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Abstract 
 

Function Points are generally used for measuring 
software functional size from a user perspective. This 
paper is concerned with the problem of counting 
function points from source code using the Function 
Point Analysis proposed by the International Function 
point User Group (IFPUG) 1994 standards. This paper 

presents the Automated FP counting scope and 
objective,  the presentation of an existing semi-formal 
model and the required extensions for the definition of 
four IFPUG rules. Then we propose reverse 
engineering techniques to address those four rule.
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1. Introduction 
 

Function point analysis (FPA) is the measurement of 
the functional size of software. The function point (FP) 
method initially developed by A.Albrecht [2] was 
conceived to calculate the function value delivered to 
user. The function point was then used as an input to a 
model for measuring application development 
productivity. FPA has evolved since 1984  via the CPM 
(Counting Practices Manual) published by the IFPUG 
(International Function Point Users Group). The 
current version number, as of January 1994, is version 
4 [8]. The CPM provides a method with a set of rules 
for measuring functionality from the users point of 
view. Function points is a unique software measure in 
the sense that its evolution, supporting documentation 
and international certification process for IFPUG 
counters has considerably augmented the counting 
precision from 1970 to 1990 [11] [14] [21]. The FP 
measure, being independent of the type of source code 

used to build a software, has become an important 
measure of 

 
 
 

functional size of a software [12]. Functional size is 
then used in conjunction with other measures for 
determining economic productivity, estimation studies 
and quality evaluations of software applications. FPA is 
gaining wide acceptance in commercial environments 
[7].  

Bell Canada is using the FPA as prescribed by the 
IFPUG standard as well as the �backfiring� technique 
proposed by Jones [13]. The �backfiring� technique is a 
simple approximation model. The input to the 
approximation technique is the programming language 
type and the number of lines of codes of an application. 
The output is an estimated number of FP�s. Although 
practical the reliability ranges of this technique is not 
known and its experimental context from which it was 
derived are not documented which makes it very 
perplexing within the field of measurement and 
measurement instrumentation. This technique does not 
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take into account any of the IFPUG standard counting 
rules. There would be a benefit in developing 
techniques, that can be easily automated, that would 
take into account the CPM counting practices concepts, 
rules and procedures. The benefits would be to support 
the manual counts and automatically count the existing 
and implemented applications with the same reference 
model used earlier in the life-cycle.  

The FP�s use, in our company,  is mainly used as an 
input to the estimation model of software development 
systems. Other potential use for Bell Canada is 
obtaining CPM function points for its existing 
applications for productivity benchmarking studies.  

The following table highlights other intended use of 
the function points when other important measures (i.e. 
effort and defects are used in conjunction with FP�s.)  
 
Support and Maintenance Performance Measures 
       a) Maintenance Portfolio size  
       b) Maintenance Portfolio growth trend 
       c)  Delivery trends by maintenance categories 
       d) Maintenance work request trends 
       e)  Maintenance delivery rate  
Quality Measures 
       a) Quality ratio: Errors/ 100 Fp�s delivered  

b) Delivery Quality: Number of delivered defect   
      per FP. 
c) Operational Quality: Number of (software)  
     errors per function Point per month. 

 Financial Measures 
       a) Function Point Asset Value 
       b) Release cost per Function Point 
       c) Release Benefits per Function Point 
 
 
       Figure 1: Example of Function point usage 
 

The application domain that will be addressed first, 
in the automation research of the IFPUG standard, is 
the existing MIS applications as the current IFPUG 
method is designed for this type of information systems 
[1]. 

This paper present an approach for counting FP�s 
from source code using reverse engineering techniques, 
from a conceptual and mostly theoretical point of view.  

The paper is composed of the following sections: 
Automatic FP counting scope and objective, a quick 
overview of the current state of function point 
supporting tools, an introduction to the IFPUG-CPM 
manual counting steps,  the presentation of an existing 
semi-formal model and required extensions for the 
definition of four IFPUG rules. Then we propose 

reverse engineering techniques to address those four 
rules, we present a discussion on precision and how to 
assess the IFPUG rules during source code analysis. 
Finally we present our conclusions and future work. 

2. Automatic FP counting 

2.1  Scope and objectives 
 
The latest version of the definition of several 

concepts of functional size measurement is presented in 
an ISO/IEC/WG10 draft international standard 
currently under review [10] which presents the 
following terminology that will be used internationally 
when referring to the measurement of the functional 
size of a software system. 

Functional size (FS) is the size of the software 
derived by quantifying the functional user requirements 
[10]. A functional size measurement (FSM) is the 
process of measuring functional size [10]. A functional 
size measurement method (FSM Method) is a specific 
implementation of FSM defined by a set of rules. 
Function Points Analysis is an FSM Method. 

Automatic FP counting relates to the automation of 
the FSM Method of Function Points Analysis. IFPUG 
defines automatic FP counting as: 

 
�Where the system counts the Function Points 

automatically based on stored descriptions of the 
application functions, records the count and performs 
appropriate calculations� 

 
�Stored Descriptions� is also also referenced as 

�elements�  in the IFPUG case study no.1 [9]. The 
automatic FP definition puts the emphasis on the fact 
that these �elements� must be stored on a computer 
media. Examples of descriptions in the case study no.1 
are: 

 
• User requirements 
• Database physical structure 
• Interfaces and reports layout  
 
�Application functions� represent a sub-set of all 

user requirements by representing the user practices 
and procedures that the software must perform to fulfill 
the users� needs [10]. In particular IFPUG is interested 
with the smallest unit of functionality as perceivable by 
a user. 

�appropriate calculation�  calculations with respect 
to the set of rules of the CPM. That is to obtain a valid 
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count with regards to the IFPUG version 4.0 counting 
practices manual. 

Functional Size can be applied as soon as functional 
user requirements have been defined and while they are 
available [10]. Automatic FP counting can be applied 
as soon as any functional user requirements are 
available on computer media. At this point it is called 
an �early count�. The measure can also be calculated 
on existing applications. It is then referred to as a 
�construction count� [9]. In this paper we concentrate 
on �construction count� since our objective is to 
automatically count  FP based on the source code of 
existing applications in our application portfolio.  

There is growing interest and controversy about the 
possibility of fully automating FPA. IFPUG has defined 
a support tools category that is labeled automatic FP 
counting tool. The need to count function point directly 
from source code is discussed at IFPUG every year and 
has been identified by the organization as a key topic of 
interest. Automatic FP counting is also a subject of 
intense discussion in an expert Function Point counter 
and researcher Internet forum  at 
Function.Point.list@crim.ca. 

2.2  Function Point supporting tools 
 

A number of proposals have been made to automate 
FP counts [25]. MacDonnell [15] studied nine 
functional size measurement methods and estimation 
models. All FSM methods were assessed against six 
criteria including the automation criteria. The 
automation criteria rated, on average, one of the lowest 
for all the FSM methods. He concluded that automation 
of FSM methods required further research effort.  

Some mechanized tools offer support for the manual 
count of function points. IFPUG categorized the 
support tools in three categories that were later 
extended to 10 categories in the research work of 
Mendes [18]. Category 3 of those classifications refer to 
the automatic FP counting tool. CASE vendors claim to 
support function points as part of their tool�s standard 
capabilities [12]. Mendes [18] surveyed eight suppliers 
of CASE that claim an automatic FP counting feature.  

From the suppliers surveyed only one vendor had a 
feature to calculate automatic FP counts from source 
code (Cobol). The survey revealed that no vendor 
claimed that they could automatically count all the 
entire steps of the FPA. Each one had at least one step 
requiring external intervention.  

Few high level presentations [6] [16] [17] and 
industry publications [5] [22] are available to describe 
some automatic FP implementation details. There is 

also no known publication that describes the reliability, 
validity or precision of the results of those 
implementations.  

This means that the results produced by existing 
automated tools have not been validated and accuracy is 
not documented leading to a perception that those 
automatic FP counting tools are unreliable. This has 
undoubtedly slowed their acceptance and deployment to 
support the FP counters that are doing this task 
manually today.  

3.  IFPUG counting rules 

3.1  Manual counting rules 
 
Thirty five sub-steps have been inventoried by the 

authors' from the IFPUG-CPM standard in order to 
manually count an application. They can be regrouped 
into five major steps: determine the type of function 
point count, identify the boundary of the count, 
determine the unadjusted function point count, 
determine the value adjustment factor, compute the 
final adjusted count.  

A major portion of a counter time and effort is spent 
in the third major step: determining the unadjusted 
function point count (see figure 2). Especially to 
identify data and transactional function types. Once 
identified the counting procedure are quite 
straightforward.  

Function Point Count*

Data 
Function Types

Transactional
Function Types

Internal
Logical Files
(ILF)

External
Interface Files
(EIF)

External 
Inputs
(EI)

External
Outputs
(EO)

External 
Inquiries
(EQ)

* unadjusted FP count  
 

             Figure 2: Function Point counting steps 
 
To identify data function types and transactional 
function types fifty IFPUG rules apply. Thirteen rules 
(13) are associated with data function types and thirty-
seven rules (37) are associated to transactional function 
types. As an example in identifying an external inquiry 
(EQ) one rule, which will be used as an example in 
section 4 of this paper, states that: 
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�The retrieved data does not contain derived data�. 
(Derived data: is data that requires processing other 
than direct retrieval and editing of information from 
ILF and/or EIF)�. 

The CPM rules are presented in natural language and 
must be subject to formal definition in order to 
automate them. 

4.  Formal Modeling of IFPUG Rules 

4.1 Semi-formal representation 
 

It was identified [19] [20] that the objects to be 
counted are not defined by the CPM and that much of 
the identification activity of data and transactional 
function types rely on the boundary and user 
perspective concepts. 

Figure 3 shows the boundary concept of the CPM 
with processes p, files f and users interactions being 
inside or outside the boundary. In this notation the 
process p being part of the count is at the center of the 
boundary. A process p is described by IFPUG as the 
smallest unit of functionality that can be perceived by 
the users.  
 

users

Boundary

users

Flow 1 Flow 2

Flow 4 Flow 3

: file (logical view)

:  process (at the smallest unit of functionality)

legend:

: Data flow (Input / output)

f p

f f

f

p p

f

p

 
    Figure 3: Paton, Abran semi-formal representation 
 

This representation described by Paton, Abran [20] , 
later extended by Mendes [18], was used to develop a 
semi-formal notation that can identify the valid 
signatures (see figure 4) of transactional function types 
of FP based on the CPM rules. The signatures become a 

useful concept when trying to automate the 
identification of a transactional function type. To 
continue with our initial example, the following 
signature for an external inquiry (EQ) in this notation 
is: 
 

                     Flow 1   Flow 2   Flow 3    Flow 4 
      EQ             1             1            0             0/1 

 
  Figure 4 : Signature of EQ using notation of figure 3 
    

This signature can be interpreted in the following 
way. An external inquiry (EQ) is identified when the 
following condition apply: mandatory flows 1 and 2 are 
present, flow 3 is always absent and flow 4 is optional. 
Flow 1 means that the process at the center of the 
boundary receives data either from users, another 
process or from a file outside the boundary. Flow 2 
means that the process sends data to users, another 
process or from a file outside the boundary. Flow 3, 
being 0, means that the process does not write to a file 
inside the boundary and finally, flow 4 means that the 
process optionally reads from a file within the 
boundary. 

Using this signature and figure 3 representation some 
formalism was established by Paton, Abran [20]. Let B 
denote the boundary used by the CPM, I be a distinct 
subset of entities which are labeled "Internal" with 
respect to the boundary B, E be a distinct subset of 
entities which are labeled "External" with respect to the 
same boundary B. Entities can be either processes p or 
files f. E corresponds to the complement of  I with 
respect to the total set of entities. In other words E will 
be concerned with entities that are outside the 
boundary. 

Processes and files can be identified and counted 
using detailed practices described in the CPM counting 
procedures.  

4.2   Extension of the formalism to include a 
logical to physical translation 

 
A refinement of the previous representation is 

presented here to represent the computational units and 
physical files that will be used as inputs to reverse 
engineering techniques and algorithms if they are to be 
used to mechanize the interpretation of the IFPUG 
counting rules. Computational units are distinguishable 
computational process for which a name exist, an 
internal status may exist, and a boundary can be 
defined. This concept takes different names depending 
on the environment used and the programming 
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languages. Example of computational units are 
modules, programming functions, objects, source code, 
and so on. 

A boundary b is defined as: 
 b = { x /  (x ∈  P) ∨  (x ∈  F)} 
 
A set of process is represented by P. A set of files is 

represented by F . The function:   
is_in_b: I × B → {True, False} 
 
 identifies the entities within a certain boundary. Let 

C represent the set of system components defined as the 
union of computational units and user interfaces. An 
implemented boundary is defined as: 

 ib = { x /   (x ∈  pwrset ( C ) ) ∨  (x ∈  PF)},  
where pwrset ( C ) is the power set of components and 
PF the set of physical files. Since B is the boundary as 
defined by the CPM let IB be the implemented 
boundary, then: 

  
b_impl: B → IB  

 
is the function that associates a boundary b with its 
implementation ib. We can define the function: 

is_in_ib: C × IB → {True, False}  
 

which identifies the components  within a certain 
implemented boundary. 

The function b_impl is determined by the following 
equation: 

 
b_impl = { <b,ib> / 

 ( ∀ p ∈  P,  ( is_in_b(p,b) → is_in_ib( p_impl(p), ib)) 
∧  

 ( ∀ f ∈  F,  ( is_in_b(f,b) → is_in_ib(f,ib)) } , 
 

where the function  p_impl: P → pwrset ( C ) is the 
function that associates a process with its 
implementation in terms of its components. The 
components and the physical files associated with the 
function being counted can easily be identified and 
supplied to the automatic tool at that time. This 
additional counting activity can be done by the users 
and their counter after setting the boundary of the 
existing application in the initial step of the 
�construction count� of the organization. 

 A boundary indicates the border between the 
application being measured and the external 
applications or the user domain. A boundary establishes 
what functions are included in the function point count. 

The chapter 4 of the CPM is dedicated at defining 
boundaries, dictating the rules and procedures for 
determining them. Function point human counters 
must master the identification and determination of a 
boundary to be certified. 

Input/output operations of computational units can be 
defined of terms of elementary operations get and put. 
These functions are introduced to simplify reasoning 
about complex I/O operations without losing in terms 
of generality. For a given computational unit, get 
returns the set of all the distinct Input operations which 
affect a single variable. The source component of the 
input is also identified. Similarly for a given 
computational unit, put returns the set of all the distinct 
output component operations that refer to a single 
variable. The target of the output is also identified with 
an identifier id. Formally:  

          get: C → C  × ID 

          put: C → C  × ID 
 

: Physical data file(s) of f

:  computational unit(s) of p

additional legend:

users

Boundary

users

Flow 1 Flow 2

Flow 4 Flow 3f p

f f
f

p p

Logical to
physical
translation

Implemented
Boundary

Flow 1 Flow 2

Flow 4 Flow 3

b_implp_impl
p_impl

 
             Figure 5: Implemented boundary 
 

The correspondence between logical and physical 
worlds (see figure 5) is made through the following 
assumption: p is an EQ for b ↔ p_impl(p) is an EQ for 
b_impl(b). That is, a process p is an EQ for a given 
boundary b if and only if the set of components 
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corresponding to the implementation of p is an EQ for 
the corresponding implemented boundary. 

4.3   Representation of IFPUG rules 
 
The following figure 6 defines for the first four CPM 

rules of an EQ the flow analysis based on the previous 
definitions. As an example in rule 1: p obtains some 
data from f, p or users  in E corresponds to the 
following CPM rule: �An input request enters the 
application boundary�. Based on previous definition, 
these conditions can be interpreted as the existence of a 
component ck and an input operation (identified by the 
get identifier gid) such that: 
 
- the input operation is performed by a component 
within the implemented boundary of  b,  and 
- ck is not contained in the implemented boundary of 
b. 
 

Similarly rules 2 or 3 can be expressed as shown in 
figure 6. In Figure 6, rules 1 to 3 are interpreted with 
Paton and Abran signature. The problem of 
determining the existence of a pair (Ck, pid1) can be 
converted into a problem of software analysis using 
control flow graph (CFG) path analysis. Rule 4 require 
a higher level analysis, namely static flow analysis.  

This rule is satisfied when no data from flow 1 and 
flow 4 is altered. This can be determined by observing 
if a computational unit variable which contains data 
read by an input operation is not altered prior to its use 
in an output operation. 
 
 
 
Rule 1: p obtains some data from f,p or users  in E. 
∃  (ck, gid) ∈  {        ∪                 get (ci) } / 
                         ci

 ∈  p_impl(p) 
         / not (is_in_ib (ck, b_impl(b))) 
 
Rule 2: p writes some data to f, p or users in E. 
(CPM: Output results exit the application boundary) 
∃  (ck, pid) ∈  {         ∪                 put (ci) } /  
                          ci

 ∈  p_impl(p)                 
         / not (is_in_ib ( ck, impl(b))) 
 
Rule 3: p writes no data to an f in I. 
not (∃  (ck, pid) ∈ {        ∪              put (ci) } /  
                               ci

 ∈  p_impl(p) 
                                                        

1 (identified by the put identifier pid) 

         / (ck ∈  F) ∧  (is_in_ib ( ck, impl(B)))) 
 
 
 
Rule 4: The retrieved data does not contain derived  
             data. 
∀  (ck, pid) ∈  {             ∪             put(ci)  } → 
                            ci

 ∈  p_impl(p) 
→ ( ∃ (cj, gid) ∈  {         ∪            get(ci) } / 
                                 ci

 ∈  p_impl(p) 
 
         /  (var_def (gid) = var_ref( pid))  ∧  
        (def (gid)  ∈  reaching_definitions (pid))))  
 

 
        Figure 6 : Formal representation of  four CPM     
        rules associated with an external inquiry (EQ) 
 
In figure 6,  the var_def(gid) represents the 

computational unit variable which is assigned by the 
input operation gid and var_ref(pid) is the variable 
whose content is used in the output operation identified 
by pid. Var_ref and var_def functions are defined as 
follows: 
                              var_def : ID → V 
                              var_ref :  ID → V 

 
They represent respectively the function that return 

the variable assigned by an input operation and the 
function that return the variable used by an output 
definition. Def and ref functions allow the domain 
translation from Input/Output operations to the sets of 
variables defined and used by the operations 
themselves. 
                               def: ID → DEF 
                               ref:  ID → REF 

 
Let x ∈  DEF be a definition, the corresponding 
reaching definitions set can be defined as follows: 
              x ∈  reaching_definitions (id)  ↔  

   ∃  s = <def_pos(x), �., id> /  ∀  y ∈  s → def (y) ≠ x) 
 

Where def_pos(x) is a function that returns the 
identifier of a given definition x. In other words, x 
belongs to the reaching definition set at a given point 
id, if and only if a path s exists between the definition x 
and id in which x is not redefined.  

4.4   Propagation Analysis 
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Additionally, for rule 4, we can cover the particular 
situation, shown in figure 7, where a variable could 
reach the output point through a series of copy 
propagations, while the original variable itself can be 
safely modified after the copy.  
 

          
            
         x = get () 
         t  = x 
         x = 1 
         put (t) 
 

 
      Figure 7 : Example of variable usage  
 

Rule 4 should be extended to cover this situation by 
using the definition propagation analysis as presented 
in figure 8. 

 
Rule 4 : The retrieved data does not contain derived  
             data (with copy propagation). 
∀  (ck, pid) ∈   {           ∪             put(ci)  } → 
                            ci

 ∈  p_impl(p) 
→ ( ∃ (cj, gid) ∈ {        ∪            get(c)  } / 
                              ci

 ∈  p_impl(p) 
 /  ( ∃  df   ∈  reaching_definitions (pid) / 
 / ( df   ∈  copy_of (def (gid), def_pos(df))  ∧  
    var_def (df) = var_ref (pid)))) 
 
 
         Figure 8 : Definition propagation  
 
Let x ∈  DEF, y  ∈  REF be definitions, copy_of (x, id) 
can be defined as:  
 
copy_of (x,id)  = { y /  
((stm(id) = �var_def(x) = var_def(y)�) ∧  
( x ∈  reaching_definitions (id) ) ∨  
(y=x)) } 
 

Several approaches to compute the reaching 
definitions are available [3]. Recently an approach with 
different levels of precision and performance for 
reaching definition analysis in an inter-procedural 
context was proposed in [23]. 

  
4.5 Precision for the interpretation of an 
IFPUG rule 
 

A first question that can be addressed is the 
precision of the terminology used by IFPUG and its 
relationship to source code analysis. Can expressions 
based on IFPUG terminology be precise ? The notion of 
processes and files is precise in the sense that they 
allow the repeated calculation of FP yielding the same 
results. The presented equations are precise in the sense 
that given a set of inputs to the equations, the results 
should be repeatable and consistent. Now, some of the 
inputs to the equations are coming from information 
extracted from the source code, while others will 
depend on human judgment. Literature review of 
section 2.2 identified that most existing support tools 
have human intervention. There is a need for an 
assessment of how much manual interaction will be 
required in this automated procedure to address the 
intention of the CPM rules of IFPUG. Some 
inaccuracies may arise since the automated FP counting 
procedure will most probably still have some human 
input judgment. Our procedure is precise, but may 
suffer from the same amount of inaccuracy as 
introduced by human interaction. We then rely on 
IFPUG training and certification that are in place to 
reduce the amount of inaccuracy introduced by human 
judgment.  

The consistency of the measurement is preserved 
also by means of human training and consensus 
reaching procedures of IFPUG. Consistency among 
different counters is achieved through the training and 
the certification. The variability among human counters 
has always improved as presented in the introduction of 
this paper.  

In the authors' opinion, FP counts obtained by the 
proposed automatic techniques should correlate quite 
well with those obtained by human counters. The 
extend of such a correlation, and therefore the accuracy 
of the proposed equations, will be determined by 
experimental results (posteriori) comparing automatic 
counts versus manual counts. 

The presented data flow analyses are "safe" in the 
sense that they take conservative decisions while 
approximating the dynamic behavior of program 
execution. Safe means here that the approximated 
solution may be a superset of the correct set of 
solutions, but no correct solutions are ever missed. 

In rule 1 in fig.6, for example, p may obtain some 
data from f, p, or users in E through a static path in the 
program Control Flow Graph (CFG) and so trigger rule 
1 counting, although such a path may not be feasible 
and the corresponding data exchange may never be 
executed. At the same time, the "safe" approximation 
guarantees that no possible data exchange between f, p, 
or the users in E will never be missed by the analysis. 
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In several applications, this approximation turns out 
to be definitely acceptable [24]. In the particular 
application of FP counting, it will be the role of the 
experiments to assess the amount of approximation 
introduced by the analyses and to assess its impact on 
counting. 

There could also be a bias in the measurement. Bias 
is the total systematic error as contrasted to random 
error. There may be one or more systematic error 
components contributing to the function point 
measurement error. 

The conservative approximation of data flow analysis 
may introduce a systematic bias towards super sets of 
the correct set of solutions. The extent of such a bias, 
will be determined by experimental results (posteriori) 
comparing automatic counts versus manual counts. 

 
4.6 How to assess the IFPUG rules during 
source code analysis 

 
To understand where the individual IFPUG rules are 

assessed during source code analysis one must 
understand the counting procedure. The FPA requires 
the counter to follow sequential steps when counting. 
The counting procedure first identifies all the items that 
will then be counted in a second step. 

System partitioning is done in the following way: 
Manual FP counters are trained and certified to 
determine counting boundaries and system functional 
partitioning to represent the end user point of vu to be 
counted. Their work is done based on available system 
documents, system interfaces, database layouts and 
reports review as well as user interviews. At this point 
they can identify the physical components identified by 
Source Code in figure 9.  

If requirements are available they can be used, but 
one of the problems reverse engineering addresses is 
the possible discrepancy between the system "as-
described" in the documents and the system "as-is" in 
the implementation. Therefore reverse engineering can 
be interesting also when requirements are indeed 
available. The equations presented in this paper 
constitute an approach to count FP's in an existing 
system "as-is".  

Once the boundary is defined, the counter starts with 
identifying Data Function Files (see figure 2, left side). 
Then he proceeds with the identification of 
Transactional Function Types (see figure 2, right side). 
Our example in this paper addresses one particular 
transactional function type called an external inquiry 
(EQ) and assumes that the Data Function Types and 
associated physical files have already been identified. 

This is mainly because we have a separate research 
team working to resolve the data reverse engineering 
challenge associated with FP�s. 

Before counting the function points associated with 
this specific external inquiry the counter must identify 
the external inquiry. There are numerous rules that 
must be satisfied  in order to validate that we have in 
fact an external inquiry to be counted. 

This paper specifically addressed automation using 
reverse engineering techniques to assess whether or not 
a rule is met for a specific external inquiry. It represent 
one of the many analyses that are required in figure 9. 
The technique presented in the paper will be used as 
part of a function to identify the external inquiry rules 
before the external inquiry is passed to the next steps of 
the identification procedure (FTR identification and 
DET identification in figure 9). 

 
 

 
Source code (computational units that compose pn, user  
interfaces accessed by pn, Physical Files and data 
elements accessed by pn) ! CFG ! Analyses that 
identify an EQ for pn ! Analyses that identify FTR of 
an EQ for pn ! Analyses that identify DET of EQ for 
pn ! Counting of EQ FP�s for pn. 

 
 

Figure 9 : Reverse Engineering Procedure for p      
                 counting FP�s of an EQ p  

 
5.   Conclusions and future work 

 
This approach for automating the evaluation of an 

IFPUG rule is new and original. We showed its 
conceptual feasibility on some specific EQ rules. The 
formal definition of the IFPUG rules is based on 
programming languages concepts and analysis. The 
evaluation of the IFPUG rules is performed by using 
flow analysis techniques. Some of these techniques, in 
particular reaching definitions analysis, use recent and 
sophisticated advances available in the literature. 

In this paper a new analysis called definition 
propagation was presented (see figure 8) for a more 
precise evaluation of an IFPUG rule.    

In general, it can be said that reverse engineering 
techniques for automatic FP counting directly from 
source code is a promising avenue. There is a number 
of reverse engineering techniques available that can be 
used and the need for an assessment of how much 
manual analysis is required in this procedure to address 
the intention of the CPM rules of IFPUG. We have 



   

9 

introduced formal definitions of four of the seven 
external inquiry rules of the CPM. Further work is in 
progress to refine the formalism, the selection of 
candidate reverse engineering techniques as well as the 
techniques themselves. 

Continuing research will address all the CPM rules 
of IFPUG and the development of related analysis 
techniques. Limits and approximations are necessary to 
achieve a high level of automation will be explored. 
Another interesting avenue of research is the empirical 
validation of the proposed approach by comparing the 
automated rule evaluation to a manual count. The 
project is at the stage of conceptual definition of 
counting equations and automatic tools to compute FP 
counts are envisaged, but not yet developed. 

6. Glossary of terms 
∪ : The confluence operator, see reference [2]. 
b: A boundary. 
B: A set of boundaries. 
b_impl: The function that associates a boundary b with 
its implementation ib. 
Boundary: A boundary indicates the border between 
the application or project being measured and the 
external applications or the user domain. A boundary 
establishes what functions are included in the function 
point count. Also called �application boundary�. 
Components: The union of computational units and 
user interfaces for a process p. Also called system 
components. 
Computational units:  Distinguishable computational 
process for which a name exist, an internal status may 
exist, and a boundary can be defined. Example of 
computational units are modules, program functions, 
objects, source code, and so on. 
Counter: Also known as �FP counter� is an individual 
that measures FP and has obtained certification from 
IFPUG. Also known as a �certified� counter.   
Data element type (DET): A unique user 
recognizable, nonrecursive field. 
Derived data: Data that requires processing other than 
direct retrieval and editing of information from internal 
logical files and/or external interface files. 
E: A distinct subset of entities which are labeled 
"External" with respect to the same boundary B. E 
corresponds to the complement of  I with respect to the 
total set of entities. In other words E will be concerned 
with entities that are outside the boundary. 
Elementary process: The smallest unit of activity that 
is meaningful to the end user in the business. 
Entities: Entities can be either processes p or files f. 

External inquiry (EQ): One of the three transactional 
function types representing the inquiry.  
f: A file. 
F: A set of files. 
File: For data function types, a logically related group 
of data, not the physical implementation of those group 
of data. 
File type referenced (FTR): An ILF or EIF read or 
maintained by a transactional function type. 
function types. 
Function point (FP): A measure that describe a unit of 
work product (from a functional perspective) suitable 
for quantifying application software. 
Function point Analysis (FPA): A standard method 
for measuring function point. 
get: A function that returns the set of all the distinct 
Input operation that affect a single variable for a given 
computational unit. 
gid: A get identifier. 
I: A distinct subset of entities which are labeled 
"Internal" with respect to the boundary B. 
Implemented boundary: An implemented boundary 
establishes what computational units and physical files 
address the functions are included in the function point 
count. 
ib: An  implemented boundary. 
IB: A set of implemented boundaries. 
Internal logical file (ILF): One of the two data 
function types. 
Maintained: The ability to modify data through an 
elementary process. 
is_in_b: A function that identifies the entities within a 
certain boundary. 
is_in_ib: A function that identifies the components  
within a certain implemented boundary. 
Process: A process (represented by the symbol p) is 
described by IFPUG as the smallest unit of functionality 
that can be perceived by the user. 
p: A process. 
P: A set of processes. 
p_id: A put identifier. 
P_impl: A function that associates a process with its 
implementation in terms of its components. 
put: A function that returns the set of all the distinct 
Output component operation that refer to a single 
variable for a given computational unit.  
Record element type (RET): User recognizable 
subgroup of data elements within an ILF or EIF. 
Transactional function type: The functionality 
provided to the user to process data by an application. 
User(s): The person(s) or organization(s) that uses the 
measured application. 
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