

1

A Reverse Engineering Approach to Evaluate Function Point Rules

A.April 1, E.Merlo 2, A.Abran 3

1 - Bell Sygma, 1000 DeLaGauchetière Ouest, Montréal, Québec, Canada , aapril@qc.bell.ca
2 - DGEGI, Département de Génie Informatique, École Polytechnique C.P. 6079, Succ. Centre Ville, Montréal,

Québec, Canada, merlo@rgl.polymtl.ca
3- Département d�informatique, Université du Québec à Montréal, C.P. 8888, Succ. Centre Ville, Montréal,

Québec, Canada, abran.alain@uqam.ca

Abstract

Function Points are generally used for measuring
software functional size from a user perspective. This
paper is concerned with the problem of counting
function points from source code using the Function
Point Analysis proposed by the International Function
point User Group (IFPUG) 1994 standards. This paper

presents the Automated FP counting scope and
objective, the presentation of an existing semi-formal
model and the required extensions for the definition of
four IFPUG rules. Then we propose reverse
engineering techniques to address those four rule.

Keywords: Automation of Function Point, Reverse Engineering, Software Measurement, backfiring.

1. Introduction

Function point analysis (FPA) is the measurement of
the functional size of software. The function point (FP)
method initially developed by A.Albrecht [2] was
conceived to calculate the function value delivered to
user. The function point was then used as an input to a
model for measuring application development
productivity. FPA has evolved since 1984 via the CPM
(Counting Practices Manual) published by the IFPUG
(International Function Point Users Group). The
current version number, as of January 1994, is version
4 [8]. The CPM provides a method with a set of rules
for measuring functionality from the users point of
view. Function points is a unique software measure in
the sense that its evolution, supporting documentation
and international certification process for IFPUG
counters has considerably augmented the counting
precision from 1970 to 1990 [11] [14] [21]. The FP
measure, being independent of the type of source code

used to build a software, has become an important
measure of

functional size of a software [12]. Functional size is
then used in conjunction with other measures for
determining economic productivity, estimation studies
and quality evaluations of software applications. FPA is
gaining wide acceptance in commercial environments
[7].

Bell Canada is using the FPA as prescribed by the
IFPUG standard as well as the �backfiring� technique
proposed by Jones [13]. The �backfiring� technique is a
simple approximation model. The input to the
approximation technique is the programming language
type and the number of lines of codes of an application.
The output is an estimated number of FP�s. Although
practical the reliability ranges of this technique is not
known and its experimental context from which it was
derived are not documented which makes it very
perplexing within the field of measurement and
measurement instrumentation. This technique does not

2

take into account any of the IFPUG standard counting
rules. There would be a benefit in developing
techniques, that can be easily automated, that would
take into account the CPM counting practices concepts,
rules and procedures. The benefits would be to support
the manual counts and automatically count the existing
and implemented applications with the same reference
model used earlier in the life-cycle.

The FP�s use, in our company, is mainly used as an
input to the estimation model of software development
systems. Other potential use for Bell Canada is
obtaining CPM function points for its existing
applications for productivity benchmarking studies.

The following table highlights other intended use of
the function points when other important measures (i.e.
effort and defects are used in conjunction with FP�s.)

Support and Maintenance Performance Measures
 a) Maintenance Portfolio size
 b) Maintenance Portfolio growth trend
 c) Delivery trends by maintenance categories
 d) Maintenance work request trends
 e) Maintenance delivery rate
Quality Measures
 a) Quality ratio: Errors/ 100 Fp�s delivered

b) Delivery Quality: Number of delivered defect
 per FP.
c) Operational Quality: Number of (software)
 errors per function Point per month.

 Financial Measures
 a) Function Point Asset Value
 b) Release cost per Function Point
 c) Release Benefits per Function Point

 Figure 1: Example of Function point usage

The application domain that will be addressed first,
in the automation research of the IFPUG standard, is
the existing MIS applications as the current IFPUG
method is designed for this type of information systems
[1].

This paper present an approach for counting FP�s
from source code using reverse engineering techniques,
from a conceptual and mostly theoretical point of view.

The paper is composed of the following sections:
Automatic FP counting scope and objective, a quick
overview of the current state of function point
supporting tools, an introduction to the IFPUG-CPM
manual counting steps, the presentation of an existing
semi-formal model and required extensions for the
definition of four IFPUG rules. Then we propose

reverse engineering techniques to address those four
rules, we present a discussion on precision and how to
assess the IFPUG rules during source code analysis.
Finally we present our conclusions and future work.

2. Automatic FP counting

2.1 Scope and objectives

The latest version of the definition of several

concepts of functional size measurement is presented in
an ISO/IEC/WG10 draft international standard
currently under review [10] which presents the
following terminology that will be used internationally
when referring to the measurement of the functional
size of a software system.

Functional size (FS) is the size of the software
derived by quantifying the functional user requirements
[10]. A functional size measurement (FSM) is the
process of measuring functional size [10]. A functional
size measurement method (FSM Method) is a specific
implementation of FSM defined by a set of rules.
Function Points Analysis is an FSM Method.

Automatic FP counting relates to the automation of
the FSM Method of Function Points Analysis. IFPUG
defines automatic FP counting as:

�Where the system counts the Function Points

automatically based on stored descriptions of the
application functions, records the count and performs
appropriate calculations�

�Stored Descriptions� is also also referenced as

�elements� in the IFPUG case study no.1 [9]. The
automatic FP definition puts the emphasis on the fact
that these �elements� must be stored on a computer
media. Examples of descriptions in the case study no.1
are:

• User requirements
• Database physical structure
• Interfaces and reports layout

�Application functions� represent a sub-set of all

user requirements by representing the user practices
and procedures that the software must perform to fulfill
the users� needs [10]. In particular IFPUG is interested
with the smallest unit of functionality as perceivable by
a user.

�appropriate calculation� calculations with respect
to the set of rules of the CPM. That is to obtain a valid

3

count with regards to the IFPUG version 4.0 counting
practices manual.

Functional Size can be applied as soon as functional
user requirements have been defined and while they are
available [10]. Automatic FP counting can be applied
as soon as any functional user requirements are
available on computer media. At this point it is called
an �early count�. The measure can also be calculated
on existing applications. It is then referred to as a
�construction count� [9]. In this paper we concentrate
on �construction count� since our objective is to
automatically count FP based on the source code of
existing applications in our application portfolio.

There is growing interest and controversy about the
possibility of fully automating FPA. IFPUG has defined
a support tools category that is labeled automatic FP
counting tool. The need to count function point directly
from source code is discussed at IFPUG every year and
has been identified by the organization as a key topic of
interest. Automatic FP counting is also a subject of
intense discussion in an expert Function Point counter
and researcher Internet forum at
Function.Point.list@crim.ca.

2.2 Function Point supporting tools

A number of proposals have been made to automate
FP counts [25]. MacDonnell [15] studied nine
functional size measurement methods and estimation
models. All FSM methods were assessed against six
criteria including the automation criteria. The
automation criteria rated, on average, one of the lowest
for all the FSM methods. He concluded that automation
of FSM methods required further research effort.

Some mechanized tools offer support for the manual
count of function points. IFPUG categorized the
support tools in three categories that were later
extended to 10 categories in the research work of
Mendes [18]. Category 3 of those classifications refer to
the automatic FP counting tool. CASE vendors claim to
support function points as part of their tool�s standard
capabilities [12]. Mendes [18] surveyed eight suppliers
of CASE that claim an automatic FP counting feature.

From the suppliers surveyed only one vendor had a
feature to calculate automatic FP counts from source
code (Cobol). The survey revealed that no vendor
claimed that they could automatically count all the
entire steps of the FPA. Each one had at least one step
requiring external intervention.

Few high level presentations [6] [16] [17] and
industry publications [5] [22] are available to describe
some automatic FP implementation details. There is

also no known publication that describes the reliability,
validity or precision of the results of those
implementations.

This means that the results produced by existing
automated tools have not been validated and accuracy is
not documented leading to a perception that those
automatic FP counting tools are unreliable. This has
undoubtedly slowed their acceptance and deployment to
support the FP counters that are doing this task
manually today.

3. IFPUG counting rules

3.1 Manual counting rules

Thirty five sub-steps have been inventoried by the

authors' from the IFPUG-CPM standard in order to
manually count an application. They can be regrouped
into five major steps: determine the type of function
point count, identify the boundary of the count,
determine the unadjusted function point count,
determine the value adjustment factor, compute the
final adjusted count.

A major portion of a counter time and effort is spent
in the third major step: determining the unadjusted
function point count (see figure 2). Especially to
identify data and transactional function types. Once
identified the counting procedure are quite
straightforward.

Function Point Count*

Data
Function Types

Transactional
Function Types

Internal
Logical Files
(ILF)

External
Interface Files
(EIF)

External
Inputs
(EI)

External
Outputs
(EO)

External
Inquiries
(EQ)

* unadjusted FP count

 Figure 2: Function Point counting steps

To identify data function types and transactional
function types fifty IFPUG rules apply. Thirteen rules
(13) are associated with data function types and thirty-
seven rules (37) are associated to transactional function
types. As an example in identifying an external inquiry
(EQ) one rule, which will be used as an example in
section 4 of this paper, states that:

4

�The retrieved data does not contain derived data�.
(Derived data: is data that requires processing other
than direct retrieval and editing of information from
ILF and/or EIF)�.

The CPM rules are presented in natural language and
must be subject to formal definition in order to
automate them.

4. Formal Modeling of IFPUG Rules

4.1 Semi-formal representation

It was identified [19] [20] that the objects to be
counted are not defined by the CPM and that much of
the identification activity of data and transactional
function types rely on the boundary and user
perspective concepts.

Figure 3 shows the boundary concept of the CPM
with processes p, files f and users interactions being
inside or outside the boundary. In this notation the
process p being part of the count is at the center of the
boundary. A process p is described by IFPUG as the
smallest unit of functionality that can be perceived by
the users.

users

Boundary

users

Flow 1 Flow 2

Flow 4 Flow 3

: file (logical view)

: process (at the smallest unit of functionality)

legend:

: Data flow (Input / output)

f p

f f

f

p p

f

p

 Figure 3: Paton, Abran semi-formal representation

This representation described by Paton, Abran [20] ,
later extended by Mendes [18], was used to develop a
semi-formal notation that can identify the valid
signatures (see figure 4) of transactional function types
of FP based on the CPM rules. The signatures become a

useful concept when trying to automate the
identification of a transactional function type. To
continue with our initial example, the following
signature for an external inquiry (EQ) in this notation
is:

 Flow 1 Flow 2 Flow 3 Flow 4
 EQ 1 1 0 0/1

 Figure 4 : Signature of EQ using notation of figure 3

This signature can be interpreted in the following
way. An external inquiry (EQ) is identified when the
following condition apply: mandatory flows 1 and 2 are
present, flow 3 is always absent and flow 4 is optional.
Flow 1 means that the process at the center of the
boundary receives data either from users, another
process or from a file outside the boundary. Flow 2
means that the process sends data to users, another
process or from a file outside the boundary. Flow 3,
being 0, means that the process does not write to a file
inside the boundary and finally, flow 4 means that the
process optionally reads from a file within the
boundary.

Using this signature and figure 3 representation some
formalism was established by Paton, Abran [20]. Let B
denote the boundary used by the CPM, I be a distinct
subset of entities which are labeled "Internal" with
respect to the boundary B, E be a distinct subset of
entities which are labeled "External" with respect to the
same boundary B. Entities can be either processes p or
files f. E corresponds to the complement of I with
respect to the total set of entities. In other words E will
be concerned with entities that are outside the
boundary.

Processes and files can be identified and counted
using detailed practices described in the CPM counting
procedures.

4.2 Extension of the formalism to include a
logical to physical translation

A refinement of the previous representation is

presented here to represent the computational units and
physical files that will be used as inputs to reverse
engineering techniques and algorithms if they are to be
used to mechanize the interpretation of the IFPUG
counting rules. Computational units are distinguishable
computational process for which a name exist, an
internal status may exist, and a boundary can be
defined. This concept takes different names depending
on the environment used and the programming

5

languages. Example of computational units are
modules, programming functions, objects, source code,
and so on.

A boundary b is defined as:
 b = { x / (x ∈ P) ∨ (x ∈ F)}

A set of process is represented by P. A set of files is

represented by F . The function:
is_in_b: I × B → {True, False}

 identifies the entities within a certain boundary. Let

C represent the set of system components defined as the
union of computational units and user interfaces. An
implemented boundary is defined as:

 ib = { x / (x ∈ pwrset (C)) ∨ (x ∈ PF)},
where pwrset (C) is the power set of components and
PF the set of physical files. Since B is the boundary as
defined by the CPM let IB be the implemented
boundary, then:

b_impl: B → IB

is the function that associates a boundary b with its
implementation ib. We can define the function:

is_in_ib: C × IB → {True, False}

which identifies the components within a certain
implemented boundary.

The function b_impl is determined by the following
equation:

b_impl = { <b,ib> /

 (∀ p ∈ P, (is_in_b(p,b) → is_in_ib(p_impl(p), ib))
∧

 (∀ f ∈ F, (is_in_b(f,b) → is_in_ib(f,ib)) } ,

where the function p_impl: P → pwrset (C) is the
function that associates a process with its
implementation in terms of its components. The
components and the physical files associated with the
function being counted can easily be identified and
supplied to the automatic tool at that time. This
additional counting activity can be done by the users
and their counter after setting the boundary of the
existing application in the initial step of the
�construction count� of the organization.

 A boundary indicates the border between the
application being measured and the external
applications or the user domain. A boundary establishes
what functions are included in the function point count.

The chapter 4 of the CPM is dedicated at defining
boundaries, dictating the rules and procedures for
determining them. Function point human counters
must master the identification and determination of a
boundary to be certified.

Input/output operations of computational units can be
defined of terms of elementary operations get and put.
These functions are introduced to simplify reasoning
about complex I/O operations without losing in terms
of generality. For a given computational unit, get
returns the set of all the distinct Input operations which
affect a single variable. The source component of the
input is also identified. Similarly for a given
computational unit, put returns the set of all the distinct
output component operations that refer to a single
variable. The target of the output is also identified with
an identifier id. Formally:

 get: C → C × ID

 put: C → C × ID

: Physical data file(s) of f

: computational unit(s) of p

additional legend:

users

Boundary

users

Flow 1 Flow 2

Flow 4 Flow 3f p

f f
f

p p

Logical to
physical
translation

Implemented
Boundary

Flow 1 Flow 2

Flow 4 Flow 3

b_implp_impl
p_impl

 Figure 5: Implemented boundary

The correspondence between logical and physical
worlds (see figure 5) is made through the following
assumption: p is an EQ for b ↔ p_impl(p) is an EQ for
b_impl(b). That is, a process p is an EQ for a given
boundary b if and only if the set of components

6

corresponding to the implementation of p is an EQ for
the corresponding implemented boundary.

4.3 Representation of IFPUG rules

The following figure 6 defines for the first four CPM

rules of an EQ the flow analysis based on the previous
definitions. As an example in rule 1: p obtains some
data from f, p or users in E corresponds to the
following CPM rule: �An input request enters the
application boundary�. Based on previous definition,
these conditions can be interpreted as the existence of a
component ck and an input operation (identified by the
get identifier gid) such that:

- the input operation is performed by a component
within the implemented boundary of b, and
- ck is not contained in the implemented boundary of
b.

Similarly rules 2 or 3 can be expressed as shown in
figure 6. In Figure 6, rules 1 to 3 are interpreted with
Paton and Abran signature. The problem of
determining the existence of a pair (Ck, pid1) can be
converted into a problem of software analysis using
control flow graph (CFG) path analysis. Rule 4 require
a higher level analysis, namely static flow analysis.

This rule is satisfied when no data from flow 1 and
flow 4 is altered. This can be determined by observing
if a computational unit variable which contains data
read by an input operation is not altered prior to its use
in an output operation.

Rule 1: p obtains some data from f,p or users in E.
∃ (ck, gid) ∈ { ∪ get (ci) } /
 ci

 ∈ p_impl(p)
 / not (is_in_ib (ck, b_impl(b)))

Rule 2: p writes some data to f, p or users in E.
(CPM: Output results exit the application boundary)
∃ (ck, pid) ∈ { ∪ put (ci) } /
 ci

 ∈ p_impl(p)
 / not (is_in_ib (ck, impl(b)))

Rule 3: p writes no data to an f in I.
not (∃ (ck, pid) ∈ { ∪ put (ci) } /
 ci

 ∈ p_impl(p)

1 (identified by the put identifier pid)

 / (ck ∈ F) ∧ (is_in_ib (ck, impl(B))))

Rule 4: The retrieved data does not contain derived
 data.
∀ (ck, pid) ∈ { ∪ put(ci) } →
 ci

 ∈ p_impl(p)
→ (∃ (cj, gid) ∈ { ∪ get(ci) } /
 ci

 ∈ p_impl(p)

 / (var_def (gid) = var_ref(pid)) ∧
 (def (gid) ∈ reaching_definitions (pid))))

 Figure 6 : Formal representation of four CPM
 rules associated with an external inquiry (EQ)

In figure 6, the var_def(gid) represents the

computational unit variable which is assigned by the
input operation gid and var_ref(pid) is the variable
whose content is used in the output operation identified
by pid. Var_ref and var_def functions are defined as
follows:
 var_def : ID → V
 var_ref : ID → V

They represent respectively the function that return

the variable assigned by an input operation and the
function that return the variable used by an output
definition. Def and ref functions allow the domain
translation from Input/Output operations to the sets of
variables defined and used by the operations
themselves.
 def: ID → DEF
 ref: ID → REF

Let x ∈ DEF be a definition, the corresponding
reaching definitions set can be defined as follows:
 x ∈ reaching_definitions (id) ↔

 ∃ s = <def_pos(x), �., id> / ∀ y ∈ s → def (y) ≠ x)

Where def_pos(x) is a function that returns the
identifier of a given definition x. In other words, x
belongs to the reaching definition set at a given point
id, if and only if a path s exists between the definition x
and id in which x is not redefined.

4.4 Propagation Analysis

7

Additionally, for rule 4, we can cover the particular
situation, shown in figure 7, where a variable could
reach the output point through a series of copy
propagations, while the original variable itself can be
safely modified after the copy.

 x = get ()
 t = x
 x = 1
 put (t)

 Figure 7 : Example of variable usage

Rule 4 should be extended to cover this situation by
using the definition propagation analysis as presented
in figure 8.

Rule 4 : The retrieved data does not contain derived
 data (with copy propagation).
∀ (ck, pid) ∈ { ∪ put(ci) } →
 ci

 ∈ p_impl(p)
→ (∃ (cj, gid) ∈ { ∪ get(c) } /
 ci

 ∈ p_impl(p)
 / (∃ df ∈ reaching_definitions (pid) /
 / (df ∈ copy_of (def (gid), def_pos(df)) ∧
 var_def (df) = var_ref (pid))))

 Figure 8 : Definition propagation

Let x ∈ DEF, y ∈ REF be definitions, copy_of (x, id)
can be defined as:

copy_of (x,id) = { y /
((stm(id) = �var_def(x) = var_def(y)�) ∧
(x ∈ reaching_definitions (id)) ∨
(y=x)) }

Several approaches to compute the reaching
definitions are available [3]. Recently an approach with
different levels of precision and performance for
reaching definition analysis in an inter-procedural
context was proposed in [23].

4.5 Precision for the interpretation of an
IFPUG rule

A first question that can be addressed is the
precision of the terminology used by IFPUG and its
relationship to source code analysis. Can expressions
based on IFPUG terminology be precise ? The notion of
processes and files is precise in the sense that they
allow the repeated calculation of FP yielding the same
results. The presented equations are precise in the sense
that given a set of inputs to the equations, the results
should be repeatable and consistent. Now, some of the
inputs to the equations are coming from information
extracted from the source code, while others will
depend on human judgment. Literature review of
section 2.2 identified that most existing support tools
have human intervention. There is a need for an
assessment of how much manual interaction will be
required in this automated procedure to address the
intention of the CPM rules of IFPUG. Some
inaccuracies may arise since the automated FP counting
procedure will most probably still have some human
input judgment. Our procedure is precise, but may
suffer from the same amount of inaccuracy as
introduced by human interaction. We then rely on
IFPUG training and certification that are in place to
reduce the amount of inaccuracy introduced by human
judgment.

The consistency of the measurement is preserved
also by means of human training and consensus
reaching procedures of IFPUG. Consistency among
different counters is achieved through the training and
the certification. The variability among human counters
has always improved as presented in the introduction of
this paper.

In the authors' opinion, FP counts obtained by the
proposed automatic techniques should correlate quite
well with those obtained by human counters. The
extend of such a correlation, and therefore the accuracy
of the proposed equations, will be determined by
experimental results (posteriori) comparing automatic
counts versus manual counts.

The presented data flow analyses are "safe" in the
sense that they take conservative decisions while
approximating the dynamic behavior of program
execution. Safe means here that the approximated
solution may be a superset of the correct set of
solutions, but no correct solutions are ever missed.

In rule 1 in fig.6, for example, p may obtain some
data from f, p, or users in E through a static path in the
program Control Flow Graph (CFG) and so trigger rule
1 counting, although such a path may not be feasible
and the corresponding data exchange may never be
executed. At the same time, the "safe" approximation
guarantees that no possible data exchange between f, p,
or the users in E will never be missed by the analysis.

8

In several applications, this approximation turns out
to be definitely acceptable [24]. In the particular
application of FP counting, it will be the role of the
experiments to assess the amount of approximation
introduced by the analyses and to assess its impact on
counting.

There could also be a bias in the measurement. Bias
is the total systematic error as contrasted to random
error. There may be one or more systematic error
components contributing to the function point
measurement error.

The conservative approximation of data flow analysis
may introduce a systematic bias towards super sets of
the correct set of solutions. The extent of such a bias,
will be determined by experimental results (posteriori)
comparing automatic counts versus manual counts.

4.6 How to assess the IFPUG rules during
source code analysis

To understand where the individual IFPUG rules are

assessed during source code analysis one must
understand the counting procedure. The FPA requires
the counter to follow sequential steps when counting.
The counting procedure first identifies all the items that
will then be counted in a second step.

System partitioning is done in the following way:
Manual FP counters are trained and certified to
determine counting boundaries and system functional
partitioning to represent the end user point of vu to be
counted. Their work is done based on available system
documents, system interfaces, database layouts and
reports review as well as user interviews. At this point
they can identify the physical components identified by
Source Code in figure 9.

If requirements are available they can be used, but
one of the problems reverse engineering addresses is
the possible discrepancy between the system "as-
described" in the documents and the system "as-is" in
the implementation. Therefore reverse engineering can
be interesting also when requirements are indeed
available. The equations presented in this paper
constitute an approach to count FP's in an existing
system "as-is".

Once the boundary is defined, the counter starts with
identifying Data Function Files (see figure 2, left side).
Then he proceeds with the identification of
Transactional Function Types (see figure 2, right side).
Our example in this paper addresses one particular
transactional function type called an external inquiry
(EQ) and assumes that the Data Function Types and
associated physical files have already been identified.

This is mainly because we have a separate research
team working to resolve the data reverse engineering
challenge associated with FP�s.

Before counting the function points associated with
this specific external inquiry the counter must identify
the external inquiry. There are numerous rules that
must be satisfied in order to validate that we have in
fact an external inquiry to be counted.

This paper specifically addressed automation using
reverse engineering techniques to assess whether or not
a rule is met for a specific external inquiry. It represent
one of the many analyses that are required in figure 9.
The technique presented in the paper will be used as
part of a function to identify the external inquiry rules
before the external inquiry is passed to the next steps of
the identification procedure (FTR identification and
DET identification in figure 9).

Source code (computational units that compose pn, user
interfaces accessed by pn, Physical Files and data
elements accessed by pn) ! CFG ! Analyses that
identify an EQ for pn ! Analyses that identify FTR of
an EQ for pn ! Analyses that identify DET of EQ for
pn ! Counting of EQ FP�s for pn.

Figure 9 : Reverse Engineering Procedure for p
 counting FP�s of an EQ p

5. Conclusions and future work

This approach for automating the evaluation of an

IFPUG rule is new and original. We showed its
conceptual feasibility on some specific EQ rules. The
formal definition of the IFPUG rules is based on
programming languages concepts and analysis. The
evaluation of the IFPUG rules is performed by using
flow analysis techniques. Some of these techniques, in
particular reaching definitions analysis, use recent and
sophisticated advances available in the literature.

In this paper a new analysis called definition
propagation was presented (see figure 8) for a more
precise evaluation of an IFPUG rule.

In general, it can be said that reverse engineering
techniques for automatic FP counting directly from
source code is a promising avenue. There is a number
of reverse engineering techniques available that can be
used and the need for an assessment of how much
manual analysis is required in this procedure to address
the intention of the CPM rules of IFPUG. We have

9

introduced formal definitions of four of the seven
external inquiry rules of the CPM. Further work is in
progress to refine the formalism, the selection of
candidate reverse engineering techniques as well as the
techniques themselves.

Continuing research will address all the CPM rules
of IFPUG and the development of related analysis
techniques. Limits and approximations are necessary to
achieve a high level of automation will be explored.
Another interesting avenue of research is the empirical
validation of the proposed approach by comparing the
automated rule evaluation to a manual count. The
project is at the stage of conceptual definition of
counting equations and automatic tools to compute FP
counts are envisaged, but not yet developed.

6. Glossary of terms
∪ : The confluence operator, see reference [2].
b: A boundary.
B: A set of boundaries.
b_impl: The function that associates a boundary b with
its implementation ib.
Boundary: A boundary indicates the border between
the application or project being measured and the
external applications or the user domain. A boundary
establishes what functions are included in the function
point count. Also called �application boundary�.
Components: The union of computational units and
user interfaces for a process p. Also called system
components.
Computational units: Distinguishable computational
process for which a name exist, an internal status may
exist, and a boundary can be defined. Example of
computational units are modules, program functions,
objects, source code, and so on.
Counter: Also known as �FP counter� is an individual
that measures FP and has obtained certification from
IFPUG. Also known as a �certified� counter.
Data element type (DET): A unique user
recognizable, nonrecursive field.
Derived data: Data that requires processing other than
direct retrieval and editing of information from internal
logical files and/or external interface files.
E: A distinct subset of entities which are labeled
"External" with respect to the same boundary B. E
corresponds to the complement of I with respect to the
total set of entities. In other words E will be concerned
with entities that are outside the boundary.
Elementary process: The smallest unit of activity that
is meaningful to the end user in the business.
Entities: Entities can be either processes p or files f.

External inquiry (EQ): One of the three transactional
function types representing the inquiry.
f: A file.
F: A set of files.
File: For data function types, a logically related group
of data, not the physical implementation of those group
of data.
File type referenced (FTR): An ILF or EIF read or
maintained by a transactional function type.
function types.
Function point (FP): A measure that describe a unit of
work product (from a functional perspective) suitable
for quantifying application software.
Function point Analysis (FPA): A standard method
for measuring function point.
get: A function that returns the set of all the distinct
Input operation that affect a single variable for a given
computational unit.
gid: A get identifier.
I: A distinct subset of entities which are labeled
"Internal" with respect to the boundary B.
Implemented boundary: An implemented boundary
establishes what computational units and physical files
address the functions are included in the function point
count.
ib: An implemented boundary.
IB: A set of implemented boundaries.
Internal logical file (ILF): One of the two data
function types.
Maintained: The ability to modify data through an
elementary process.
is_in_b: A function that identifies the entities within a
certain boundary.
is_in_ib: A function that identifies the components
within a certain implemented boundary.
Process: A process (represented by the symbol p) is
described by IFPUG as the smallest unit of functionality
that can be perceived by the user.
p: A process.
P: A set of processes.
p_id: A put identifier.
P_impl: A function that associates a process with its
implementation in terms of its components.
put: A function that returns the set of all the distinct
Output component operation that refer to a single
variable for a given computational unit.
Record element type (RET): User recognizable
subgroup of data elements within an ILF or EIF.
Transactional function type: The functionality
provided to the user to process data by an application.
User(s): The person(s) or organization(s) that uses the
measured application.

10

7. References

[1] A.Abran, Analyse du processus de mesure des points de

fonction, Thèse de doctorat, Université de Montréal,

École Polytechnique de Montréal, Génie Électrique et
Informatique, Mars 1994.

[2] A. J. Albrecht, "Measuring Application Development
Productivity," Proceedings of the IBM Application
Development Symposium, Monterey, CA, October
1979, pp. 83-92.

11

[3] A.V. Aho, R. Sethi, and J.D. Ullman. Compilers:
Principles, Techniques, and Tools. Addison-Wesley,
Reading, MA, 1986.

[4] D.C.Atkinson, W.G.Griswold, The Design of Whole-
Program Analysis Tools, 18th International Conference
on Software Engineering, March 25-29, Berlin,
Germany, pp.16., 1996.

[5] R.Banker et al.: Automating Output Size and Reuse
Metrics in an Repository-Based Computer-Aided
Sofware Engineering (CASE) Environment, IEEE
Transactions on Software Engineering, Vol 20. No 3.,
March 1994, pp. 169-187;

[6] D.Brown, Automated Function point Counting - Myth
or Reality, Proceedings of the IFPUG Fall Conference
October 1990, p. 168-180.

[7] M.Hotle, Application Development & Management
Strategies (ADM), Strategic Analysis Report, Gartner
Group, November 4, 1996, 31p.

[8] IFPUG, Function Point Counting Practices Manual
Release 4.0. Counting Practices Committee, The
 international Function Point Users Group (IFPUG),
1994.

[9] IFPUG, Function Point Counting Practices: Case
Studies, Release 1.0, Counting Practices Committee,
The international Function Point Users Group (IFPUG),
July 1994.

[10] ISO/IEC DIS 14143-1.2 Draft International Standard,
Information Technology - Software Measurement-
Functional Size Measurement, Part 1 Definition of
Concepts, International Organization for
Standardization, International Electrotechnical
Commission, 1997.

[11] D.R.Jefferey, G.C.Low, and M.Barnes, A comparison of
Function Point Counting Techniques, IEEE Transaction
on Software Engineering, Vol. 19, No 5, May 1993.

[12] C.Jones, Function Points and CASE Tools, Managing
System Development, April 1995, pp. 1-5.

[13] C.Jones, Applied Software Measurement, McGraw-Hill,
Software Engineering Series, 1991.

[14] C.F.Kemerer, Reliability of Function Points
Measurement: A field experiment, MIT Sloan School of
Management, WP#216, 1990.

[15] S.G.MacDonell, Comparative review of functional
complexity assessment methods for effort estimation,
Software Engineering Journal, May 1994, pp. 107-116.

[16] F.A.Mazzucco, Automation of Function Point Counting
- An Update, Proceedings of the IFPUG Conference,
1990 Spring conference, Orlando FL, 16 p.

[17] F.A.Mazzucco, IEF - Automatic Function Point Count,
Proceedings of the 1992 IFPUG Conference, April 2-5,
1992, Baltimore MA p. 169-181.

[18] Mendes,O, Développement d’un protocole d’évaluation
pour les outils informatisés de comptage automatique
de points de fonction. Rapport d’activité de Synthèse,
Maîtrise en Informatique de Gestion. December 1996.

[19] K. Paton et A.Abran, TABCOUNT - A Table Based
System for Counting Function Points. (non published
technical report), Quebec University in Montral, 1995.

[20] K. Paton et A.Abran, A Formal Notation For The Rules
Of Function Point Analysis. Research Report #247,
Département de mathématique et d’informatique -
UQAM, 44 pages, 1995.

[21] E.E.Rudolph, Precision of Function Point Counts
Analysis, IFPUG Spring Conference, April 3-6 1989,
SanDiego, California, 1989. Quebec University in
Montreal, 185p.

[22] T.Sample, T.Hill, The Architecture of a Reverse
Engineering Data Model Discovery Process, EDS
Technical Journal, Vol. 7, No. 1, 1993.

[23] P.Tonella, G.Antoniol, R.Finsten, E.Merlo, Variable
Precision Reaching Definitions Analysis for Software
Maintenance, Proceedings of the Euromicro-96, 1996.

[24] P.Tonella, R.Fiutem, E.Merlo, G.Antoniol, Variable
Precision Reaching Definitions Analysis for Software
Maintenance, IRST Technical Report 9602-01, February
1996.

[25] G.E. Wittig, Artificial Neural Networks with Function
Point Analysis for Software Development Effort
Estimation, Bond University, academic dissertation,
January 1995.

