional size is 3 Cfsu, with a different allocation of functions between hardware
and software, as stated in alternative 3, resulting in a total functional size of 6 Cfsu.
Therefore, the choice among the alternatives will affect what software will be built
and, correspondingly, what its final functional size will be. It becomes clear, then, that
different interpretations can be derived from the same steam boiler specification
problem because of missing details regarding the software and hardware
requirements.

These findings are significant from three perspectives:
- The writers of such case studies should clearly spell out that their case studies are

documented at the system level, that the hardware/software function allocation
has not been specified and that the quality of these requirements is not
documented and should not be assumed to meet the IEEE-830 quality criteria.

- The users of such case studies should be cautious when they use them for studies
related to software functions; the findings observed from the use of a case study
will depend on the specific interpretation of its users, and it might not be
possible to generalize them to all potential interpretations of that specific case
study, as doing so might lead to confusion in the minds of readers, all the more
so if the assumptions about the hardware/software allocation of functions has not
been documented. The users of such a case study should therefore verify
whether it has been documented at the system level or at a level documenting the
hardware/software allocation of functions. Users should also be aware that,
unless it is been specifically documented at the function allocation level, such a
case study will not necessarily meet the IEEE-830 quality criteria.

- The measurers of such case studies should also be cautious when they use them
for studies related to the measurement of software functions, and for the same
reasons that the users of these case studies should exercise caution: different
allocation of hardware/software functions can lead to different software
functional sizes, and, unless the assumptions and interpretations are clearly

140 Proceedings of the IWSM - Mensura 2007

spelled out and documented during the measurement process, it is difficult to
justify a specific measurement result and to demonstrate that it is the correct size
for the specific mix of hardware/software functions. Indeed, measurement
results without detailed documentation of the assumptions on which the
measurement is based could lead, perhaps wrongly, to a lack of confidence in
the measurement results themselves, in the measurers ability to come up with
correct and repeatable measurement results, and, ultimately, in the potential for a
measurement method to lead to repeatable results.

A key insight from this study is that the measurement of the software size of a
specification problem can make a number of positive contributions if the measurer
clearly documents both the ambiguity he has found in a specification document and
the assumptions he has made, such as for the hardware/software allocation of
functions, when measuring the functional size of the software.

In our view, it should be the responsibility of the measurer to identify, within the
documented requirements, what he considers as ambiguities and omissions, and to
document the assumptions he made that led to the measurement results he
documented. These comments, documented by the measurer, represent a value-added
contribution to quality during the measurement process and possibly help reduce costs
later on in the development project. Of course, the measurer’s observations and
comments should subsequently be reviewed by the project manager, who should then
address these comments prior to proceeding further with the project.

Further work is in progress to analyze additional case studies, verify these
observations and derive techniques that would improve both the measurement process
and the contributions to the improvement of the quality of the problem specifications.

Acknowledgements

This research project has been funded partially by the European Community’s
Sixth Framework Programme – Marie Curie International Incoming Fellowship under
contract MIF1-CT-2006-039212.

References

1. IEEE Std 830-1998: IEEE Recommended Practice for Software Requirements
SpeciÞcations, Software Engineering Standards Committee of the IEEE Computer Society
(1998)

2. Abran, A., Desharnais, J.-M., Oligny, S., St-Pierre, D. and Symons, C.: COS-MIC FFP –
Measurement Manual (COSMIC implementation guide to ISO/IEC 19761:2003). École de
technologie supérieure – Université du Québec, Montréal (2003)

3. ISO/IEC 19761. Software Engineering – COSMIC-FFP – A functional size measurement
method. International Organization for Standardization – ISO, Geneva (2003)

4. Albrecht, A.J. and Gaffney, J.E.: Software Function, Source Lines of Code, and
Development Effort Prediction: A Software Science Validation. IEEE Trans. Software Eng.
vol. SE-9, no. 6, pp. 639-648 (1983)

5. J. R. Abrial: Steam Boiler Control Specification Problem (1994)

141 Proceedings of the IWSM - Mensura 2007

