Otto-von-Guericke Unversitit Magdeburg

SM™ Model to Evaluate and Improve the Quality
of Software Maintenance Process

Alain A. April

Institut fiir Verteilte Systeme
Fakultét fiir Informatik
Otto-von-Guericke-Universitit Magdeburg
Postfach 4120
39016 Magdeburg
Germany

Preprint Nr. XX
2004

Version 1.6

SM™" Model to Evaluate and Improve the Quality

of Software Maintenance Process

Arbeitsgruppe Softwaretechnik — Software Measurement Laboratory SMlab
GELOG — Laboratoire de Génie Logiciel

Alain April

Otto-von-Guericke-Universitdt Magdeburg
Fakultét flir Informatik - Institut fiir Verteilte Systeme
Postfach 4120, D-39016 Magdeburg

http://ivs.cs.uni-magdeburg.de/sw-eng

ABSTRACT

The software maintenance function suffers from a scarcity of management models
that would facilitate its evaluation, management and continuous improvement. This
paper presents a maintenance-specific capability maturity model: Software
Maintenance Maturity Model (SM™™). This model adopts a similar structure and
should be used as a complement to the CMMi®' (Capability Maturity Model
Integration of the Software Engineering Institute) developed by Carnegie Mellon
University. This SM™" is based on the seminal literature on software maintenance,
international stndards and practitioners’ experience.

! CMM and CMMi is a trademark of the SEI of the USA.

Version 1.6

Thanks

We thank industry members who have worked on this project over the years,
including special thanks to Mr. Dhiya Al-Shurougi for his most valuable field study
conducted in the Middle East.

Remarks

This research project is being carried out at the Software Engineering Research
Laboratory at the Ecole de Technologie Supérieure—University of Québec, headed by
Dr. Alain Abran.

Version 1.6

Content of the study

Page

1 RESEARCH MOTIVATION......uuuuuiuiiuiuieeiineeeeeeeeeeeeneeansnessenseenesesesereesesenennennneeennnnn————.———.—————————————— 6
2 SOFTWARE MAINTENANCE LITERATURE REVIEW.........oooooiiiii 7
2.1 INTRODUCTIONceiiiitiueeeeeeeetttitieeeeeeeeeesttaeeeeeeeseatttaaeeeeeesssttaaaeeeessesrttaeeesesessrttaaeesesessrrtaaeeeeeeeees 7
2.2 DIFFERENCE BETWEEN OPERATIONS, DEVELOPPEMENT AND MAINTENANCEcuuutuuueereerenernennnnennnns 7
2.3 SOFTWARE MAINTENANCE CATEGORIESuuuiiiiiiiiiitiiieeeeeeeeeettiieaeeeeeeeesrttieeeeeeesessrtieaeeesesessrrnieeeeeseseees 9
2.4 SOFTWARE MAINTENANCE STANDARDSuuuueiiiiiiiitiiieeeeeeeeeettieeeeeeeeeestteaaeeeesessrtiaaeeeessssrniinaeeesesesns 10
2.5 SOFTWARE MAINTENANCE PROBLEMS......cuiiiiiiiiiitiiiieeeeeeeeiitieeeeeeeeeetateeeeeeeeeeeatieeeeeeeeeesateeeeeeeeens 11
2.6 SOFTWARE MAINTENANCE CONTEXTcovtuuieeeeietttiuiiieeeeeeeeetttieeeeeeeeessrtieaeeeeesessstiiaaeeesssssrriineeeeeesesns 13
2.7 SOFTWARE MAINTENANCE PROCESSES AND ACTIVITIESccuuuueeeeeeeiiiiiiiieeeeeeeeeeriiieeeeeeeesernieeeeeeaneens 15
2.7.1 Unique software maintenance activities 16

2.8 A CLASSIFICATION OF THE SOFTWARE MAINTAINER’S KEY PROCESSES.....ceiiiiiiiiiiiieeeeeeeeeiriiieeeeeennenns 18

3 SOFTWARE ENGINEERING MATURITY MODELS LITERATURE REVIEWcccceeennnnn... 22
3.1 CMM® AND CMMI® MODELS LIMITATIONSvveueueetteeeeeeeeseseseeeeseeeseseseeeeeeeeseseseseeeseeseseseeseseeesses 25

4 RESEARCH QUESTIONuutiiiiiiiiiiiiiiiiee ettt e e e e ettt e e e e e e e e eatbbaaeeeeeesstassaaeeeeeeaannssaeeeeeannes 26
5 RESEARCH METHODOLOGY ... 27
6 SM™" INITIAL MODEL AND ARCHITECTUREcoooooiiiiiiiieiieiee e 30
6.1 IDENTIFICATION OF PROCESS DOMAINS AND KEY PROCESS AREAS FOR SOFTWARE MAINTENANCE 30
6.2 THE MODEL CONSTRUCTION........ccvttuuueeeeeeeeiitiieeeeeeeeerttttaeeeeeseesrtiiaaeeeesessrttaaeeesesesrrtaaaeeessssrrriaaaeees 33
6.3 THE RESULTING MODELuuuuiiiiiiiiiiiieeeeeeeeittiieeeeeeeeesatieeeeeeeseesttataeeeeessssattntaeeesesesrstniaaeeesessrrraiaaaeees 34
6.4 THE MODEL’ S PURPOSEuuuuiieeeitittiiieeeeeeeetttiieeeeeeeeetatteaeeeeeseesttataaeeeeeessatttaeeeeesesrttiaaeeeesesrrrnaaaeees 37
6.5 THE MODEL SCOPEccttttttieeeeeettittiieeeeeeeeeeeteeeeeeeeeetaaeaeeeeeeseesttaaaeeeeeessrttaaeeeseessrttaiaaeeeeeerrrtiaaaaees 37
6.6 THE SM"™” FOUNDATIONuutiitiiteietiiteeeeetteeeeeaeeesseaeeeseeaeessesseesseaseessssseessasnseesseaseessssseeesannes 37
6.7 THE SM"™" ARCHITECTUREvvviiiitiieeiiieeeeeeeeeeeeateeeeenaeeeseeaaeessesaeeessesaesesesnseessanasessessteessiseeesannes 38

7 EXAMPLE OF THE MODEL DETAILLS. ... 41
7.1 THE MAINTENANCE PERFORMANCE MANAGEMENT KEY PROCESS AREA.........cuuuuuueeerrrenennnnnnnennnsnnnnnnnns 41
7.1.1 GOALS AND TARGETSceetiivitieeeeeeeetiitieeeeeeeeeeattieeeeeeeeeeeaateeeeeeeseesataaeeeeeesesstaaaeeeeesesrsranns 41

7.1.2 DETAILED PRACTICEScetttttueeeeeeeettttieeeeeeeeeeatteaeeeeeeeeeatteaeeeeessssattaaaeeeessssstaaeeeesesesrsranns 42

7.1.3 LEVEL O AND 1 PRACTICES ..ovuuuuieeiieiiitiieeeeeeeeeeatiieeeeeeeeeeeattieeeeeeeeeeastaaeeeeeesesstttaeeeeesesssnanns 42

7.1.4 LEVEL 2 PRACTICES ..uuiiieiiititiieeeeeeeeeettieeeeeeeeeeatteeeeeeeeeeaaateeeeeeeeeeaattaaeeeeeesesstaaaeeeeeresrsranns 42

7. 1.5 LEVEL 3 PRACTICES ..uuueiiitititieeeeeeeeeettiee et e e eeeeatteeeeeeeeeeeaateeeeeeeeeeaataaeeeeeesesstaaaeeeeesesrsranns 43

7.2 THE MANAGEMENT OF SERVICE REQUESTS AND EVENTS KEY PROCESS AREAcuuvivivineeiiiineeeiinnnns 47
T21 OVERVIEW ...ttt ettt e e e e e e e e e e e e e e asraaans 47

7.2.2 OBJECTIVES AND GOALS ..., 48

7.2.3 DETAILED PRACTICEScovttuueeieeieeeitiieeeeeeeeeeetieeeeeeeeeeeateeeeeeeeeeaateeeeeeeeeeeataeeeeeeseessnanns 48

7.2.4 LEVEL 0 AND 1 PRACTICES ..uuuunieiieiiiitiieeeeeeeeeeitieeeeeeeeeeettieeeeeeeeeeaateeeeeeeeeesataneeeeeesesssnanns 49

7.2.5 LEVEL 2 PRACTICES ..uuuiieiiitittieeeeeeeeeettieeeeeeeeeeatteeeeeeeeeeeatteeeeeeeeeeaataaeeeeeeesestaaaeeesesesssranns 49

7.2.6 LEVEL 3 PRACTICES ..uuuiieiiititieeeeeeeeeettieeeeeeeeeeateeeeeeeeeeeatteeeeeeeeseaattaaeeeeseessstaaaeeeeesesssranns 50

8 RESEARCH CONTRIBUTIONS......ooututiiiiiiiiiiieieeeeaeeesaeseseassssnaasssnsnnnssssssssnsssssnsnnnssnnssnnsnssnnsnnnnnnnes 52
O SUMDMARY oottt e et e e e et e et aaararrr—— 54
REFERENCES. ...ttt et e e e e e ettt e e e e e e e e ee e e e e e e e eaa e eeeeeeeastnaeees 55
AINNE X Aottt e ettt e e e e ee e e e e e —— e e e e e et e e e e et e ————————aaa 62
ANNEX Bttt et e et e e e e e e —————————aa 71

Version 1.6

Table of figures

TABLE 1 GENERALLY ACCEPTED DEFINITIONS OF SOFTWARE MAINTENANCE

TABLE II SURVEY ON SOFTWARE MAINTENANCE PROBLEMS PERCEPTION

TABLE 111 ACTIVITIES AND CATEGORIES OF MAINTENANCE WORK

TABLE IV SOFTWARE MAINTENANCE KEY PROCESS AREAS

TABLE V HISTORY OF THE MOST POPULAR SOFTWARE RELATED MATURITY
MODELS

TABLE VI SOFTWARE ENGINEERING MATURITY MODELS PROPOSALS

TABLE VII METHODOLOGICAL APPROACH OF THE RESEARCH PROJECT

TABLE VIIT SM™MODEL CONTENT

TABLE IX PROCESS CHARACTERISTICS BY PROCESS LEVEL

FIGURE 1 ISO/IEC14764 SOFTWARE MAINTENANCE CATEGORIES

FIGURE 2 SOFTWARE MAINTENANCE AS A PRIMARY PROCESS OF ISO/IEC 12207

FIGURE 3 SOFTWARE MAINTAINERS CONTEXT DIAGRAMM

FIGURE 4 A CLASSIFICATION OF THE SOFTWARE MAINTAINER’S KEY
PROCESSES

FIGURE 5 PROPOSED UPDATE TO ISO12207 SOFTWARE MAINTENANCE
PROCESSES

FIGURE 6 THE FRAMEWORKS QUAGMIRE

FIGURE 7 PROCESS DOMAINS OF SOFTWARE MAINTENANCE

FIGURE 8 MAPPING OF THE TOPICS OF KEY MAINTENANCE STANDARDS

FIGURE 9 DOMAINS AND KEY PROCESS AREAS OF SOFTWARE MAINTENANCE

FIGURE 10 SM™ MATURITY LEVELS

FIGURE 11 ISO/IEC 9126 -MODEL OF QUALITY IN THE PRODUCT LIFE CYCLE

Abbreviations and acronyms

CobiT

CMM®
CMM;i®

IEEE

ISO

ISO JTC1/SC7
1S090003:2004
1S09001:2000
ISO/IEC12207
ISO/IEC14764
ISO/IEC15504

MR
PR

SEI
SPICE
Xtreme

Describes the objectives, generally accepted, of information technology
control for management and internal auditors [Cob00]

Capability Maturity Model (version 1.1) published by the SEI [Sei93]
Recent integrating version of the CMM published by the SEI [Sei02]
Refers to the Institute of Electrical and Electronic Engineer

Refers to the international standard organization

Sub-commity, which develops international standard for software
Interpretation guide of ISO9001 for the software industry [/s004]
Current standard ISO9001 published during year 2000 [/s000]
International standard for software life-cycle [Is095]

International standard for software maintenance [Is098]
International standard concerning software improvement models and
methods. There is nine documents [Iso98a]

Maintenance Request (or report) for operational software

Problem Request (or report), which takes priority over current
maintenance work needed to repair operational software rapidly.

Software Engineering Institute of Carnegie Mellon University in U
Name given to the ISO/IEC 15504 [Is098a] during its inception
Development methodology issue from the Internet industry [Jef00]

1 RESEARCH MOTIVATION

In the new global competitive context, organizations undergo pressures from their customers.
Customers are becoming more and more demanding and ask for high quality services within the
shortest schedule, at the lowest possible cost and followed by post-delivery services that beats
the competition. To satisfy the quality, quantity and the ever-challenging service levels, the
dynamic organizations must have access to a software portfolio to supports their business
processes. This software portfolio must be reliable and therefore very well maintained.

Maintaining the mission critical software portfolio of an organization is not an easy task and
requires a management system for software maintenance. To be adequate a management system
for software maintenance has to satisfy the service criteria of its customers and the technical
criteria of the domain to maximize strategic impact and to optimize the economical criteria of
the activities of the maintenance of software.

To achieve these many concurrent objectives, continuous improvement of the software
maintenance function must be a priority in order to pursue progressively these objectives. Such
continuous improvement process must also allow for a progressive approach that is adaptable to
every software maintenance organization. However, there is currently a lack of specific process
improvement models for the software maintenance function. The software maintenance
organizations do not currently have access to such improvement models to determine the best
improvement strategy.

This lack of maintenance-specific capability maturity models is the research problem that was
chosen for this article.

As early as 1987, Colter [Coi87] highlighted that “the greatest problem of software maintenance
is not technical but managerial”. If the management problems are listed as the key problems of
software maintenance, then the technical aspects are not far behind. Numerous publications
address the problems associated with resources, processes and toolsets of software maintenance.
These documented problems vary according to the specific perspectives taken by the authors.

This article presents a maintenance-specific capability maturity model: The Software
Maintenance Maturity Model — (SM™™).

Section 2 and 3 presents the findings and contributions from the software maintenance and
capability maturity models literature review including a discussion of what is missing in the
CMMi® to reflect the maintainer’s unique processes and activities. Section 4 identifies the
research questions. Section 5 presents the research methodology. Section 6 introduces the
architecture and design process of the proposed SM™™. It also describes the approach taken to
build the model, as well as the model purpose, scope and foundation. This is followed in
section 7 by examples of the content of two key process areas: Maintenance performance
management process and Management of Service Requests and Events. Finally, the research
contributions are presented in section 8 followed in section 9 by an overview of further work in
progress.

Version 1.6

2 SOFTWARE MAINTENANCE LITERATURE REVIEW

2.1 Introduction

The software life cycle can be divided into two distinct parts [Mor96, s19.1]: a) the initial
development of software; and b) the maintenance and operation of the software. Included, in
table I, an example of the many definitions of software maintenance that can be found in
literature:

Table I

Generally accepted definitions of software maintenance

“Changes that are done to a software after its delivery | Martin & McLure [Mar§3] 1983

to the user”

“Maintenance covers the software life-cycle starting | Von Mayrhauser [Ben00] 1990
from its implementation until its retirement”

“Modification to code and associated documentation | ISO/IEC 12207 [Is095] 1995

due to a problem or the need for improvement. The
objective is to modify the existing software product
while preserving its integrity.”

“The modification of a software product after delivery | IEEE 1219 [/ee98] 1998
to correct faults, to improve performance or other
attributes, or to adapt the product to a modified
environment.”

Lehman [Ler80] states that “change being unavoidable forces operational software to evolve or
they progressively become less useful and ultimately obsolete”. Maintenance becomes
unavoidable for operational software used daily everywhere in the company. This point of view
emphasizes that the software maintenance definitions aim primarily at application software (as
opposed to base software like operating systems).

2.2 Difference between Operations, Development and Maintenance

The processes and activities of the computer operations domain are distinct from the processes
and activities of the software maintenance domain [s098, si]. It is specified in the
ISO/IEC14764 international standard that operation activities like: a) backup; b) recovery; c)
operating system administration and; d) computer operations are carried out by the computer
operation personnel of the data center. These activities are not part of the software maintenance
scope of work as presented by the many definitions of table I. Although this is well stated in
the ISO/IEC14764 international standard it is common that managers confuse the computer
operations and the software maintenance processes and activities. This confusion might stem
from the fact that both organizations often work closely to one another. There is an important
and very active interface between software maintenance and computer operations that aim
especially to assure that the infrastructures, that support the operational softwares are
operational and responsive (change management, service calls concerning a failure in
production, recovery of the environment and data after a disaster, recovery of data, automated
scheduling, disk management and tape management) [/i01a, Iti01b)].

Version 1.6

On the other hand, how clear is the difference between software maintenance and software
development to managers? Software development can also be confused with software
maintenance [4br01 s3.2.2]. The difference can be more difficult to explain to management
when the developer of the software also carries out its maintenance. This confusion originates,
principally, from the fact that some processes and activities of software maintenance are
similar to the ones of software development (analysis, design, coding, configuration
management, testing, reviews and technical documentation). In practice these similar activities
differ because they are adapted to the specific context of maintenance ISO/IEC 12207 [Is095
s5.5.3]. A key difference is that the maintenance work is carried out by only one or two
maintenance staff and for very short-term deliverables. It is true to say that a software
maintenance employee can obtain part of his expertise and knowledge from the same teaching
sources and training than that of his colleagues of the software development.

It is to note, equally, that the organizational structure of the software development teams is
principally in the form of a structured project using project management techniques. The
development project typically is created for a temporary and fixed length and is not sustained
after the delivery of the software. The software development project team develops a plan of
resources, profits and loss, specific deliverables and objectives and aims a planned date for
closing the project. The structure of the maintenance team is very different for it must face the
events and daily requests of the customers while maintaining the continuous service of the
operational systems under their responsibility.

In a software maintenance organization, it is important to understand how the management of
maintenance processes and activities differs from the management of software project
processes and activities. While project management is organized towards the delivery of a
product within a specific timeframe and by a pre-arranged project closure date, the
maintenance organization and processes must be structured to handle ongoing work on a daily
basis for its customers with, by definition, no closure date. Key characteristics of the nature and
handling of small maintenance requests have been highlighted in [45r93], for example:

1. Modification requests come in more or less randomly and cannot be accounted for
individually in the annual budget planning process;

2. Modification requests are reviewed and assigned priorities, often at the operational
level — most do not require senior management involvement;

3. The maintenance workload is not managed using project management techniques, but
rather queue management techniques;

4. The size and complexity of each small maintenance request are such that it can usually
be handled by one or two maintenance resources;

5. The maintenance workload is user-services-oriented and application-responsibility—
oriented.

6. Priorities can be shifted around at any time, and requests for corrections of application
errors can take priority over other work in progress.

When a user submits a modification request (MR) it is necessary to estimate the effort needed
to modify the existing software. The study of Dorman & Thayer [Dor97] states that
modification requests (MR’s) and problem reports (PR’s) go though an investigation and
impact analysis activity, which is unique to software maintainers. If the estimated effort is too
big on a modification request it will be sent to a software development team and treated as a
project.

Version 1.6

There is, for software maintenance, a unique process that accepts/rejects work demanded in a
modification request. This process takes into account the size and effort of a specific
modification. April [4pr01] presents the process used at Cable & Wireless where the maximum
effort of an MR that a maintenance programmer will accept is five days of effort. It is very
different for Problem Reports (PR’s) where, whatever the size or effort required to fix a failure,
it will be processed immediately by the maintenance staff. This five day limit is also
recognized by the United Kingdom Software Metrics Association (UKSMA) ‘The distinction
between maintenance activity of minor enhancements and development activity of major
enhancement is observed in practice to vary between organizations. The authors are aware that
in some organizations activity as large as to require 80 workdays is regarded as maintenance,
while in others the limit is five days. Initially it is proposed that the ISBG and UKSMA will
adopt the convention that work requiring five days or less will be regarded as maintenance
activity’.[Isb04]

Bennett [Ben00] states that software maintenance requires a number of additional processes and
activities not found in software development: a) Modification Requests are usually made to a
“help desk” (often part of a larger end-user support unit), which must assess the change; b)
Impact analysis and the need for software comprehension; and c) the specialization in
regression testing of software so that the new changes do not introduce errors into the parts of
the software that were not altered.

In conclusion, software maintenance has unique processes and activities that are not present in
the software development domain. Software maintenance also calls on some specific software
development processes particularly the implementation processes of ISO/IEC 12207 [Is095
s5.5.3]. Victor Basili states that software maintenance is a specific domain of software
engineering, and that it is therefore necessary to look into its processes and methodologies to
take into account its specific characteristics [Bas96].

2.3 Software maintenance categories

Lientz & Swanson initially identified three categories of maintenance: corrective, adaptive, and
perfective. [Lie78]. These have been updated, and the International Organization for
Standardization (ISO) has defined a new category in the Standard for Software Engineering-
Software Maintenance [/s098]. The categories of maintenance defined by ISO/IEC14764 are as
follows:

+ Corrective maintenance: Reactive modification of a software product performed after
delivery to correct discovered problems;

+ Adaptive maintenance: Modification of a software product performed after delivery to keep
a software product usable in a changed or changing environment;

+ Perfective maintenance: Modification of a software product after delivery to improve
performance or maintainability;

+ Preventive maintenance: Modification of a software product after delivery to detect and
correct latent faults in the software product before they become effective faults.

The ISO/IEC14764 international standard of software maintenance classifies Adaptive and
Perfective maintenance as enhancements. It also groups together the corrective and preventive
maintenance categories into a Correction category, as shown in Figure 1. Preventive

Version 1.6

maintenance, the newest category, is most often performed on software products where safety
is critical.

Correction Enhancement

Preventive Perfective
Corrective Adaptive

Figure 1: ISO/IEC14764 software maintenance categories

2.4 Software maintenance standards

Software maintenance (refer to figure 2) is one of the five primary processes in the software
life cycle as described by the ISO/IEC12207 international standard [Is098, s5.1]. The primary
processes of this standard may call on 1) other primary; 2) supporting and; 3) organizational
processes when needed. This standard clarifies which of the activities that are also used by the
developers, should be used by maintainers (i.e. documentation, configuration management,
quality assurance, verification, validation, reviews, audits, problem resolution, process
improvement, infrastructure management, and training). [Moo98, Fig. 36-37, Table 94].

5 Primary life-cycle processes

5.1 Acquisition process 6 Supporting life-cycle processes

5.2 Supply process 6.1 Documentation
5.3 Development process 6.2 Configuration Management
5.4 Operation process 6.3 Quality Assurance

5.5 Maintenance process 6.4 Verification

- Process implementation 6.5 Validation
- Problem and modification analysis
- Modification implementation

- Maintenance review/acceptance

- Migration

- Software Retirement 6.7 Audit

6.6 Joint Review

6.8 Problem Resolution

7 Organizational life-cycle processes

7.1 Management 7.2 Infrastructure 7.3 Improvement 7.4 Training

Figure 2: Software maintenance as a primary process of ISO/IEC 12207 [Is095]

An important number of standards apply to software engineering [Moo98]. To identify specific
standards that apply to software maintenance the key IEEE and ISO/IEC standards and their

10

Version 1.6

relationships have been investigated. A good number of software engineering standards that
refer to the software maintenance activities were found [Mag97 p.325].

The ISO/IEC12207 international standard describes the overall life cycle of software and is a
good starting point before considering more specific standards. It is therefore an excellent
document to obtain an overall view of the maintenance process and its relationships with
software development. For this research, two standards were found to directly address software
maintenance: IEEE1219 and ISO/IEC14764. As introduced in section 2.2 it is stated in the
ISO/IEC 14764 and ISO/IEC 12207 that maintainers use some development activities and that
they adapt them to meet their specific needs [Is098a, $8.3.2.1 and s8.3.2.2]. More specific
references between ISO/IEC 14764 and ISO/IEC 12207 are: a) paragraph 5.5.3.1 of
ISO/IEC14764 prescribes to use and adapt software development processes when a need to
modify the software arises during its maintenance; b) there is another reference that prescribes
that software development processes be used and adapted for documenting testing and review
activities (ISO/IEC 12207 clause 5.5.3.2).

According to Bennett [Ben00, s9.3] software maintenance standards presented by IEEE and
ISO/IEC are “classical or basic” and do not address newer approaches and processes found on
the market today: e.g. Xtreme maintenance [Jef00, Poo01], ‘user computing’ and Service Level
Agreements. He states that the current process model used in the software maintenance
standards corresponds approximately to level two of the five SEI/CMMi capability maturity
levels.

In conclusion, in software engineering there are a large number of standards. Three of them are
central to software maintenance: ISO/IEC14767, IEEE1219 and ISO/IEC 12207. These
standards indicate that software maintenance refers to software development activities in very
specific areas and maintainers must ensure that they adapt them to their specific needs.

2.5 Software Maintenance problems

It is fair to say that software maintenance is not very present in the teaching curriculum of our
schools [Car92]. The result is a lack of software maintenance culture, knowledge, available
techniques and tools for the employees that work in this field.

Problems can either be perceived from an external or internal perspective. It is said that an
employee has an internal perspective while the users and customers have an external
perspective. [Dek92] Dekleva presents a survey report, From the perspective of a software
maintenance employee, that lists 19 reported key problems of software maintenance (see table
IT). The survey participants were attending successive software maintenance conferences over
several years.

Table 11

Survey on software maintenance problems perceptions [Dek92]

Rank Maintenance problem

1 Follow changing priorities

Inadequate testing techniques

Hard to measure performance

Software documentation incomplete or missing
Adapt to rapid change of user organizations

v N W N

11

Version 1.6

Large backlog or requests
Hard to measure/demonstrate software maintenance contribution
Low morale because of lack of respect and understanding

o S0 NN

Few maintenance professionals with experience

10 Little methodology; few standards, procedures, or specific tools
11 Source code of existing software is complex and not structured
12 Integration, overlap, and incompatibility of existing systems

13 Low level of training for maintenance staff’

14 No strategic plans for software maintenance

15 Hard to understand and respond to end-user requests

16 Little understanding and support from IT management

17 Software of systems under maintenance operating on obsolete
environments

18 Little intention to reengineer existing software
19 Loss of expertise when employees leave the team

It has been widely published that software maintenance is, by itself, of major economic impor-
tance. A number of surveys over the last 15 years have shown that for most software, software
maintenance occupies anything between 40 and 90 percent of total life cycle costs as published
by Foster & Munroe [Fos87], 75% according to Rand P. Hall [Hal87], 50-80 % according to
Tony Scott [Sco88] and more than 60% according to Hanna [Han93]. This type of survey
confirms the users perception that maintenance costs are high. But are the sources of
maintenance costs really known by users? And if they are known are they the same as
perceived by the maintenance staft?

Jones [Jon91, Pig97 s2] describes that this high cost perception originates from a lack of
management. He states that software maintenance managers do not communicate adequately
all the work that is carried out for their users and customers. Software maintenance managers
often regroup enhancement and corrections in the same statistics, budgets and management
reports. This perpetuates the notion that most maintenance work is corrective and does not
clearly represent the importance and added value of the other maintenance categories.

‘The more substantial portion of maintenance cost is devoted to accommodating functional
changes to the software necessary to keep pace with changing user needs. Based on data
reviewed, it was also noted that systems with well-structured software were much better able to
accommodate such changes. [For92]’.

Lientz and Swanson [Lie80] presents, on the basis of a survey of 487 software maintenance
organizations, that 55% of requests are, in fact, new requirements as opposed to corrections. In
questioning software maintenance personnel, Pressman [Pre97, s27.2.1] finds similar results with
50% to 80% of maintenance effort dedicated to adding new functionality required by the users
and to answer all kinds of support enquiries concerning the business rules of operational
software. Since this fact is not well communicated to users and customers, the perception is
still that maintenance is mainly corrections of failures.

Another misconception that users have is that hardware and software should have comparative

maintenance costs and efforts. In fact this is not the case. ‘Hardware degrades without
maintenance while software degrades because of maintenance activities [Gla92].

12

Version 1.6

Pigoski [Pig97 s2] states that software maintenance is labor intensive and that the majority of
costs are associated with the human resource component of the cost. Because of economies of
scale and new production processes, the hardware no longer accounts, for the majority of the
costs of modern software systems. The manpower costs (e.g. at Cable & Wireless during 2003
a cost of 81,500 USD per day for a SAP/r3 Abap programmer) are now at the top of finance
and management preoccupations. It then becomes very important to explain clearly and
provide details of where time is spent during software maintenance. This is crucial to enhance
the perception of the value of the many services.

Banker [Ban93] states that the size and complexity of software greatly influences its
maintenance costs and modification efforts. To such extent that Boehm [Boe87] publishes that
for each dollar invested in developing software there will be a spending of 2 dollars in
maintenance. He continues by explaining that maintenance costs can be stated as a function of
the number of instructions in the source code of the software.

Lehman [Lehs85, Leh97] also indicates that the structure of the software code, which undergoes
successive maintenance activities, becomes progressively more complex because of the many
changes. As a result a growing number of human and other resources need to be assigned to
maintain software that becomes more and more complex over time. This argument is not fully
supported by the software maintenance literature. Pigoski [Pig97] observed larger number of
changes during the first three years of maintenance of new software and recommends that
management should allocate more maintenance resources during the first years in service and
after that time, progressively fewer resources will be required as the software stabilizes and
gradually becomes obsolete.

Osborne and Chikosky [0sb90] blame the age of operational systems for the complexity. They
argue that the average age of operational software is from 10 to 15 years. They present the
point of view that in the past the software community did not have access to modern
architectural techniques. These old software, also called legacy software, demonstrate a more
complex internal structure, bad coding practices and weak documentation which all contribute
to higher maintenance costs and efforts.

Finally, other research work at Hewlett Packard [Hp90] identifies that the main factors, in
decreasing importance, that contribute to high costs of software maintenance in their company
are: the number and the experience of the programmers, the quality of the technical
documentation and user documentation, the tools used by the maintenance employees, the
structure and maintainability of the software and last, the contractual obligations that constrains
the maintenance activities.

2.6 Software Maintenance Context

It is important to further explain and describe the scope of software maintenance activities and
the context in which maintainers work daily (see Figure 3). There are indeed multiple interfaces
in a typical software maintenance organizational context where the maintenance manager must
keep his applications running smoothly. He must react quickly to restore order when there are
production problems. He must provide the agreed-upon level of service. He must keep the user-
community confident that they have a dedicated and competent support team at their disposal,
which is acting within the agreed-upon budget" [45r93].

13

Version 1.6

The interface with the user is a key function and relates to the daily communications which
require: a) rapid operational responses to problem reports; b) responsiveness to inquiries about
a specific business rule, screen or report; and c¢) progress reports on a large number of
modification requests.

Such user interfaces are either direct, or accessible via a Help Desk, and, in best practices, are
supported by a ticket-handling system, which documents, controls and expedites the workload.
Other user interface activities, less intense and less frequent, consist of negotiations and
discussions about individual request priorities, service level agreements (SLAs), planning,
budgeting/pricing and user satisfaction-related activities.

A second maintenance interface deals with a) the Help Desk; and b) the infrastructure and
operations organization [/¢i01a, Iti01b]. The user is rarely aware of, or involved in, the details of
software engineering processes. He is unaware of the many daily interactions between these
two organizations. Internally software engineers must have an effective problem resolution
process and efficient communications to ensure quick and effective resolution of failures.

A specific request, sometimes called a "ticket" when this process is automated, will typically
circulate among software engineer support groups in order to isolate a problem [4pr01]. The
user interface also includes less frequent activities such as coordination of service recovery
after failures or disasters in order to help restore access to services, within agreed-upon SLA
terms and conditions.

Software Development

Support 3 Initial

Development projects Transition
Service Level Agreement —
Maintenance services Application 4
1 Software
Customers failure Maintenance Suppliers
Request Help calls
Status Desk é;l'roblem Problem
tickets Resolution
® communications

Infrastructure
and Operations

Figure 3: Software Maintainers Context Diagram

The third key interface exists between the software developers and the software maintainers,
and is initiated during the development of new software. The root cause of several maintenance
problems can be traced to development, and it is recognized that the maintainers need to be
involved and exercise some form of control during this transition [Dek92, Wal94, Pig97, Ben00].
This development-maintenance interface also illustrates the contributions made by maintainers
to help in and support, and sometimes be involved in, a number of large development projects
concurrently. The maintainer’s knowledge of the software and data portfolios is of great value
to the developers, who need to replace or interface with legacy software. Some of the key

14

Version 1.6

activities would be, for example: a) development of transition strategies to replace existing
software; b) help in the design of temporary or new interfaces; c) verification of business rules
or help in understand the data of existing software; and d) help in data migration and cutover of
new software or interface.

The fourth interface (in figure 3) addresses relationships with a growing number of suppliers,
outsourcers, and ERP vendors [Car94, Apr01, McC02]. The maintainers interface with them in all
kinds of relationships, for example: a) with suppliers that develop new software or configuring
ERP software; b) with sub-contractors who are part of the maintenance team, to help with
specific expertise and additional manpower during peak periods; c) with suppliers of
maintenance contracts providing specific support services for their already licensed software;
and d) with outsourcers who might partially or completely replace a function of the software
engineering organization (development, maintenance or operations & infrastructure). To
ensure good service to its user, software maintainers must develop some understanding of the
many contract types, and manage them efficiently, to ensure supplier performance, which often
impact the SLAs results.

2.7 Software Maintenance Processes and activities

Authors report that many software organizations do not have any defined processes for their
software maintenance activities [Pia98]. Van Bon [Van00] confirms the lack of process
management in software maintenance and that it is mainly a neglected area. What is the source
of this lack of interest in process and procedures? Schneidewind [Sch87] tells us that,
traditionally, maintenance has been depicted as the last activity of the software development
process. This can still be seen today in the IEEE1074-1997 standard, which represents software
maintenance as the seventh step of eight software development steps. Even today, many
industrial software engineering methodologies do not even represent the software maintenance
processes or activities [Sch00]. As an example the British Telecommunications software
development methodology presents maintenance as a unique activity at the end of the software
development [B:90]. Bennet [Ben00] has an historical view of this problem and traces it back to
the beginning of the software industry, where there was no difference between development
and maintenance of software. Differences only started to appear during the 1970’s when
software maintenance life cycles started to appear. He describes that the first software
maintenance life cycles had three simple activities: 1) comprehension; 2) modification, and 3)
validation of the software change.

The 1980's brought more extensive software maintenance process models [Ben00, Iti01a, Iti01b,
Fug96]. In these life-cycle models, software maintenance is not represented as the last stage of
software development. These models present specific software maintenance activities and
introduce a sequence for each activity. Some consulting firms define their own maintenance
life-cycle models offering specialized activities for their markets and customers. The many
proposals culminate in the development of national and international standards in software
maintenance during 1998 with the publication of IEEE 1219 [ee98] and ISO/IEC14764 [Is098]
that are currently in use today.

As a first step to identifying all the key software maintenance processes and activities, these

two standards have been used to develop a detailed list of software maintenance processes and
activities (see Annex A).

15

Version 1.6

This first inventory is useful in structuring maintenance processes and activities and presenting
the current scope and structure of key software engineering publications.

2.7.1 Unique software maintenance processes and activities

Depending on the source of the maintenance requests, maintenance activities are handled through
distinct processes; this is illustrated in Table III with a few examples. For each request source, a
key maintenance service/process, together with due registration of the related maintenance
categories of work, is initiated. For example, if users are the source of the requests, then a change
request related to operational use of the software and the work to be carried out can be classified
within one of three maintenance services: correction, evolution or operational support. In some
instances, a supporting process will be needed. A typical one is the need for service level
agreement information as part of the operational support activities.

Table I11

Activities and Categories of maintenance work

Source of Requests Example of a Key Assignment to a Maintenance Category

Maintenance for maintenance effort collection
Service/Process
Project Managers Management of transition from Operational Support for project
development to maintenance
Project Managers Provide knowledge of existing ~ Operational Support to project
legacy systems

Users Ask for a new report or complex Operational Support to users
query
Users Ask for new functionality Adaptive
Users Report an operational problem Corrective
Users Quarterly account management Operational Support to users and SLA
meeting with the users
Software Operations Change to a systems utility Perfective
Rejuvenating Studies Software impact analysis If large enough, it can be assigned to preventive

maintenance, and often leads to a project or to
redevelopment, both of which are outside the
scope of small maintenance activities.

A list of distinct software maintenance processes can be found in the recent version of the
Software Engineering Body of Knowledge (SWEBOK) which identifies a number of processes
and activities that are unique to maintainers, for example [45r01]:

+ Transition: a controlled and coordinated sequence of activities during which a system is
transferred progressively from the developer to the maintainer [Dek92, Pig97];

+ Service Level Agreements (SLAs) and specialized (domain-specific) maintenance contracts
[4pr01] negotiated by maintainers;

+ Modification Request and Problem Report Help Desk: a problem-handling process used by
maintainers to prioritize, document and route the requests they receive [Ben00];

16

Version 1.6

+ Modification Request acceptance/rejection: modification request work over a certain
size/effort/complexity may be rejected by maintainers and rerouted to a developer. [Dor02,
Aprol].

While doing the inventory of maintenance activities and literature review, it was confirmed that

some maintenance processes and activities are unique to maintainers and are not present in the

software development function (see Table V).

Table IV

Software maintenance key process areas (P = present, A = absent)

Some Maintenance Key Processes Software Software

management development
(maintenance) (creation)
P A

Management of problems (Problem resolution interfacing
with a help desk)

Acceptance of the software

Managing transition from development to maintenance
SLAs

Maintenance planning activities (versions, SLAs, and
impact analysis)

Event and service request management

Software management (operational support)

Software rejuvenation

T
e g g g

jn=Bla=Rav]

A number of software engineering topics and sub-topics have also been found to be adapted for
the specific nature of software maintenance, including:

Process Simulation: Process simulation techniques are used in the maintenance area. These
techniques are used for improvement activities to optimize the maintenance processes and case
studies are described in [Bar95].

Software Maintenance Measurement: Maintainers extensively use satisfaction surveys to
understand how their customers are doing [Bur95, Cfi02°’]. Maintainers use internal
benchmarking techniques to compare different maintenance organizations and products to
improve their processes internally [4br93a, Bou96a]. External benchmarking of software
maintenance organizations is now becoming more popular [4br93a, [fp94, Mai02, Isb04].
Measurement initiatives specific to maintainers are also described in publications [Gra87, 4br91,
Abr93, Stp93, Sta94, Mcg95]. Software estimation models specific to maintenance have also been
published [Bas79, Nie88, Abr95, Gef96, Hen96, Nie97]. Pressman [Pre97 paragraph 4.5.2] also indicates
that no one measure can be found to reflect the maintainability of software, and that a number
of indicators are required! This leads to external and internal measurement of the
maintainability of software done by some organizations using commercial tools [Boo94, Lag96,
Apr00].

Maintenance Request Repository: An adequate information system (often shared with the
operations help desk area) must be used by the maintainer to manage the workload and to track
a large number of users’ requests. It can become the basis for the effort collection and an

* Provided as an example of a satisfaction survey consulting firm

17

Version 1.6

important component of the measurement infrastructure [Gla8l, Art88, Iti0la paragraph 4.4.7,
Kaj01d, Nie02 activity 3].

Software Maintainer specific training and education: the following references on
maintainers training and education address the specifics for software maintainers [Kaj0lc,
KajOle, Kaj0lf, Hum00, Pfl01 paragraph 10.1 and chapter 11]

Billing of the maintainers’ services: More and more often, the maintainer must accurately
track his work and issue a maintenance billing to the customer organization. This must, of
course, be supported by the development of a billing policy [/zi01a, 5.4.2]. Maintenance service
items and prices must be clarified and supported by a software maintenance billing process and
supporting systems.

Production systems surveillance: A maintenance organization must also put in place a
production system surveillance set-up to probe, every day, the operational environment for
signs of degradation or failures. Such surveillance systems ensure that problems are identified
as early as possible (hopefully before the user is aware of it) [11i01a paragraph 4.4.8].

2.8 A classification of the software maintainer’s key processes

Taking into consideration the list of processes and activities a high-level process model of
software maintenance activities was developed. It presents key software maintenance processes
grouped into three classes (Figure 4). The main idea is to provide a similar representation used
by ISO/IEC 12207 standard but focused on software maintenance-specific processes and
activities:

a) Primary processes (software maintenance operational processes);

b) Support processes (supporting the primary processes); and

c) Organizational processes offered by the software engineering organization or by other
organizations (for example: finance, human resources, purchasing, etc.).

18

Version 1.6

Software Evolution

Engineering
Developers Users | Operational
@ T T Support
Q
w»
2
5}
2 Event and . o Software
& Software || Service [i|| Corrections i Version | | Momtgrmg | | Rejuvenation
Transition Request Management . antr | Migration
5‘ Management Onio Retirement
I
% SLA and l
an
A Suppliers 0——— Supplier 1 Evolutions H
Agreements Infrastructure
and Operations
v
e 2
2 8 q
% = Software Pr;)ce;s atn i Revi d AC]alu§a1 .
wn L Documentation | | Configurati roduc erification eviews an nalysis an
I\Z“ 1guration Quality - Validation Audits Problem
ETEgEE Assurance Resolution
—_
]
Sg
-g 2 Process Measurement : .
N . " Innovation . Purchasing
— 0 Maintenance Definition, : Maintenance
5 and Analysis and and Human
= = Planning Assessment, of Depl " Training Resources
g A~ Improvement| | Maintenance cploymen

Figure 4: A classification of the Software Maintainer’s Key Processes

The key operational processes (also called primary processes) that a software maintenance
organization uses are initiated at the start of software project development beginning with the
transition process. The transition process is not limited, as some standards present, to the
moment that developers hand over the system to maintainers. The Transition process ensures
that the software project is controlled and that a structured and coordinated approach is used to
transfer the software to the maintainer. In this process, the maintainer will focus on the
maintainability of this new software. It means that a process is implemented to follow the
developer during the system development life cycle. Once the software has become the
responsibility of the maintainer, the Issue and Service Request Management process handles all
the daily issues, problem reports, change requests, and support requests. These are the daily
services that must be managed efficiently. The first step in this process is to assess whether a
request is to be addressed, rerouted, or rejected (on the basis of the service-level agreement and
the nature of the request and its size)[4pr01]. Accepted requests are documented, prioritised,
assigned, and processed in one of the service categories: 1) Operational Support process
(which typically does not necessitate any modification of software); 2) Software Correction
process; or 3) Software Evolution process. Note that certain service requests do not lead to
any modification to the software. In the model, they are referred to as ‘operational support’
activities, and these consist of: a) replies to functionality questions; b) provision of information
and counselling; and c) helping customers to better understand the software, a specific
transaction, the internal validations, its data or its documentation.

The last two main operational processes concern the Version Management process, moving

items to production, and the Production Surveillance process, ensuring that the operational
environment has not been degraded. Maintainers always monitor the behaviour of the

19

Version 1.6

operational system and its environments for signs of degradation. They will quickly warn other
support groups when something unusual happens (operators, technical support, scheduling,
networks, and desktop support) and judge whether or not it is an instance of service
degradation that needs to be investigated.

A process which is used, when required, by an operational process is said to be an operational
support process. This classification includes: a) the many maintenance planning perspectives
(i.e. year plan, system plan, impact analysis of a specific request); b) the software configuration
management function and tools which is often shared with developers; ¢) the maintenance and
testing environments; d) management of the contractual aspects (i.e. escrow, licenses, third-
party) and service level agreements; e) rejuvenation or retirement of software; and, finally, f) the
problem resolution process often shared with infrastructure and operations. These are all key
processes required to support software maintenance operational process activities.

Organizational processes are typically offered by the IS organization and by other departments
in the organization (for example: human resources, finance, and quality assurance). While it is
important to measure and assess these processes, it is more important for the maintainer to start
defining and optimising the operational processes first. The operational support processes and
the organizational processes follow these.

This generic software maintenance process model helps to understand and represent the various
key software maintenance processes but it lacks conformance to ISO12207. Another version of
the maintenance process model that could be readily accepted by the standards community is
presented in figure 5. In this figure the updated process view of software maintenance is
highlighted and shows its integration in the existing process model.

20

Version 1.6

5 Primary life-cycle processes

5.1 Acquisition process 6 Supporting life-cycle processes

5.2 Supply process 6.1 Documentation
5.3 Development process 6.2 Configuration Management
5.4 Operation process 6.3 Quality Assurance

5.5 Maintenance process 6.4 Verification

- Transition
- Event and Service Request Mngmt. 6.5 Validation
- Operational Support
- Corrections

- Evolutions

- Version Management
- Monitoring and Control 6.7 Audit
- Software Rejuvenation, Migration

and Retirement

6.6 Joint Review

6.8 Problem Resolution

7 Organizational life-cycle processes

7.1 Management 7.2 Infrastructure 7.3 Improvement 7.4 Training

Figure 5: Proposed update to ISO12207 software maintenance processes

21

Version 1.6

3 SOFTWARE ENGINEERING MATURITY MODEL LITERATURE REVIEW

Since the middle of the 1980’s, many capability maturity models have emerged. The concept
has become so popular that many other industries are developing capability maturity models,
for example human resources management [4ps01], financial management [Des99] and primary
care [Gil99].

Process Stds
Quality Stds
Maturity or

Capability
Models
Appraisal
methods
Guidelines

SRy
- SCAMPI |

IEEEIEIA
12207
IS0 2000
series
TLS00O
ftatic = absolate

(boxed]= integrating

e cupersedes
—# basedan

- - - usesfreferences

ISOJIEC
12207

ISOIIEC 16288

“notreleased *“based on CBAIFL SAM, and others
W2 also based on many others

Ses vwww soffuare orgignaornire

Figure 6: ‘The Frameworks Quagmire’ [She01]3

Sheard [She0!] presents (see figure 6) the most popular capability maturity model issue from
the USA. Moore [Moo98] complements this list with European and Canadian models while El-
Eman and Brito and Abreu [Ema98, Bri99] have published an historical view of this domain. A
short description of the models is presented in table V. Each model identifies the date of
publication, the origin and an indication of whether the details are public domain or not.

These models are the most published. There is not, in this list, a capability maturity model
specific to software maintenance. Maybe a proposal for a comprehensive maintenance-specific
capability maturity model exists somewhere else? A literature search has not resulted in any
comprehensive diagnostic techniques to evaluate the quality of the maintenance process, as
described by the high level process model of figure 4.

3 Used with the permission of Sarah Sheard (sheard@software.org)

22

Version 1.6

Model

name
Maturity
Framework

SW-CMM

Trillium et
Camélia

Process
Advisor

Bootstrap

SQPA

FAA-
ICMM

STD

SAM
SE-CMM

People
CMM

SSE-CMM

IPD-CMM

SA-CMM
SECAM

(SPICE)
15504

Table V

History of the most popular software related maturity models

Origin

Bell Canada

Dr.
Pressman

ESPRIT
R&D
projects

FAA

Compita

BT
EPIC

SEI

ISSEA

EPIC

SEI
INCOSE

ISO/IEC

Public
domain
Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Description

Watts Humprey publishes in 1987 a first paper of concepts of process
maturity developed by the SEI. His book ‘Managing the Software Process’
is published in 1989.

Maturity Model (Published in 1991) for software improvement and
assessment.

The model (Published in 1991) by Bell Canada and Nortel integrates the
SW-CMM, ISO9001 and other standards to assess the development and
maintenance of telecommunications products.The last version of Trillium
was published in 1996 (v3.0). Camélia, is a french version of Trillium and
improves the model that now integrates MIS (Management Information
Systems) concepts. It is published in 1994.

Pressman, during 1992, publishes a list of questions questions that cover
eight capability domains. It can be considered a simple proposal for a
maturity model that benchmarks industry practices with best practice.
[Pre92]

‘The European software capability and process improvement model
(Published in 1993) has been developed in a research initiative named
ESPRIT #n5441. Bootstrap, SPICE, ISO9001 and the CMM ® are used in
the mapping of this maturity model. The model is developed and
maintained by the Bootstrap Institute of Bruxel. Last version is 3.0 in year
2000’

Model (Published in 1993) by the company Hewlett Packard that uses the
research work of Capers Jones. [Ibr03]

This model (Published in 1993) integrates the SW-CMM,the System
Engineering CMMand the Software Acquisition CMM. It is intended for
use in the Federal Aviation Administration of the USA.

Model (Published in 1994) by the Scottish Enterprise is only accessible
through a licence agreement with the Compita society. The model claims
conformance to SPICE ® and uses a proprietary evaluation method named
PPA.

Model (Published in 1994) by British Telecommunications for internal
assessments of its software processes.

Model (published in 1995) describes key practices of a system engineering
organization.

Model (Published in 1995) describes key elements of HR development and
management in software development and software engineering driven
organizations.

Model (Published in 1996) describes the caracteristics of the processes of
software engineering in a security perspective.

Model (Initiated during 1996) to improve the processes of the whole life-
cycle of all the processes involved in the development of a product
(including software). The project did not finish and was stopped in 1997.
Model (Published in 1996) with an architecture similar to the CMM model,
was designed for purchasing software.

Model (Published in 1996) based on a questionnaire with the objective of
assessing the evolution of existing system engineering practices.

Technical reports from ISO/IEC (published in 1998) with the number
15504 contains models and assessment methods for improvement and

23

Version 1.6

capability assessment of software processes. A reference model is
included. Ten reports are published.

EIA/IS 731 EPIC- Yes Model (Published in 1999) integrates SE-CMM and SECAM giving
INCOSE SECM. This model is based on system engineering principles of (EIA/IS
731).
CMMi SEI Yes Version 1.1 (Published in 2002) integrates many of the SEI software
process models. This new version renders obsolete many previous models
from the SEI.

Table VI presents an inventory of recent proposals of software engineering process evaluation
and assessment models. Each of these models was analyzed to identify contributions that could
help maintainers. Of the thirty-four proposed models in this review, only a handful (shown in
bold in table VI) includes documented maintenance practices, sometimes accompanied by a
rationale and references. However, none of these models covers the entire set of topics and
concepts of the process model presented earlier (see figure 4).

Table VI

Software Engineering Maturity Models proposals, (sorted by year of publication)

Year Software Engineering Maturity Model proposals

1991 Sei91, Tri91, Boo91

1993 Sei93

1994 Cam94’, Kra94

1995 Cur95, Zit95

1996 Bur96 & Bur96a, Dov96, Hop96, Men96

1997 Som97

1998 Top98, Baj98, Ear98

1999 Wit99, Vet99, Sch99, Faa99, Gar99

2000 Str00, Bev00, Lud00, Luf00, Cob00

2001 Kajo01d, Kajolc, RayO1, Sri01

2002 Sei02, Nie02, Mul02, Vee02, Pom02, Raf02, Sch02,
Ker02, Cra02, Win02

2003 Nas03, Doc03, Sch03a, Wid03, Rea03

Using these proposals the first inventory of software maintenance processes and activities of
annex A is enhanced. The result of this activity is a much more comprehensive list of software
maintenance processes and activities (see Annex B) that covers: a) national and international
standards; b) relevant software maintenance-specific capability maturity model proposals; and
c) recognized key software maintenance references.

From these two successive mappings, a large number of software maintenance best practices
have been identified and listed. To summarize, the key software maintenance references that
should be used to develop a comprehensive maintenance-specific capability maturity model

(SM™™) are:

. ISO/IEC14764 [15098];

* Cam94 includes and expands on Tri91 detailed practices

24

Version 1.6

. IEEE1219 [1ee95];

. ISO/IEC12207 [I5095]
. The CMM;i® [Sei02];
. SWEBOK [4br01]

The revised SM™" model has also taken inputs from, and makes references to, other capability
maturity models and best practices publications that consider a variety of software
maintenance-related topics:

* Camélia Capability Maturity Model [Cam94];

* Model to improve maintenance of software [Zir95].

e CobIT [Cob00];

* Cm3-Corrective Maintenance Model [Kaj0!la];
* Cm3-Maintainer’s Education Model [Kaj01b];
e IT Service CMM [Nie02];

This list was used to survey 35 software maintenance specialists and ask them if this set of
document is complete and well suited to represent the software maintenance knowledge area.
Many of the respondents supplied us with the following additional requirements:

» ITIL Service Supportt [/ti01a];

e ITIL Service Delivery [1i01b];

* Malcolm-Baldrige [Mal04];

e 15090003:2004 [Is004]

* Process evaluation model standard ISO/IEC TR 15504 (SPICE) [Is098a];

3.1 CMM® and CMMi® models limitations

There is still a strong view that there is no need for a software maintenance-specific capability
maturity model because the CMMi® claims to be addressing this topic in enough detail. This
article confirms that some maintenance processes are unique to maintainers and are not part of
the software development function (see table III). This means that the SEI currently views
software maintenance as a project which it is not the case for small enhancements. When these
unique maintenance processes are compared to the CMMi“ model content, it can be observed
that the CMMi® model, being highly centered on the software development, does not explicitly
address these topics, nor, with its primary focus on project management, does it explicitly
address the issues specific to the software maintenance function [Zit95, Apr03]. For example, in
the CMMi °:

* The concept of maintenance maturity is not recognized or addressed;

* There is no sufficient inclusion of maintenance specific practices as process improvement
mechanisms;

* Maintenance-specific issues are not adequately addressed;

* Rejuvenating-related plans such as need for re-documentation, re-engineering, reverse
engineering, software migration or retirement are not satisfactorily addressed.

This was also observed in the previous version of the model, the CMM, in 1995 [Zit95] and

still absent from the new CMMIi® version, since it maintains a developer’s view of the software

production process.

25

Version 1.6

4 RESEARCH QUESTIONS

This article investigates the following research questions:

a.

b.

What are the processes and activities as well as the unique activities of software
maintenance?

Software maintenance refers to the software development standards. Can the standards and
activities that are shared be identified clearly?

Are the unique processes of software maintenance well reflected in the current international
standards?

Is there a maintenance-specific capability maturity model that covers the entire set of
software maintenance specific processes?

What would be the proposed architecture of a maintenance-specific capability maturity
model that could address the entire set of software maintenance unique activities?

Can we show examples of detailed practices of such a model?

26

Version 1.6

5

RESEARCH METHODOLOGY

This section presents an overview of the research methodology selected to address the research
questions described. The research methodology is composed of four distinct stages (see table
VII): Definition, Planning, Development and Validation.

1- The definition stage was composed of the following activities:

2.

* The selection of a dissertation topic which has the potential for the award of a PhD;

* The successful admission in the PhD program;

* The attendance and participation in the program courses;

* The successful completion of the PhD examination on the topic of software
maintenance and software engineering capability maturity models.

The planning stage of this dissertation project outlines the methodological approach of the

research activities as well as the timeline for completion. Initial proposal of the subject as
well as two literature review reports [Apr02a, Apr02b] were presented to the ETS during on
10-11-2002 and 30-12-2002. A first plan was presented to Dr. Abran of ETS on January
192004 [].

The development and operation stage of this project consisted in an extensive inventory of
software maintenance activities (see appendix 2) followed by successive mappings of the
many source documents. Mappings consist of taking detailed source documents one by one
and allocate each practice into the key process areas and roadmaps of each maturity levels
of the new model. This activity led to the definition of the architecture of the SM™" model
which is a software maintenance-specific capability maturity model. This was followed by
a number of validation activities that have been carried out to conduct an initial validation
of the model concepts including a number of publications made to software engineering
conferences and journals. In such a concept research activity it is desirable to illustrate how
the new maintenance-specific capability maturity model can be used to explain and
understand the current maturity level and potential improvement paths. To be exhaustive
this would require numerous field trials of the proposed model. For this research to be
achievable in a reasonable time only initial validation of the model has been planned.

Initial validation was performed in an industrial trial under the sponsorship of the Bahrain
Telecommunications IS Planning Director. During the years 2001-02 the model was used
in four process appraisals of small maintenance units (6 to 8 individuals) of this
organization. Results rated three of the maintenance units as Level 1 and one as Level 2.
Following this trial, a number of maintenance specialists and managers were asked how
they perceived the assessment process, the reference model, and the assessment results. The
results identified the need to include software maintenance practices from the quality
perspective, such as Malcolm Baldrige, ISO9000 and the Information Technology
Infrastructure Library best practices guidelines [l#i01, Iti01b]. The SM™" assessments
proved useful for the Bahrain Telecommunications Company where improvement activities
were immediately initiated in the areas of product measurement [Apr00] and SLAs
[Apr01]. Other validation activities comes from the reviews and acceptance by peers of
ISO/JTC1, SWEBOK and many other conferences and journals of the concepts presented
in the new model.

4- Refer to section 8 of this article for the interpretation of the contribution of this research.

27

Version 1.6

Table VII

Methodological approach of the research project

Stage 1: Definition

Motivation Objective Proposal Research Users
Improve software Support software Develop a capability * Software maintenance
maintenance activities in the | maintenance maturity model specific managers;
industry. management and to software e Software engineers

personnel maintenance. specialized in software
improvement efforts. improvement;
* Researchers in software
engineering.
Stage 2: Planning
Planning Activities of the project Inputs Outputs

Initial investigation:

1- Software maintenance litterature
review and inventory of the detailed
practices of software maintenance.

2- Capability Models literature review
and inventory of current CMM
proposals.

3- High level schedule and course list

* Software maintenance
bibliographic chain

* Software engineering
capability maturity models
bibliographic chain

(books, monographs, reports,
publications, periodicals, work-
in progress, internet, ect)

One technical report covering the
state of the art in those two areas
of software engineering [4pr03a];
First inventory of software
maintenance processes, activities
and practices (see annex A);
Initial mapping of software
maintenance practices to CMMi
domains architecture.

Stage 3: Development and Operation

Preparation

Execution

Analysis

1- Inventory completion .

2- Sucessive mappings of the source
documents

3- Design of the Model Architecture
and content

Study of the numerous
sources to be used to
develop a software
maintenance-specific
capability maturity
model architecture
Develop a mapping process
to build the content of the
maintenance-specific
capability maturity
model

Establish the model
document table of contents
Map the detailed practices
of the source documents to
develop a first verion of the
maintenance-specific
capability maturity
model

* High-level architecture of the

software maintenance-specific
capability maturity model
composed of domains, key
process areas and roadmaps.

* Software maintenance-specific

capability maturity model table of
contents

Fisrt two chapters of the model

document:

1) Part 1 of the model presents an
overview of the maturity model
including its objectives and
advantages;

2) Part II of the model describes the
model architecture, its scope and
maturity levels.

28

Version 1.6

4-Model validation * Use with experts and * Use of the model in 3 process
software maintenance assessments
organisations * Ask opinion of 35 software
* Journals and conferences maintenance professsionnals

concerning the model
* Publications in refereed
journals and conferences

5- Contribution to the international e Use of the model to submit
lnfrqstruc.ture on Software enhancements to the SWEBOK
Engineering project

e Use of the model to submit
enhancements to the ISO/JTC1
SC7 committe which is
reviewing the ISO14764
Software Maintenance
International Standard.

Stage 4: Interpretation

Interpretation Context Extrapolation of results Futur Work

* This model is an important e A number of * Publication of the model content
contribution to the concepts, companies and (french edition)
processes and practices of University ~ research * Development of evaluation tools
software maintenance in the laboratories have made (ex : questionnaire, assessment
context of software process requests to participate tool);
improvement. in this ongoing * Traceability tables to the source

research project. document practices;

* Training material for industry
assessment team training;

* Publication of the model content
(english edition);

* Proposal to use the results of this
research in ISO JTCI1/SC7
standards committees.

29

Version 1.6

6 SM"™ INITIAL MODEL AND ARCHITECTURE

6.1 Identification of process domains and key process areas for software maintenance

Considering the findings of the previous section of this article, the need to develop a software
maintenance-specific capability maturity model was now clearer. Then, how to come up with
the SM™" model high-level architecture?

After doing the successive inventory of detailed practices (see annex A & B) four process
domains were identify to closely match the CMMi architecture (see figure 7).

. . 4 Soft int
CMMi 4 Process Domains Software main enance
Process Domains
Process Management Process Management
Project Management Request Management
Engineering Evolution Engineering
Support to
t . . .
Suppor Evolution Engineering

Figure 7: Process domains of software maintenance

A few changes are made when compared to the CMMi. This is intentional. The new model
should complement and respect the overall architecture of the CMM.i. This is required because
most process improvement managers are already familiar with the CMMi and will want
consistency in terms of terminology across the models. The most important difference is
located in the request management that replaces project management. The reasoning behind
this change is that software projects structure and management techniques are not used in
maintenance (effort of 5 days or less) but mostly used by development. Project management is
necessary for larger initiatives like large maintenance projects. The maintenance projects
(which have a project structure and large effort) use the CMMi as it is geared towards project
management while SM™™ is not.

The next step was to clarify that the engineering processes are adapted for software
maintenance work. The term evolution engineering is used for this. The last modification
concerns the clarification that support processes will be designed to support the evolution

30

Version 1.6

engineering processes. As a design step the coverage with the processes identified by the
ISO/IEC 12207 [Is0o95] and ISO 14764 [Iso98a] international standards (see figure 8) is
assessed.

4 Domaines des processus

. 1SO 12207 1SO 14764
de la maintenance

5.1 Acquisition
5.2 Provision
Evolution Engineering 5.3 Development
5.4 Operation
5.5 Maintenance

5.5.2 Problem and Modification
Analysis
5.5.3 Change Implementation

\

6.1 Documentation
6.2 Configuration Mahagement
6.3 Quality Assurance

Support to 6.4 Verification .
Evolution Engineering 6.5 Validation 3:3:4 Review and Acceptance
6.6 Joint Reviews
6.7 Audit

6.8 Problem Resolution

-

Process Management 7.1 Management 5.5.1 Process Implementation
7.2 Infrastructure 7.2 Infrastructure
7.3 Improvement 7.3 Improvement

Request Management 7.4 Training 7.4 Training

5.5.5 Migration

5.5.6 Retirement

\
Figure 8: Mapping of the topics of key maintenance standards

This figure shows the mapping of the standards software maintenance processes and what is
likely to be included in each one of the domains. The model architecture will need to identify
where other primary processes will be referenced, how the support processes of 12207 are
likely to be used by the maintainer and what should be contained in process and request
management to fully cover the standards.

This last mapping as well as the detailed one presented in annexes A and B has led to the
definition of software maintenance key process areas of the proposed capability maturity
model.

The first step taken is to re-order the processes to align to the CMMi model: a) process; b)
request management; c¢) evolution engineering and d) support to evolution engineering. The
next step was to make an inventory of activities of the CMMIi and use its terminology to ensure
the models complement each other. The model is complemented using, for each process
domain, the key process areas discovered in each of the models is identified in bold in table
VI. These key process areas ensure a good mapping to the source documents.

31

Version 1.6

The CMMi process management has 5 key process areas a) organizational process focus; b)
organizational process definition; c) organizational training; d) organizational process
performance; and e) innovation and organizational deployment.

These areas can very well be used as-is in a software maintenance context. The content of the
practices would be adapted to the specific software maintenance context but the key process
areas would remain with the same names and meanings.

Decisions are required concerning the request management key process area. This is a new area
and its components need to be defined. The CMMIi had eight key process areas for project
management. Since there is no project management in small software maintenance there is a
need to look into the CMMi KPA’s and see if some apply to software maintenance. The main
differences are between request management and project management:

a. The planning, control and follow-up aspects could be used in tracking maintenance
requests;

b. The contract, SLA’s and supplier management appear in Niessik [Nie02], Camélia
[Cam94] and Zitouni [Ziz95] and can be useful to maintainers;

c. The project management concepts are not useful and will be eliminated from the model.
Instead the problem management concepts are intriduced and used;

d. Last, the quantitative management KPA is kept to complement the control and follow-
up of maintenance requests.

4 Process domains

. Key Process Areas of Software Maintenance
of software maintenance

1- Maintenance Process Focus

2- Maintenance Process/Service definition
Process Management 3- Maintenance Training

4- Maintenance Process Performance

5- Maintenance Innovation and deployment

1- Event Management
2- Maintenance Planning

Maintenance Request . .
qu 3- Monitoring & Control of maintenance requests

Management 4- SLA & Supplier Agreement Management
5- Quantitative Maintenance Management
1- Transition
. 2- Operationnal Support
Eiv?llllétéfi?l 3- Evolution & Correction of software
g J 4- Verification and Validation
S e 1- Configuration Management
El‘l/zlljoﬁmo 2- Process and Product Quality Assurance
ol 3- Measurement, Decision and Causal Analysis
Engineering

4- Reingineering/Reverse Engineering

Figure 9: DOMAINS AND KEY PROCESS AREAS OF SOFTWARE MAINTENANCE

Decisions are also required in the Evolution engineering process domain. The CMMi describes
software development KPA’sin this process domain: a) requirements definition; b)
management of requirements c¢) technical solution; d) product integration; and e) verification

32

Version 1.6

and validation. In this domain, the ISO12207 standard helps us to take the decision of using
some of the developers processes for maintenance. In most areas the content of the CMMi
practices will need to be adapted and simplified to reflect small maintenance engineering
activities:

Requirements definition and management will be regrouped under one topic;

Product integration is kept with reduced content;

Technical Solution is kept with a reduced content;

Verification and validation moves from a support process to an engineering process in
alignment with the CMMj;

e. Transition Management concepts are introduced as an engineering activity of software
maintenance.

aoe o

Finally some decisions are taken in the support domain. The CMMi had six KPA’s: a)
configuration management; b) quality assurance; c) analysis and measurement; d)
organizational integration; e) problem resolution and decision analysis; and f) causal analysis.
It is important to try and keep the alignment with the CMMi here as well. Reengineering,
reverse engineering and reuse techniques to support maintenance engineering and used and
defined.

6.2 The Model Construction

Once the architecture of the model was set the remainder of the SM™"™ was built by integrating
practices from the key reference documents relevant to software maintenance according to the
following 9 steps:

Step 1 - Practices are taken from the mappings shown in annex A & B and the high level
architecture (presented in figure 9);

Step 2 - A mapping is performed with the CMMi version 1.1 [Sei02]. CMMIi practices may be
slightly modified to accommodate this mapping and the particular use in a small enhancement
context of software maintenance;

Step 3 - ISO 9001:2000 (ISO 90003:2004 interpretation guide [I/so04]). These practices are
reviewed one by one, added and integrated to the model,

Step 4 - Other capability maturity model practices are then mapped to specific areas,
depending on their coverage of the software maintenance domain (Cnr’-corrective maintenance
of Kajko-Mattsson [Kaj0la, Kajoib], IT service CMM [Nie02], the Camélia capability maturity
model [Cam94] and finally the Zitouni model [Zit95];);

Step 5 - A reference is made to the IT infrastructure library individual recommendations for
Service Delivery and Service Support [1#i01a, Iti01b];

Step 6 — A lighter mapping process is done with relevant portions of the Malcolm Baldrige
examination criteria [Mal04];

Step 7 — Then the CobIT [Cob00] maintenance relevant practices are mapped where they apply
to software maintenance activities;

Step 8 - References to relevant ISO/IEC and IEEE standards are added (ISO/IEC12207,
ISO/TIEC14764 and IEEE 1219);

Step 9 — Finally the author’s experience and detailed recommendations are added to provide
coverage of additional areas important to the software maintenance literature. These are based
on professional benchmarks generated through the consensus of subject matter experts and
validated in one peer-review process.

33

Version 1.6

When practices are referenced/used from the CMMi, they go through the transformation
process used by the Camélia project, if applicable:

1) Either removal of references to “development” or replacement of them by “maintenance”
generalizes each practice;

2) References to “group” or to other specific organizational units are replaced by
“organization”;

3) Allusions to specific documents are replaced by examples pertinent to the maintainers.

The same types of transformations were applied when extracting practices from other standards
or best practice guides. Assignment to a given level is based on the general guidelines of table
IX. Furthermore:

* Practices considered fundamental to the successful conclusion of a maintenance practice
are assigned to Level 2;

* Practices considered to be organization-wide in scope or fundamental to the continuous
improvement of the software maintenance process are assigned to Level 3;

* Practices dealing with measurement or characterizing advanced process capability maturity
(e.g. change management, integration of defect prevention, statistical process control and
advanced metrics) are generally assigned to Level 4;

* Level 5 practices typically deal with advancing technology as it applies to process
evolution, continuous improvement and strategic utilization of organization repositories.

6.3 The Resulting Model

The SM™" is presented in Table VIII in more detail and includes 4 Process Domains, 18 KPAs,
74 Facets and 443 Practices. While some KPAs are unique to maintenance, some other were
derived from the CMMi® and other models and modified slightly to map more closely to daily
maintenance characteristics.

Table VIII

SM™™ Model Content

34

Process Domain

Key Process Area
Maintenance Process Focus

Maintenance Process/Service
Definition

Maintenance Training

Maintenance Process
Performance

Maintenance Innovation and
Deployment

Event and Service Request
Management

Maintenance Planning

Monitoring and Control of
Service Requests and Events

SLAs and Supplier
Agreements

Roadmap
Responsibility and Communications
Information gathering
Findings
Action plan
Documentation and
Standardization of
processes/services
Process/Service adaptation
Communication processes /services
Repository of processes/services
Requirements, plans, and resources
Personal training
Initial training of newcomers
Projects training on transition
User training
Definition of maintenance
measures
Identification of baselines
Quantitative management
Prediction models
Research of innovations
Analysis of improvement proposals
Piloting selected improvement
proposals
Deployment of improvements
Benefit measurement of
improvements
Communications and contact
structure
Management of events and service
requests
Maintenance Planning (1 to 3 yrs)
Project transition planning
Disaster Recovery planning
Capacity planning
Versions and upgrade planning
Impact analysis
Follow up on planned and
approved activities
Review and analyze progress
Urgent changes and corrective
measures
Account Management of users
Establish SLAs and contracts
Execute services in SLAs and
contracts
Report, explain and bill services

35

Process Domain

Key Process Area
Software Transition

Operational Support

Software Evolution and
Correction

Software Verification and
Validation

Software Configuration
Management

Process and Product Quality
Assurance

Measurement and Analysis of
Maintenance

Causal Analysis and Problem
Resolution

Software Rejuvenation,
Migration, and Retirement

Roadmap
Developer and owner involvement
and communications
Transition process surveillance and
management
Training and knowledge transfer
surveillance
Transition preparation
Participation in system and
acceptance tests
Production software monitoring
Support outside normal hours
Business rules and functionality
support
Ad hoc requests/reports/services
Detailed design
Construction (programming)
Testing (unit, integration,
regression)
Documentation
Reviews
Acceptance tests
Move to production
Change Management
Baseline configuration
Reservation, follow-up, and control
Objective evaluation
Identify and document non-
conformances
Communicate non-conformances
Follow up on
corrections/adjustments
Define measurement program
Collect and analyze measurement
data
Repository of maintenance
measures
Communicate measurement
analysis
Investigate defects and defaults
Identify causes
Analyze causes
Propose solutions
Redocumentation of software
Restructuring of software
Reverse engineering of software
Reengineering of software
Software migration
Software retirement

36

6.4 The Model’s Purpose

SM™ was designed as a customer-focused benchmark for either:

* Auditing the software maintenance capability of a software maintenance service
supplier or outsourcer; or
* Internal software maintenance organizations.

The SM™" has been developed from a customer perspective, as experienced in a competitive,
commercial environment. The ultimate objective of improvement programs initiated as a result
of an SM™" assessment is increased customer (and shareholder) satisfaction, rather than rigid
conformance to the standards referenced by this document.

A higher capability, in the SM™" context, means, that customer organizations are:

a) Reaching the target service levels and delivering on customer priorities;

b) Implementation of the best practices available to software maintainers;

c) Obtaining transparent software maintenance services and incurring costs that are
competitive;

d) The shortest possible software maintenance service lead times.

For a maintenance organization, achieving a higher capability can result in:

a) Lower maintenance and support costs;

b) Shorter cycle time and intervals;

c) Increased ability to achieve service levels; and

d) Increasing ability to meet quantifiable quality objectives at all stages of the maintenance
process and services.

6.5 The Model Scope

Models are often an abstract representation of reality. For a better mapping with the
maintainers’ reality, the SM™" must include many of the essential perspectives of the software
maintainer, and as much as possible of the maintainer’s practical work context (see Figure 3).

These types of models are not intended to describe specific techniques or all the technologies
used by maintainers. The decisions pertaining to the selection of certain techniques or
technologies are specific to each organization.

Users of the model must instantiate the generic model in the context of their user organization.
To achieve this, professional judgment is required to evaluate how an organization benchmarks
against the generic model.

6.6 The SM™" Foundation

The SM™™ is based on the Software Engineering Institute (SEI) Capability Maturity Model
Integration for Software Engineering (CMMIi®), version 1.1 [Sei01] and Camélia [Cam94]. The
SM™ must be viewed as a complement to the CMMi®, especially for the processes that are
common to both developers and maintainers, for example: a) process definition; b)
development; c) testing; d) configuration management; and e) QA practices.

37

Version 1.6

The architecture of the SM™” differs slightly from that of the CMMi® version 1.1. The most
significant differences are:

1. A facet category to further define the Key Process Areas,

2. Detailed references to papers and examples on how to implement the practice.

The SM™ incorporates additional practices from the following topics:

1. Event and Service Request Management;

2. Maintenance Planning activities specific to maintainers (version, SLA, impact
analysis);

Service Level Agreement;

Software Transition;

Operational Support;

Problem Resolution Process with a Help Desk;

Software Rejuvenation, Conversion and Retirement.

Nownhkw

6.7 The SM™" Architecture

The CMMi® has recently adopted the continuous representation that has been successfully used
in the past by other models such as: Bootstrap [Boo91], Camélia [Cam94] and ISO/IEC TR15504
(Spice) [Is0o98a]. This model uses a continuous representation, as it helps to: a) conform to
Spice recommendations; b) obtain a more granular rating for each facet and KPA; and c)
identify a specific practice across maturity levels and identify its path from level zero (absent)
to a higher level of capability maturity.

The SM™ is also based on the concept of a facet. A facet is a set of related practices which
focuses on an organizational area or need, or a specific element within the software
maintenance process. Each facet represents a significant capability for a software maintenance
organization. Within a given facet, the level of a practice is based on its respective degree of
capability maturity. The most fundamental practices are located at a lower level, whereas the
most advanced ones are located at a higher level. An organization will mature through the
facet. Lower-level practices must be implemented and sustained for higher-level practices to
achieve maximum effectiveness. Each of the 6 capability maturity levels can be characterized,
in the SM™" model, as follows (Figure 4):

Level Level Name Risk Interpretation
0 Incomplete Highest No sense of process
1 Performed Very High ad hoc maintenance process
2 Managed High basic request-based process
3 Established Medium state-of-the-art maintenance process
4 Predictable Low generally difficult to achieve now
5 Optimizing Very Low technologically challenging to attain

Figure 10: SM™™ Capability Maturity Levels.

The capability maturity level definitions and the corresponding generic process attributes are
described for each capability maturity level of the SM™ and presented in Table IX. [4pr04]
describes how, over a two-year period, participating organizations contributed to the mapping
of each relevant practice to a capability maturity level in the SM™" model.

Table IX
Process characteristics by process level

38

Level- Leve
Name

Capability Level Definition

Process Generic Attributes

0- Incomplete
Process

1- Performed
Process

2- Managed
Process

The process is not being
executed by the
organization, or there is no
evidence that the process
exists. Level 0 implies that
the activity is not being
performed by the
organization

Improvised: Recognition

that the practice is
executed informally.
Level 1 implies that

something is being done
or that the activity is close
to the intention of the
practice presented in the
model. The execution of
the practice depends on
the knowledge and
presence of key
individuals. The practice
is typically ad hoc and not
documented. It is local
and would not necessarily
appear in another software
maintenance group. There
is no evidence that the
attributes of the processes
are systematically
executed or that the
activities are repeatable.
Awareness of the practice,
which is deployed or a
similar practice is
performed. Level 2 implies
that the practices suggested
by the model are deployed
through some of the
software maintenance
groups. What characterizes
this level is the local and
intuitive aspects of the
activities or processes,
which makes it difficult to
harmonize them across all
the software maintenance
organizations.

b)

d)

e)

g)

There is no evidence that the process exists;

Upper management is not aware of the impact of not having
this activity or process in the organization;

The activity or process does not meet the goals stated by the
model,;

There is no knowledge or understanding of the activity or
process;

Discussions concerning the activity or process take place,
but no evidence can be found that the activity or process
exists;

Historical records show that the activity has been
performed, but it is not being done at this time.

The organization is aware of the need to conduct this
activity or process;

An individual conducts the activity or process and the
procedures are not documented (note: typically, staff must
wait until this individual arrives on-site to learn more about
the process; when this individual is not on-site, the activity
or process cannot be executed fully);

A few of the software maintainers execute this activity or
process;

Precise inputs and outputs of the activity or process cannot
be recognized;

There is no measure of the activity or process;

The deliverables (outputs) are not used, not easily usable,
and not kept up to date, and their impact is minimal;

Who performs the activity or the qualifications/training
required cannot be identified.

The process is documented and followed locally;

Training or support is provided locally;

The goals of the process and activities are known;

Inputs to the process are defined;

Deliverables supporting the goals of the activity or process
are produced;

Qualitative measures of some attributes are performed;
Individuals’ names and qualifications are often described.

39

Version 1.6

3-
Established
Process

4-Predictabl
Process

5_
Optimizing
Process

The practice or process is
understood and executed

according to an
organizationally deployed
and documented

procedure. Level 3 implies
that the practice or process
is defined and
communicated, and that the
employees have received
proper training. Qualitative
characteristics ~ of the
practice or process that are
predictable are expected.
The practice is formally
executed and quantitatively
managed according to
specified goals within
established boundaries.
There is an important
distinction with respect to
Level 4, in terms of the
predictability of the results
of a practice or process.
The expression
‘quantitatively managed’ is
used when a process or
practice is controlled using
a statistical control or
similar technique well
suited to controlling the
execution of the process
and its most important
activities. The organization
predicts the performance
and controls the process.
The practice or process has
quantified improvement
goals and is continually
improved. Level 5 implies
continuous improvement.
Quantitative improvement
targets are established and
reviewed to adapt to
changes in the business
objectives. These
objectives are used as key
criteria for improvements.
Impacts of improvements
are measured and assessed
against the quantified
improvement goals. Each
key process of software
maintenance has
improvement targets.

g)
h)

)

e)

g)
h)

The practice or process suggested by the model is executed;
The same practice is used across software maintenance
groups;

Basic measures have been defined and are collected,
verified, and reported;

Employees have the knowledge to execute the practice or
process (i.e. implying that the roles and responsibilities of
individuals are defined);

The required resources have been assigned and managed to
achieve the identified goals of the process;

Techniques, templates, data repository, and infrastructures
are available and used to support the process;

The practice or process is always used by the employees;
Key activities of the process are measured and controlled.
Intermediate products of a process are formally reviewed;
Conformance of the process has been assessed based on a
documented procedure;

Records of reviews and audits are kept and available;
Open action items from reviews and audits are monitored
until closure;

Resources and infrastructures used by the process are
planned, qualified, assigned, controlled, and managed;
The process is independently reviewed or certified;

Key activities of the process have historical data and an
outcome that is measurable and controlled;

Key activities have a numerical goal that is set and is
attainable;

Key activities have quantitative measures that are controlled
in order to attain the goals;

Deviations are analyzed to make decisions to adjust or
correct the causes of the deviation.

Major improvements to process and practices can be
reviewed;

Innovations to technologies and processes are planned and
have measurable targets;

The organization is aware of and deploys the best practices
of the industry;

There are proactive activities for the identification activities
of process weaknesses;

A key objective of the organization is defect prevention;
Advanced techniques and technologies are deployed and in
use;

Cost/benefit studies are carried out for all innovations and
major improvements;

Activities of reuse of human resources knowledge are
performed,;

Causes of failure and defects (on overall activities/processes
and technologies) are studied and eliminated.

40

Version 1.6

7 EXAMPLES OF THE MODEL DETAILS
This section presents the details of two of the key process areas of the model.

7.1 The maintenance performance management process key area

Both the goals and target of the Performance Management Process, as well as the detailed practices are
presented here.

7.1.1 Goals and objectives

Process performance management demands that the processes that have the greatest impact on
the quality and process performance of the maintenance organization be identified first,
followed by a definition of the measures and the establishment of a baseline (a set of
references).

The goals of process performance management are:

* To document the rationale for the selection of the most important performance factors
impacting processes and their activities, and which are key to achieving the quality targets;

* To measure and communicate the targets and quantitative results of the service levels to both
customers and management.

The objectives of process performance management are:

* To identify the processes and the key activities of the software maintenance organization
that impact performance, and which are to be used for analysis;

* To establish a baseline consisting of the key software maintenance processes and activities;

* To identify and establish the measures of the performance of the selected
processes/activities;

e To establish models for predicting the performance of the software maintenance
processes/activities.

This performance management process is not complete in and of itself. It requires practices
referenced in other process areas of the SM-""" model for it to be fully operational. The first link
is to the facet Quantitative Management — (see table VIII), which provides more information on
how to use a reference point (baseline) of the performance of processes and of its models. The
second link is to Measurement and Analysis of Maintenance — (see table VIII), to obtain more
information on how to specify a measure, collect the data and conduct an analysis of the data.

Once the maintenance performance management process has been successfully implemented, it
will be observed that:

* The measures of quality and of process performance have been established for the
production software, intermediary products and software processes;

e The measures are harmonized and relate to the normalized processes;

* The data collection activities are performed at the operational level and the data are stored in
the corporate repository;

¢ The baseline has been created, validated and documented.

41

Version 1.6

7.1.2 Detailed practices
Only detailed practices of capability maturity levels from 0 to 3 are presented next.
7.1.3 Level 0 and 1 practices

The individual practices are assigned to one of five levels of capability maturity. At level 0,
there is only one practice;

Pro0.1 The software maintenance organization does not conduct process performance
measurement on its processes.

These organizations just perform the daily work of software maintenance.
At level 1, there are two practices that are presented below:

Prol.1 Individuals and employees interested in this domain implement Individual
initiatives of process or product measurement.

In these software maintenance organizations, the software maintenance managers and
programmers develop process and product measurements of their own initiative. These
definitions are personal and are rarely: a) shared with other organizations; or b) used to better
manage or improve either process or product. They are used typically to explain, internally or to
a user, an individual event or situation that occurred.

Prol.2 Some qualitative process and product measures are collected by the software
maintenance organization.

The employees of the software maintenance organization have established relationships with
their end user counterparts and obtained qualitative performance measures on how they are
performing. These comments and observations typically appear in conversations and e-mails.

7.1.4 Level 2 practices

At this capability maturity level, process performance addresses basic considerations and
typically differs across the various units which conduct software maintenance in the
organization. Qualitative information is normally collected by the manager and his employees
and reported in weekly and monthly meetings. When quality and performance targets are
established, this information is used for local, short-term improvement and is based on
individual priorities.

Pro2.1: Some processes and key products of software maintenance have identified
measures.

At this capability maturity level, the software maintenance organization should have identified a
basic set of process measures. These measures are collected and are typically used in: a) the

42

Version 1.6

weekly management meeting; and b) communications with customers. Typical measures found
at this level are based on what could be called measures for the management of queues [45r01],
which means that process performance has not yet been addressed fully or completely
understood. These measures are for example:

* The number of outstanding requests;

* The average waiting time before being serviced;

* The estimated number of days in the queue;

e The number of requests completed;

* The number of requests closed for this period, opened during this period and still pending;
* A comparison of estimates versus actual costs.

Pro2.2 Some quality and performance targets exist in the software maintenance
organization.

At this level of capability maturity the software maintenance organization must identify basic
quality and performance targets. Setting quality targets requires that the current performance is
looked at and that realistic goals are established. These targets are typically used in the weekly
management meeting and in the communications with customers. For example:

a) the availability percentage of all software under their responsibility , i.e. 98%;
b) the degree (%) of satisfaction of customers based on surveys;

c) the limit of available overtime hours of the maintenance staff; and

d) the average waiting time for a change request, by category, to be completed.

Pro2.3 The reference points (baselines), for the current measures are stored, used and
reviewed with the various stakeholders (customers, sponsors, program managers and
maintenance employees) for review, discussion and improvement.

At this capability maturity level, the current level of performance is measured and this data is
captured, stored and communicated to the many stakeholders. The objective is to establish and
communicate the current level of performance of the maintenance activities and production
software to all concerned. At this capability maturity level, this data is typically accumulated in
a local, and sometimes personal, repository and is typically used by the software maintenance
manager to explain and analyse specific situations and events. The objective of this practice is
the sharing and acceptance of an agreed-upon, common and available reference (baseline),
which describe the current performance levels of the maintainer.

7.1.5 Level 3 Practices

At this capability maturity level, the definition of the measures becomes more precise, and
available, and is now standardized among all software maintenance units of the organization.
The process performance definition activity must be considered as a process improvement
activity to ensure alignment with the overall quality objectives of the organization. The key
activities of the standardized software maintenance processes are identified as candidates to be
controlled and measured. Quality and performance attributes of operational software are also
defined. Measure targets and reference points (baselines) are established and maintained, and a
rationale describes its variation within established upper and lower boundaries. The definition of

43

Version 1.6

each measure is documented, and the data collection and data validation activities required are
identified. Customers should perceive a harmonization and openness of the maintainer’s
activities, services and measures. The software maintenance personnel are trained in process
performance measurement activities. The measurement data is collected, validated and
integrated into the corporate measurement repository. Maintenance personnel collect
measurement data, daily, as part of their operational activities.

Pro3.1 The software maintenance measurement programme is defined and treated as a
project. Special attention is given to risk management in order to minimize the risk of
failure of this programme.

To achieve this best practice, a measurement programme must be set up (with multiple
controlled implementation steps or stages) and its risk managed. It is especially important to
manage the measure definition, collection and verification activities, as is done at the
operational level. Risk management can be divided into three steps: 1) definition of a risk
management strategy; 2) identification and analysis of the risks; and 3) a check of the identified
risks, including the implementation of mitigation, if necessary [Sei02, PA148.N104]. The
measurement can be also integrated with other initiatives (operations or development).

Pro3.2 The software maintenance organization identifies its key processes and their
activities, and defines quality and performance measures.

This best practice requires that key activities of the software maintenance processes be identified
and investigated to understand which ones contribute the most to quality and performance.
[Sei02, PA164.1G101.SP101]. The maintenance process has been deployed across software
maintenance business units. At this capability maturity level, the measurement activity must be
coordinated across all software maintenance units of the organization. It is also necessary to
align this activity with other software engineering measurement initiatives to ensure a cohesive
approach for the whole Software Engineering organization. Ideally, all the measurement data
should be integrated in one repository. Harmonization of measures in an organization is key
[Sei02, PA164.1G101.SP102.SubP103]. The definition of the measures that will be part of the
performance analyses of software maintenance must be established and maintained [Sei02,
PA164.1G101.5P102]. The process measures are determined according to their perceived value for
the maintenance organization and their customers. These measures should cover the whole
software life cycle, including maintenance [Iso04, 6.4.2, Cam94, 3.4.3]. Measures on which
standardized techniques or processes can be used are defined and set up in accordance with a
formal procedure [Cam94, 1.5.3.5]. An organization—-wide, approved and funded measurement
programme supports the measurement activities and the analysis of these measures [Is004, 6.4]
[Cam94, 3.4.3.1]. The standardized software maintenance processes are used to select where data
are to be collected and what analysis is required [Cam94, 3.4.3.2].

Pro3.3 The software maintenance organization identifies its key products and production
software, and defines their quality and performance measures.

‘It is not practically possible to measure all sub-characteristics internally or externally for all

parts of a large software product. Similarly it is not usually practical to measure quality in use
for all possible user-task scenarios. Resources for evaluation need to be allocated between the

44

Version 1.6

different types of measurement dependent on the business objectives and the nature of the
product and maintenance processes.’ [Iso04] The maintainer must identify which perspective of
the products to measure, i.e. those that have a significant impact on the customer and on the
quality of the operational software. To achieve this best practice, the maintainer must identify
key product measures and document why measuring them is important. In order to do this, all
the software maintenance departments must share the same measures, so that an integrated
approach to service level management and reporting will begin to emerge.

The intermediary products (for example: technical documentation, software testing activities)
are rarely presented to the customer, but are key to software quality. The concept of internal
versus external software measures (see Figure 10) is introduced here. Achievement of software
product quality is based on the execution of the operational and supporting processes in software
product quality that can be measured internally (typically, by static measures on the code) or
externally (typically, by measuring the behavior of the source code when executed).

process software product effect of software
product

influences influences

internal external quality in

process

. i aity use
ualit quaity) | Qualty .- ,
quatty Teoends on\ Atributes 1epends o\ atributes attributes contexts
of use
process internal external quality in use
measures measures measures measures

Figure 11: ISO/IEC 9126 - Model of quality in the product life cycle

The objective is for the product to have the required effect in a particular context of use [Zs004].
The external measures are used to reflect the attributes of the quality of the software that are
apparent and important to customers. For example, availability measurement of the software is
done, as this is important to the customer. Other examples of such important external measures
are:

a) measures of, and follow-up on, delivery times of a specific request [Cam94, 3.4.3.5];

b) measures of software failure, which are often associated with the identification of which
software unit was involved in the failure [Cam94, 3.4.3.7].

Pro3.4 The software maintenance organization’s key processes, products and operational
software have quality and process performance targets.

In this best practice, the maintainer must set quality and performance targets, and these must be

established and maintained [Sei02, PA164.1G101.SP103]. The following attributes are necessary

[Sei02, PA164.1G101.SP103.N101]:

» Establishment of targets that take into account the business objectives;

» Establishment of targets that take into account previous performance of the activities and
operational software;

* Definition of productivity and process execution aspects in order to judge quality;

* Identification of the process limits (by inherent variability or natural limits) on key processes
or key maintenance products.

45

Version 1.6

Pro3.5 A measure of a key process, product or operational software for which the software
maintenance organization services has a validated reference point (baseline) which is used
in analysis, control and improvement follow-up.

The reference points (baselines) of the software maintenance measures must be documented and
include some level of detail [Sei02, PA164.1G101.SP104.N101]. For example, it will be necessary to
identify:

* The key activity of the process targeted by the measure;
* The sequence of measurement activities;
* How representative of the software maintenance work this measure is.

It is possible to have more than one reference point for the maintenance organization. These
different values can represent the performance of different organizational units of the maintainer
when they execute a process [Sei02, PA164.1G101.SP104.N102]. A number of measures, covering
maintainability and other key characteristics of products, are collected and used to manage and
improve the maintenance processes [Iso04, 6.4.1, Cam94, 3.4.3.4]. Slight adaptations of a
normalized process can lead to a reduction in the possibility for comparison of the various
organizational units. Some explanation of the adaptations and of the reference point values must
be documented to allow for such comparisons [Sei02, PA164.1G101.SP104.N103].

Pro3.6 Models of the software maintenance process performance are established.

Prediction models for software maintenance activities must be developed to achieve this best
practice. These models are typically used to estimate, or predict, the results of maintenance
processes based on historical and current data. An attempt is made, therefore, to predict the
future behaviour of the processes based on current data [Sei02, PA164.1G101.SP105. N101]. For
example [Sei02, PA164.1G101. SP105.N102]: The maintenance organization will be able to use these
models to estimate and predict the delivery of services, and of intermediary products and
software product versions. The organization can also attempt to evaluate the return on
investment of the process improvement activities. Maintenance employees can use the models
to estimate, analyse and forecast the effort and cycle times of different maintenance activities. It
will also be possible to attempt to forecast the overtime of employees and the availability of
software. In addition, the models can be used to help size a modification and to predict failure
rates based on the size of the modification [45r95]. However, it is important to collect enough
data to ensure the statistical validity of the analyses.

The use of the models will grow as their prediction capabilities improve and as the data
collected is managed. It will be possible, for example, to use them in situations like the
following [Sei02, PA164.1G101.SP105.N102]: Analysis of process or product data using a formal
procedure [Cam94 3.4.3.9, Iso04]. One should not, however, lose sight of the fact that the models
are best used with the key maintenance activities and products, which have a visible impact with
customers and stakeholders [Sei02, PA164.1G101.SP105. N103].

Pro3.7 Models of software performance are established.

Performance engineering models profiling the operational software under the maintainer’s
responsibility must be developed and used to achieve this best practice. These models are used

46

Version 1.6

to estimate, or predict, the operational performance of software using historical data. An
attempt will be made, therefore, to use these models to predict future behaviour using current
data [Sei02, PA164.1G101.SP105.N101].

More information can be found in the Performance Engineering maturity model [Sch99] in which

it is recommended that the following activities be considered at capability maturity level 3:

« The Performance Engineering process should be taken into account throughout the entire
software process, and all available Performance Engineering methods and tools be used
comprehensively with regard to existing performance risk.

« Performance-relevant product and resource metrics should be selected for Performance
Engineering use and standardized within the organization and these metrics be stored and
managed in appropriate database systems to guarantee a continuous flow of experiences.

« The performance requirements of the customer, which are defined in the system analysis
phase, should be used as success criteria in the final inspection test. Furthermore, they
should be arranged in service level agreements (SLA) with the provider of the information
system.

« An initial organizational structure for the entire PE process should be defined and
introduced step-by-step in level 3.

7.2 The Management of Service requests and events key process area

At the detailed level for each KPA, maintenance goals and key practices have been identified
based on the literature on software maintenance. This section of the article presents, as an
example, a detailed description of one of the 18 KPA of the SM™": 'Management of Service
Requests and Events'.

7.2.1 Overview

The management of service requests and events for a software maintainer combines a number of
important service-related processes.

These processes ensure that events, reported failures or modification requests and operational
support requests are identified, classified, prioritised and routed to ensure that the SLA is fully
met.

An event, if not identified and managed quickly, could prevent service level targets from being
met and lead to user complaints about: a) the slowness in processing of a specific request; or b)
unmet quality targets for an operational software (ex: availability or response time).

7.2.2 Objectives and goals
This KPA covers the requirement that users are made aware of the maintenance workload and
authorize and agree on maintenance priorities. Maintainers must also oversee software and

operational infrastructures as well as production software behavior (availability, performance,
reliability, stability as well as the status of the software and its infrastructure). When priorities

47

Version 1.6

change, maintainers must ensure that the maintenance workload will be reassigned quickly, if
necessary.

The goals of Management of Service Requests and Events are as follows:

* To proactively collect, and register all requests for services (customer-related, or internally
generated);

* To oversee the behavior of the software and its infrastructures during the last 24 hours, to
identify events that could lead to missing SLA targets;

* To develop a consensus on the priorities of service requests (in the queue or being
processed);

* To ensure that maintainers are working on the right (and agreed-upon) user priorities;

* To be flexible and have the ability to interrupt the work in progress based on new events or
changed priorities;

* To proactively communicate the status of the service, planned resolution times, and current
workload.

To ensure that the agreed-upon service levels are met, the objectives of Management of Service
Requests and Events are:

* to ensure that events and service requests are identified and registered daily;

* to determine the relative importance, within the current workload, of new events and service
requests; and

* to ensure that the workload is focused on approved priorities.

The maintainer must also communicate proactively about failures, and unavailability of software
(including its planned preventive maintenance activities).

Like performance management process, this process is not fully complete in and of itself. It
requires practices referenced in other process areas of the SM-"™ model for it to be fully
operational. As an example, linkages are required to: Impact Analysis, Service level Agreement,
Operational Support and Causal Analysis & Problem Resolution.

Once the Management of Service requests and events process has been successfully
implemented, it will be observed that:

* Maintenance work is centered on user priorities and SLAs;

* Interruptions of maintenance work are justified, and are authorized by users and SLAs;

* The maintenance organization meets its agreed- upon levels of services;

* Proactive operational software surveillance ensures rapid preventive action;

 Status reports, on failures and unavailability, are broadcast quickly and as often as required
until service restoration.

7.2.3 Detailed practices

The individual practices are assigned to one of five levels of capability maturity. Examples of
detailed practices follow for capability maturity levels 0 to 3.

48

Version 1.6

7.2.4 Level 0 and 1 practices
At level 0, there is only one practice:

Reql1.0.1 The software maintenance organization does not manage user requests or
software events.

Maintenance organizations operating at this capability maturity level perform the daily work of
software maintenance without being formally accountable for their activities and priorities to the
user community. At level 1, two practices are documented in the model:

Reql.1.1 Request and event management is managed informally.

Reql.1.2 An individual approach to managing user requests and events is based mainly on
personal relationships between a maintainer and a user.

The software maintenance organizations, which operate at this capability maturity level have
typically had informal contacts with some users and none with others. Records of requests or
events are not standardized. Service is given unevenly, reactively and based on individual
initiatives, knowledge and contacts. The maintenance service and workload are: a) not measured
and, b) not based on user priorities; and c¢) seldom publicized or shared with user organizations.

7.2.5 Level 2 practices

At level 2, the service requests are processed through a single point of contact. Requests are
registered, categorized and prioritised. Approved software modifications are scheduled to a
future release (or version). Some local effort of data collection emerges and can be used to
document maintenance costs and activities through a simple internal accounting procedure.

Req1.2.1: There is a unique point of contact to provide direct assistance to users.

At this capability maturity level, the software maintenance organization should have identified a
point of contact for each software service request, software and user.

Req1.2.2 A Problem Report (PR) or Modification request (MR) is registered and used as a
work order (also sometimes called a ticket) by the maintainer.

At level 2, the software maintenance organization maintains records of each request, and uses
them to manage the incoming workload.

Reql.2.3: Every request and event is analyzed, categorized, prioritized, and assigned an
initial effort estimate.

Maintainers classify the service requests and events according to standardized categories. Each
request is assessed to determine the effort required. Pfleeger [Pf107] adds that an impact analysis
is carried out, and, in each case, a decision as to how much of the standard maintenance process
will be followed based on the urgency and costs that can be billed to the customer.

49

Version 1.6

Reql.2.4: Approved modifications are assigned, tentatively, to a planned release (version)
of a software application.

Maintainers are starting to regroup changes and plan for releases and versions. Each request is
allocated to a planned release.

Req1.2.5: The service level measurement reports are used for invoicing maintenance
services.

At level 2, the maintainer uses the same processes and service-level reports for invoicing
maintenance services and budget justification.

Reql.2.6: A summary of maintenance cost data is presented. The invoice is based on a
limited number of key cost elements, those most important to the maintainer.

The maintainer must be in a position to report on all the service requests worked on during a
reporting period (e.g. monthly). ISO/IEC 14764, states that analyzing completed maintenance
work, by maintenance categories, helps in gaining a better understanding of maintenance costs.
7.2.6 Level 3 practices

For the sake of brevity, only the level 3 list of practices is presented here:

Req1.3.1: Various alternatives are available to users to obtain help concerning their software
applications and related services.

Req1.3.2: Users are kept up to date on the status of requests and events.

Req1.3.3: Proactive communications are established for reporting failures, as well as for
planned preventive maintenance activities which impact the user community.

Req1.3.4: A decision-making process is implemented to take action on a maintenance service
request (e.g. acceptance, further analysis required, discard it).

Req1.3.5: Failures and user requests, including modification requests, are registered (tickets)
and tracked in a repository of maintenance requests, in conformity with written and published

procedures.

Req1.3.6: Procedures on the registration, routing, and the closing of requests (tickets) in the
repository of maintenance requests, are published and updated.

Req1.3.7: The mandatory and optional data fields on the user request form are standardized.
Req1.3.8: Problem Reports (PR) document includes detailed data related to reported failures.

Req1.3.9: The request and event management process is linked to the maintenance improvement
process.

50

Version 1.6

Req1.3.10: Standardized management reports documenting requests and events are developed
and made available to all Software Engineering support groups and to users.

Req1.3.11: A process is implemented to decrease the waiting time of requests in the service
queue.

Req1.3.12: Data on actual versus planned maintenance costs are documented, as well as details
on the usage and the costs for all maintenance services (e.g. corrective, perfective, adaptive ...);

Req1.3.13: The invoice includes the detailed costs of all services, by software application.

51

Version 1.6

8 CONTRIBUTIONS OF THIS RESEARCH

Contribution to knowledge, in this study, is closely related to the research questions and
problems of software maintenance. This research applies the concept of capability maturity
model to the of software maintenance function. Based on the results:

1) It presents a comprehensive inventory of the maintenance processes and activities;

2) It identifies that the current representation of software maintenance in international standards
(ISO12207 and ISO14764) covers only partially the processes and activities of software
maintenance;

3) It confirms that there is no maturity model proposal that covers the entire set of processes and
activities of software maintenance; and

4) It proposes a more comprehensive model of the software maintenance function.

This research has also contributed to the enhancement of the SWEBOK chapter dedicated to
software maintenance. Many of the findings of this study have beeen submitted within the
Ironman review cycle of the SWEBOK project, and have been accepted by the SWEBOK
associate editor (Thomas Pigosky) for the maintenance chapter. In addition, this PhD candidate
has been nominated as the co-editor of the maintenance chapter for the SWEBOK Ironman
version.

The findings of this research are also used to supply the editorial team with comments through
the Canadian Standards Association for consideration in the next version of the ISO14764
International standard on software maintenance. A French book describing the whole model has
been submitted to an editor in July 2004 [4pr04b].

Some of the key findings of this research have been progressively made public during 2003 and
2004 at software engineering conferences.

Following are publications that are related to this research :

A.April, A.Abran, R.Dumke, "SM“™ to Evaluate and Improve the Quality of Software Maintenance
Process: Overview of the model," SPICE 2004 Conference on Process Assessment and Improvement,
Critical Software SA, The Spice User Group, Lisbon (Portugal), Apr. 27-99, 2004, pp. 19:32.

A.April, A.Abran, R.Dumke, (2004) "Assessment of Software Maintenance Capability: A model and its
Design Process", ITASTED 2004 Conference on Software Engineering, Innsbruck (Austria), Feb. 16-19.

A. April, A. Abran, R. Dumke, “What you need to know about Software Maintenance”, Maintenance
Journal, Feb. 2004 (http://www.Irgl.ugam.ca/team/showmem.jsp?author=april&cv_name=april.html)

A.April, A.Abran, R.Dumke, (2004) "Assessment of Software Maintenance Capability: A model and its
Architecture”, CSMR 2004, 8" European conference on Software Maintenance and Reengineering,
Tampere (Finland), Mar. 24-26.

A. April, A. Abran, R. Dumke, "Software Maintenance Capability Maturity Model (SM-CMM): Process
Performance Measurement", 13" International Workshop on Software Measurement — IWSM 2003,
Montréal (Canada), Springer-Verlag, Sept. 23-25, 2003, pp. 311-326.

52

Version 1.6

April A, Abran A, Bourque P. (2003) Analysis of the knowledge content and classification in the
SWEBOK chapter: Software maintenance. Technical Report 03-001 of the ETS Software Engineering
Laboratory, 12 pp- [On line]
http://www.lrgl.ugam.ca/team/showmem.jsp?author=april&cv_name=april.html (link tested on July 2nd
2004)

A.April, D.Al-Shurougi, (2002), "Software Maintenance Productivity", ICB/ASAY “The Role of Quality
Maintenance in Cost Minimisation Conference, Bahrain, May 27-28.

A. April, J. Bouman, A. Abran, D. Al-Shurougi, (2001) Software Maintenance in a Service Level
Agreement: European Software Measurement Conference, Heidelberg, Germany, May 8-11.

April, A., Al-Shurougi, D. (2000). Software Product Measurement for supplier Evaluation, FESMA-
AEMES Software Measurement Conference, Madrid (Spain), October 18-20, 2000,
http://www.lrgl.ugam.ca/publications/pdf/583.pdf (link tested May 11, 2004).

Apart from this preprint:

- A second journal article has been submitted to the Journal of Software Maintenance and
Evolution;

- A paper entitled Software Maintenance Productivity measurement: how to assess the readiness
of your organization was submitted to IWSM2004.

Finally since the publication of those papers many organizations (Brazil, France, USA, Germany

and Canada) and researchers (China and India) have enquired about the model and shown
interest in its detailed findings.

53

Version 1.6

9 SUMMARY

This article has presented a maintenance-specific capability maturity model: The Software
Maintenance Maturity Model — (SM™™).

It has presented a literature review of the software maintenance and software engineering
maturity models followed by an identification of the maintainer’s unique processes and
activities. It also described the approach taken to build the model, as well as the model purpose,
scope and foundation. Examples of the content of two key process areas are also presented. This
SM™ model is based on the architecture of the model developed by the SEI of the Carnegie
Mellon University of Pittsburgh to evaluate and improve the process of software development.

This article has investigated the following research questions:

1) The list of processes and activities as well as the unique processes and activities of software
maintenance;

2) Software maintenance refers to software development processes and activity but must adapt
them to its specificity;

3) That the unique processes of software maintenance are not well reflected in the current
international standards;

4) There is not currently a maintenance-specific capability maturity model that covers the entire
set of software maintenance specific processes and activities;

5) It proposed architecture of a maintenance-specific capability maturity model that could
address the entire set of software maintenance unique activities as well as presented examples of
detailed practices for two key process areas.

The motivation for this SM™ model was to contribute to addressing the quality issues of the
maintenance function and to suggest further directions for improvements. Empirical studies on
the use of the SM™" as a tool for continuous improvements in maintenance management could
contribute to developing a better understanding of the problems of the software maintenance
function.

Further field studies are required to experiment and validate this software maintenance
improvement model. This will ensure that the key practices suggested by maintenance experts
or described in the literature are positioned at the correct level of maturity within this
maintenance assessment model.

54

Version 1.6

REFERENCES?®

[Abr91] A.Abran, H. Nguyenkim, (1991) Analysis of Maintenance Work Categories Through Measurement.
Proceeding of the Conference on Software Maintenance IEEE, Sorrento, Italy, October 15-17, pp. 104-113.

[Abr93] A.Abran, H. Nguyenkim, (1993), "Measurement of the Maintenance Process from a Demand-based
Perspective", Journal of Software Maintenance: Research and Practice, 5 (2), 63-90.

[Abr93a] A.Abran, (1993) Maintenance Productivity & Quality Studies: Industry Feedback on Benchmarking.
Proceedings of the Software Maintenance Conference, [CSM93, Montréal September 27-30, Invited paper pp. 370.

[Abr95] A.Abran, M. Maya, (1995) "A Sizing Measure for Adaptive Maintenance Work Products", International
Conference on Software Maintenance - ICSM-95, Opio (France), IEEE Computer Society Press, Los Alamitos, CA.

[AbrO1] A.Abran and J.W. Moore Executive Editors; P. Bourque and R. Dupuis: Editors; L.L. Tripp Chair of IAB,
(2001) Guide to the Software Engineering Body of Knowledge - Trial Version, IEEE Computer Society Press, Dec.

[Abr04] A.Abran, J.W. Moore (Exec. Eds), P. Bourque, R. Dupuis (Eds), (2004) Guide to the Software Engineering
Body of Knowledge — 2004 Version, IEEE Computer Society, Los Alamos. [On line] www.swebok.org (link tested
on July 2" 2004)

[AprO1] A.April, J.Bouman, A.Abran, D. Al-Shurougi, (2001), "Software Maintenance in a Service Level
Agreement: Controlling the Customer Expectations", Fourth European Software Measurement Conference,
FESMA, Heidleberg, Germany, May.

[Apr02] A.April, D.Al-Shurougi, (2002), "Software Maintenance Productivity", ICB/ASAY “The Role of Quality
Maintenance in Cost Minimisation Conference, Bahrain, May 27-28.

[Apr02a] A.April (2002), Revue Critique de la littérature dans le cadre du doctorat en génie a I’ETS, Modéle de
référence pour 1’évaluation de la capacité d’entretien du logiciel, La maintenance du logiciel, 10 Novembre 2002,
2p.

[Apr02b] A.April (2002), Revue Critique de la littérature Partie 2, Les modéles de référence pour I’évolution des
processus du logiciel, Isa Town, Bahrain, 30 Décembre 2002, 94p.

[Apr03] April A, Abran A, Bourque P. (2003) Analysis of the knowledge content and classification in the
SWEBOK chapter: Software maintenance. Technical Report 03-001 of the ETS Software Engineering Laboratory,
12 pp. [On line] http:/www.Irgl.ugam.ca/team/showmem.jsp?author=april&cv_name=april.html (link tested on
July 2™ 2004)

[Apr03a] April, A. (2003) Problématique de Recherche : Modele d’¢valuation de la capacit¢ a Maintenir le
Logiciel, Ecole de Technologie Supérieure, DGA1010, 19 Janvier 2003, 48p.

[Apr04] A.April, A.Abran, R.Dumke, (2004) "Assessment of Software Maintenance Capability: A model and its
Design Process", IASTED 2004 Conference on Software Engineering, Innsbruck (Austria), Feb. 16-19.

[AprO4a] A.April, A.Abran, R.Dumke, (2004) "Assessment of Software Maintenance Capability: A model and its
Architecture", CSMR 2004, 8" European conference on Software Maintenance and Reengineering, Tampere
(Finland), Mar. 24-26.

[Apr04b] A.April, A.Abran (2004) Modéle d’Evaluation de la Capacité a Maintenir le Logiciel, L’amélioration de
la maintenance du logiciel — Théorie et Pratique, Premiére Edition, soumis a I’éditeur LozeDion, Juillet 2004.

[ApsO1] Australian Public Service Commission. (2001) The Human Resource Capability Model, [On line]
http://www.apsc.gov.au/publications01/hr360.htm (Link tested on July 2™ 2004)

[Art88] Arthur, L. (1988). Software Evolution: The Software Maintenance Challenge, John Wiley & Sons.

[Bajo8] Bajers, F. (1998), "How to introduce maturity in software change management", Technical Report R98-
5012, Department of Computer Science, Aalborg University, Denmark.

> Internet adresses are valid at time of publication.

55

Version 1.6

[Ban93] Banker RD, Datar SM, Kemerer CF, Zweig D. (1993) Software complexity and maintenance costs.
Communications of the ACM;, 36(11):81-94.

[Bar95] Barghouti, N., Rosenblum, D., et al. (1995). Two case studies in modeling real, corporate processes,
Software Process: Improvement and Practice, 1(1), 17-32.

[Bas96] V.Basili, L.Briand, S.Condon, Y.Kim, W.Melo, J.Valett, (1996) Understanding and Predicting the process
software maintenance releases. Proceedings of the International Conference on Software Engineering, I[EEE.

[Ben00] Bennett, K.H. (2000) Software Maintenance: A Tutorial. In Software Engineering, edited by Dorfman and
Thayer. IEEE Computer Society Press: Los Alamitos, CA; 289-303 pp.

[But95] Butler, K. (1995). The Economic Benefits of Software Process Improvement, Crosstalk, 8(7), July issue,
14-17.

[Boe87] Boehm, B.W. (1987). Industrial software metrics top 10 list, IEEE Software, 4(5), September issue, 84-85.
[Boo91] Bootstrap, (1991). Esprit project #5441, European Commission, Brussels, Belgium.

[Bou96a] P.Bourque, (1996) An Overview of Software Maintenance research at SEMRL-UQAM. International
Software Benchmarking: Engineering and Measurement Issues. Montreal: Université du Québec Montréal. [On
line] http://www.lrgl.ugam.ca/team/showmem.jsp?author=Bourque&cv_name=pierre.html (Link tested on July ond
2004)

[Btu90] Telstar, (1990) Software Development Methodology, Pocket Reference Guide, British
Telecommunications, UK, Release II.1, 61 pp.

[Bur96] Burnstein, 1., Suwannasart, T., Carlson, C. (1996), "Developing a Testing Maturity Model: Part I",
Crosstalk Journal, August, 21-24 [On line]. http://www.stsc.hill.af.mil/crosstalk/. (link tested on 11 November
2002).

[Bur96a] Burnstein, 1., Suwannasart, T., Carlson, C., (1996), Developing a Testing Maturity Model: Part II",
Crosstalk Journal, September, [On line]. http:/www.improveqs.nl/pdf/Crosstalk%20TMM%20part%202.pdf (link
tested on 11 October 2003).

[Cam94] Cameélia. (1994), "Mode¢le d’évolution des processus de développement, maintenance et d’exploitation de
produits informatiques”, Projet France-Quebec, Version 0.5, Montréal (Canada).

[Car92] Cardow, J. You Can’t Teach Software Maintenance! Proceedings of the Sixth Annual Meeting and
Conference of the Software Management Association 1992.

[Car94] D.Carey, (1994), "Executive round-table on business issues in outsourcing - Making the decision", CIO
Canada, June/July.

[Cfi02] Voice of the Customer Surveys, Claes Formell International, [On line] http://www.cfigroup.com/home.htm
(link tested on July 2™ 2004)

[Cob00] IT Governance Institute. (2000) CobiT, Governance, Control and Audit for Information and Related
Technology. ISACA, Rolling Meadows, Illinois: 81 pp.

[Col87] M.Colter, (1987) The business of Software Maintenance, Proceedings 1* workshop Software Maintenance,
Computer Sccience Department, University of Durham, South Road, Durham, DH1 3LE, UK,.

[Cra02] Crawford, J.K. (2002), "Project management Maturity Model, Providing a proven path to project
management excellence", Marcel Dekker/Center for business practices.

[Des99] Desautels, L.D. (1999). Financial Management Capability Model, Auditor general of Canada.

[Dek92] S.M. Dekleva. (1992), "Delphi Study of Software Maintenance Problems"”, ICSM - International
Conference on Software Maintenance, IEEE Computer Society Press, 10-17.

[Dor02] M. Dorfman and R. H. Thayer. (2002) Software Engineering, 2nd Edition. Volume 1 — The Development
Process. Edited by Richard H. Thayer and Merlin Dorfman, IEEE Computer Society Press, ISBN 076951555X.

56

Version 1.6

[Dor97] M. Dorfman and R. H. Thayer. (2002) Software Engineering, 2nd Edition. Volume 2 — The Supporting
Processes. Edited by Richard H. Thayer and Mark Christensen, IEEE Computer Society Press, ISBN 0769515576.

[Dov96] Dove, R., Hartman, S., Benson, S. (1996), "A Change Proficiency Maturity Model, An Agile Enterprise
Reference Model with a Case Study of Remmele Engineering", Agility Forum, AR96-04, December.

[Fos87] Foster, J.R., Munro, M. (1987) A Documentation Method Based on Cross-Referencing, Proceedings of the
IEEE Conference on Software Maintenance, IEEE Computer Society Press, Los Alamitos, California, pp 181-185.

[For92] Fornell, G.E. (1992) cover letter to report, “Process for Acquiring Software Architecture,” July 10,
http://www.stsc.hill.af. mil/resources/ tech_docs/gsam2/chap 2.DOC (link tested May 11th 2004).

[Fug96] Fuggetta, A. Wolf, A. Software Process, John Wiley & Sons, New York, 1996, 160 pp.
[Gil94]

[Gil99] Gillies, A., (1999). A model for measuring the maturity of information and IT in primary care in the UK,
University of Central Lancashire, CHERA conference.

[Gla92] Glass, R.L. (1992) Building Quality Software, Prentice Hall, Englewood Cliffs, New Jersey.
[Gla81] Glass, R.L., Noiseux, R. (1981) Software Maintenence Guidebook, prentice-Hall.

[Gra87] R. Grady, D. Caswell, (1987) Software Metrics:Establising a Company wide Program. EnglewoodCliffs,
NJ, Prentice-Hall.

[Han93] Hanna, M. (1993) Maintenance Burden Begging for a Remedy, Datamation, April, pp.53-63.

[Hal87] Hall, P.V.A. (1987) Software components and reuse: Getting more out of your code. Information Software
Technology, Vol. 29, No. 1, Feb, pp. 38-43.

[Hp90] Corporate Engineering, (1990) Software Quality and Productivity Guide — Best Practice in Software Development at
Hewlett-Packard.

[HumOO] Humphrey, W. (2000). Managing Technical People — Innovation, teamwork and the software Process,
Addison-Wesley.

[Tee90] IEEE Std 610.12-1990: IEEE Standard Glossary of Software Engineering Terminology.

[Tee98] IEEE Std 1219, (1998). Standard for Software Maintenance, IEEE Computer Society Press.

[1s095] ISO/IEC 12207, (1995). Information Technology — Software Life Cycle Processes, ISO and IEC, Geneva.
[TFP94] Guidelines to Software Measurement, version 1.0, International Funtion Point User Group, 1994.

[Isb04] International Benchmarking Software group (2003). Data Collection Questionnaire Application Software
Maintenance and Support, Version 1.0, [On Line] http:/www.isbsg.org.au/html/index2.html (link tested on June
25th 2004).

[ISO98] ISO/IEC 14764, (1998). Software Engineering-Software Maintenance, ISO and IEC, Geneva.

[ISO98a] ISO/IEC TR 15504-2, (1998). Information Technology — Software Process Assessment — Part 2 A
reference model for process and processes capability, ISO and IEC, Geneva.

[Is000] ISO 9001:2000, Quality Management Systems-Requirements: 1SO, Third edition December 15,
International Organization for Standardization, Geneva, Switzerland.

[Is004] ISO/IEC 90003:2004, Software and Systems Engineering-Guidelines for the Application of ISO9001:2000
to Computer Software: 1SO and IEC, 2004.

[1ti01a] Central Computer and telecommunications Agency. (2001) Service Support. In Information Technology
Infrastructure Library. HSMO Books: London, UK;

[1ti01b] Central Computer and telecommunications Agency. (2001) Service Delivery. In Information Technology
Infrastructure Library. HSMO Books: London, UK;

57

Version 1.6

[Jef00] R.Jeffries, A.Anderson, C.Hendrikson, (2000) Extreme Programming Installed, Addison Wesley,
December.

[Jon91] Jones, C. (1991) Applied Software Measurement. New York, NY:McGraw-Hill.

[Kajola] M. Kajko-Mattsson, (2001), "Corrective Maintenance Maturity Model", partial fulfillment of the
requirements for P.H.D, report 01-015, Stockholm University (Sweden).

[Kaj0lb] M. Kajko-Mattsson, S. Forssander, U. Olsson, (2001) "Corrective Maintenance Maturity Model:
Maintainer’s Education and Training", ICSE -International Conference on Software Engineering, IEEE Computer
Society Press: Los Alamitos, CA.

[KajO0lc] Kajko-Mattsson, M., Forssander, S., Westblom, U. (2001). Corrective-Maintenance Maturity Model
(Cm3): Maintainer's Education and Training ICSE, 610-619.

[Kajold] Kajko-Mattsson, M. (2001). Corrective Maintenance Maturity Model, partial fulfillment of the
requirements for P.H.D, report 01-015, Stockholm University.

[Kaj0le] Kajko-Mattsson, M., Forssander, S., Olsson, U., (2001) Corrective Maintenance Maturity Model:
Maintainer’s Education and Training, in Proceedings, International Conference on Software Engineering,
IEEE Computer Society Press: Los Alamitos, CA.

[Kaj01f] Kajko-Mattsson, M., Forssander, S., Andersson, G., Olsson, U., Developing CM*: Maintainers’ Education
and Training at ABB, Journal of Computer Science Education, Swets&Zeitlinger, Vol. 12, No 1-2, pp. 57-89, 2002.
(2001).

[Ker02] Kerzner, H. (2002) "Strategic Planning for Project Management Using a Project Management Maturity
Model", John Wiley & Sons.

[Kra94] Krause, M.H. (1994) "Software - A Maturity Model for Automated Software Testing", Medical Devices &
Diagnostic Industry Magazine, December issue.

[Leh80] L.L. Lehman, (1980) "Program Life-Cycles and Laws of Software Evolution", Proceedings of IEEE,
vol. 68, n° 9, septembre 1980, p. 1060-1076.

[Leh85] Lehman, M.M. Belady, L.A. (1985) Program Evolution — Processes of Software Change, Publisher:
London; Orlando: Academic Press Inc. Ltd. ISBN: 0124424406 0124424414.

[Leh97] Lehman, M.M. (1997) Laws of Software Evolution Revisited, EWSTP96, October, LNCS 1149, Spinger
Verlag, pp 108-124.

[Lie78] B.Lientz, E.B. Swanson and G.E. Tompkins, (1978) Characteristics of Applications Software Maintenance
Comm. ACM, Vol. 21.

[Lie80] Lientz, B. Swanson, E. (1980) Software Maintenance Management, Reading, Mass., Addison-Westley, 214
pp-

[Lud00] Ludescher, G., Usrey, M.W. (2000) "e-commerce Maturity Model", 1* international Research Conference
on Organizational Excellence in the Third Millennium, R.Edgeman editor, Estes Park, CO, August 2000, 168-173.

[Luf01] Luftman, J. (2001), "Assessing Business-IT Alignment Maturity", Communications of AIS, 4(2).

[Mag97] S.Magee, L. Tripp, (1997) Guide to Software Engineering Standards and Specifications, Artech House,
Boston-London.

[Mai02] Maintenance Technology, (2002) Using Benchmarking Data Effectively, [On Line] http:/www.mt-
online.com/current/03-01lmmO1.html (link tested on July 2n 2004).

58

Version 1.6

[Mal04] Malcolm Baldrige National Quality Program. (2004) Criteria for performance excellence, NIST, 70 pp.
http://www.quality.nist.gov/PDF_files/2004 Business Criteria.pdf (link tested on May 3rd 2004).

[Mar83] Martin, J. McClure, C. (1983) Software Maintenance: The Problem and its Solutions. Englewood Cliffs,
NI: Prentice-Hall, 472 pp.

[McC02] B.McCracken, (2002), "Taking Control of IT Performance", InfoServer LLC, Dallas, Texas, October.
[McG95] J.McGarry, (1995) Practical Software Measurement : A Guide to Objective Program Insight, DoD, Sept.
[Mo0098] J.Moore (1998) Software Engineering Standards: A User’s Road Map. IEEE CS Press.

[Mor96] S.Moriguchi, (1996) Software Excellence: A Total Quality Management Guide, Productivity Press.

[Mul02] Mullins, C. (2002) "The Capability Model — from a data perspective”, The Data Administration
Newsletter, [On line]. www.tdan.com/i003fe04.htm, (Link tested on July 2™ 2004).

[Nie02] F. Niessink, V. Clerk, H van Vliet, (2002) "The IT Service Capability maturity Model", release L2+3-0.3
draft, [On line]. http:/www.itservicecmm.org/doc/itscmm-123-0.3.pdf (Link tested on November 15" 2003).

[Osb90] W.M. Osborne, E.J.Chikofsky, (1990) Fitting Pieces to the Maintenance Puzzle, IEEE Software January,
pp- 10-11.

[Pf101] S.L. Pfleeger. (2001) Software Engineering—Theory and Practice. Prentice Hall, 2nd ed..

[Pia98] M. Piattini, F.Ruiz, M.Polo, J.Villalba, T. Batabchury, M.Martinez. (1998) Mantenimiento de software :
conceptos, metodos, herramientas y outsourcing. RAMA. Madrid, Spain.

[Pig97] Pigoski T.M. Practical software maintenance: Best practice for managing your software investment. John
Wiley & Sons: New York, NY, 1997; 384 pp.

[Pom02] Projxsoft, (2002) "Project Organization Maturity Model (POM2)", [On line].
http://www.projxsoft.com/default.asp?nc=2053&id=4 (Link tested on July 2" 2004).

[Poo01] Poole, C., Huisman, W (2001). Using Extreme Programming in a Maintenance Environment, IEEE Software
November/December, pp.42-50.

[Pre97] R.S. Pressman. Software Engineering: A practitioner’s Approach. Fourth Edition, McGraw-Hill, fourth
edition, 1997.

[Raf02] Raffoul, W. (2002), "The Outsourcing Maturity Model", Meta Group, [On line].
http://techupdate.zdnet.com/techupdate/stories/main/0%2C14179%2C2851971-2%2C00.html#levell (Link tested
on July 2™ 2004).

[Ray01] Rayner, P., Reiss, G. (2001), "The Programme Management Maturity Model", The Programme
Management Group, 15th February, [On line]. http://www.e-programme.com/pmmm.htm (Link tested on July 2™
2004).

[Sch01] Scheuing, A.Q., Fruhauf, K. (2000), "Maturity Model for IT Operations (MITO)", Swisscom AG, CH-3050
Bern. Switzerland, tel.: +41-31-342-8259, fax: +41-31-342-6086, email: Arnold.Scheuing@Swisscom.com

[SheO1] Sheard, S. (2001). The Frameworks Quagmire, Software Productivity Consortium [En ligne].
http://www.software.org/quagmire/ , (Kink tested on July 2n 2004)

59

Version 1.6

[Sch02] Schlichter, J. (2002), "An Introduction to the emerging PMI Organizational Project Management Maturity
Model", [On line]. http:/www.pmi.org/prod/groups/public/documents/info/pp_opm3.asp (Link tested on July 2™
2004).

[Sch00] Schmidt, M. (2000) Implementing the IEEE Software Engineering standards, Sams Publishing,
Indianapolis, Indiana, October. ISBN: 0-672-31857-1, 242 pp.

[Sch87] Schneidewind, N.F. (1987) The State of the Maintenance. IEEE Transactions on Software Engineering;
13(3): 303-310.

[Sch99] Schmietendorf, A., Scholz, A. (1999), "The Performance Engineering Maturity Model at a glance",
Metrics News, 4(2), Otto Von Guericke University of Magdeburg (Germany), ISSN 1431-8008, December issue,
Magdeburg (Germany).

[Sei91] Paulk, M.C., Curtis, B., et al. (1991). Capability Maturity Model for Software, SEI, CMU/SEI-91-TR-24,
August 1991.

[Sei93] CMM Product Development Team. (1993) Capability Maturity Model for Software (CMM), Version 1.1,
CMU/SEI-93-TR-24, ESC-TR-93-177. Software Engineering Institute, Carnegie Mellon University, Pittsburgh,
PA; 64 pp.

[Sei02] CMMI Product Development Team. (2002) Capability Maturity Model Integration for Software
Engineering (CMMi), Version 1.1, CMU/SEI-2002-TR-028, ESC-TR-2002-028. Software Engineering Institute,
Carnegie Mellon University, Pittsburgh, PA; 707 pp.

[Sco88] Scott, T. Farley, T. (1988) Slashing Software Maintenance Costs, Business Software Review, indianapolis,
March.

[Som97] Sommerville, I. Sawyer, P. (1997). "Requirements Engineering : A Good Practice Guide", John Wiley &
Sons.

[SriO1] Sribar, V., Vogel, D. (2001), "The Capability Maturity Model for Operations", Metagroup, [On line]
http://www.metagroup.de/metaview/mv0452/mv0452.html (Link tested on July 2n 2004).

[Sta94] G.E.Stark, L.C.Kern, and C.V.Vowell. (1994) A Software Metric Set for Programme Maintenance
Management. Journal of Systems and Software.

[Stp93] D.St-Pierre, (1993) Integration of Maintenance Metrics. in IEEE International Conference on Software
Maintenance - [CSM-93. Montréal, Québec: IEEE.

[Str00] Stratton, R.W. (2000), 2The Earned Value Management Maturity Model2, [On line]. http://www.mgmt-
technologies.com/evmtech.html (Link tested on July 2™ 2004).

[Swa89] Swanson, E.B., and Beath, C.M. (1989)., ""Maintaining Information Systems in Organizations", John Wiley &
Sons.

[Top98] Topaloglu, N.Y. (1998), "Assessment of Reuse Maturity", 5th International Conference on Software Reuse,
Victoria (Casnada) June 2-5.

[Tri92] Trillium, (1992), "Model for the Telecom Product Development & Support Process Capability”, Bell
Canada, version 2.2, Montréal (Canada).

[Van00] Van Bon, J. (2000) World Class IT Service Management, Van Bon (eds.) ten Hagen & Stam Publishers : The Hague.
[Vee02] Veenendaal, V., Swinkels, R. (2002), "Guideline for testing maturity: Part 1: The TMM model",

Professional Tester, Vol. three, Issue 1, [On line]. http:/www.improvegs.nl/tmmart.htm (Link tested on July ond
2004)

60

Version 1.6

[Vet99] Vetter, R. (1999), "The network maturity model for Internet Development”, IEEE Computer, 132(10), 117-
118.

[Wal94] D.S.Walton (1994), “Maintainability Metrics”, Centre for Software Reliability Conference, Dublin, City
University, London UK.

[Wit99] Wichita State University, (1999), "Enterprise Engineering Presentation, Capability Model of BPR", course
IE80I, Whichita.

[Zit95] Zitouni, M., Abran, A., Bourque, P. (1995) Elaboration d'un outil d'évaluation et d'amélioration du

processus de la maintenance des logiciels: une piste de recherche, Le génie logiciel et ses applications, huitiemes
journées internationales (GL95) , EC2 & Cie, Paris, La Défense , pp. 727-739.

61

9

[L11dD] SN$$2001d SOp UOTRIOIIWE, p
7'Ees [201DI % 101D1'ZS1Rd] snssao001d un Jjqesy
juowaddooagp
op 10foxd np a1peo 9] suep
(901
danS'€01dS T01D1'L9TVd] suorjeagdo sap
[L01dD] 19 doueUUIRW ©] 3p 9oddns
snssaooad 9p soAkojdwd sop uonewIo]
TTTES | np21ped 9] suep JUWI[NSS op sueqd 3o sosmbaz
‘TCTEes [201danS™901dD] SQOUESSIEUUOD ‘SAYDE)
‘11°¢s I'ev op SuONIULYP SI[J[qeIq
[¥01dS % €01dS ® 201dS
¥ 101d9nS°101DI'¥ST18d]
‘[co1orvs1Vvd] (soInsow
[ST JOIOT[QUIE }9 IOPI[BA
€0IN'TOTdS TOIDI #STVd] ‘zonbrdde ‘nstoyd “oyHUSp)
[101D1+S1Vd] AR 90URUUIRWI B[9P 9INSIUIL
+€¢S [TOINYSTVA] ‘z o198 G'9s op swwei301d un Iqelg
Q0uR)IBI}-SNOS
Op 2Iped 9] SULP JUSWS[NSS
[COIN€01
dans €01dS T01OI991ed] (vonnredun ‘syenuod snos
2INSow B “doueujurewt ‘1naddo[oap)
¢zTTes | opaipes of suep juswd[nas QOUBUJUIEW B] SNJOJO
v'Tees [901dD] TTLS uonesiuesio o[[onb aqery
uorjesIuesio |
Imod soueuojuIEw
7SEV [9p 10 Juowaddorongp
1'z€s ‘I'¢gs ‘I'scV TTLS np sanbrrouaF snssaooid s9] uonIue(J $59001
‘1'Ces [101dS° 101DI'CS1Ed] ‘1°6°6s ‘T¢V ‘9°9s Bydepy 10 MUY IOYHUSP] $s0001d | wonejuswdu]
[1019V] [869997] Ananoy 59001
| [s60sT] L 6121 | [860s1] ¥ oonoeld SouBUAUIRIN QouBUAUIBIN
OgdMs [1019S] ININD MS | 0TZTIOSI HHHI | 9L¥10OSI SOUBUIJUTEIA 9TBMYOS 9IeMYOS 9IeMYOS

SOIIIAI}OB PUE SISSIV01J SOUBUIIUIBIA JO UONBILISSE[O PUB AIOJUIAU] ISIL] 1Y Xouuy

Q'] UOISIOA

€9

[POTL 90.1MoN1s 9SA[eUE
SOTIAH T0IVAH €0TNA] | (#'1°S) ‘9ILIR[NPOW) S[RINIONIYDIE
1'7¢s [201dST01DI'991ed] g'gs T89S uondaouod e[9p ANATY
(uondoouod
[(vo1.L e[Jueae) moddo[oadp 9
SOTAAH TOTVAH €OTNA] | (#'T°S) Ted Sa1qE1R 9MIqRUdIUIRL,
1'7¢s [201dS201DI'991ed] g'gs 1'7'8°98 3p SuONELOYI09ds Sap anAdY
vor.L
SOTIAH 101 VAH €01N4]
[L01dq (sourusyureWw B 9p 2dnoig
NS 101d9anSZ01D1'991ed] 91 1ed onad1 10 maddoPadp 9]
€TTTES [To1 &1°9) 1'8°9s 1ed 0910 ued) sourudIUTBIA
‘17es dqnS'SO1dS 101DI'9%1ed] g'gs L'V L9s B[9p UB[d NP oNAY
Aniqeurejurewt
(01 $)1 9oUAN[UIL
dqnS'z01dS €01DI €918d] SOUBURJUIEWI B[JUSYONO} | B} SOIALOR
[20TIN'90Tdq mb sojjonmoenuod sasnelod s9| juowrdo[oAdp
NS 101dANS201O19918d] | (€71°6) TTUNUIBW 13 IISIAI ‘SIUIIIXI QIBMIJOS
['ces [€0TdS TOTDI'99T1Ed] G'¢s SINISSIUINOJ P SBd J[sue(MIIADY
[LOTL €OTVAH TZINAI dourUdJUIRW B] 9p Snssao0xd ssao0ad
[To1D1°SP1Rd] SOp TAINS J[JUdINSSE Jo jonuos
1°T¢s [¢11dD] €SECV €I'8S mb sonaax sop 1on3003q Ayuuioyuo))
yuswaddoraagp [10150] NP UOTBIIJIPOU B 9P
op 10foad of aod s10] er1507 np uonem3Fuo))
[101dS'T0TDI'TSTRd] [9P UOTISAD) B[AP SIIALOR
1'ces [TOIN'6STEd] £1°66s 1’V £€CT18S s anod anpgooad e amqerg
(d¥) sow[qoxd ap
syrodder/(JAR]) suonesoyIpowr
op sojgnbai op TAINS 9 30
JUSWONSISoIUD, | ‘sowR[qord
op syodder/sajonbar SoNIAT}OR
dduUBUdIUTRW op tondadal Q0URUR)UTEW
1'Z €S e[anod onby1oods op uory 71°SSs TTI8S e[anod apoooad ef mjqerq oY) JuoUWNO0(

snss9001d $o] JOJOT[QUIE 39
Ioljiue|d "9oUBUSIUIEW B[9P

Q'] UOISIOA

¥9

[€oT o[1ed dourUSIUTEW
danS'€0TdS T0ID1'9918d] | €€1°€'SS e[op odmbg, | op J10ddng
Su
_ohﬂOmuﬁO uoﬁmﬁuuﬁ_wa
op ap admbg, | © juowaddoroagp
9)X1U0d op admbg, 1 op sympoad
TYrTees [+01dST01D1'9918d] 6'98 SOp uonIsuRy) B[N0
S1°%)
G'Gs ooueudjuIew B 9p 9dnoid
[€01dS01D1'991¢ed] €rgss o[Jed [ord150] np uoneydoooy
YL
[101d9nS S TY LS QJUBUR)UTEW UD SIIINOSSAT
TS ‘P01dS 201DI19918d] SCEV ‘T'L8 9p $20ULTIXd SAp sA[euy
[S0TdansS » +01
dans z01dS €01D1091%d]
[vo1L (uoneIHOWINOOP 93390
SO1dAH 101 VAH €01AA] 19910/IOSTAQT QIIESSIIJU 1S)
[+01 &'1°9) doueuRjUIEW B[Jnod jueinp
1'7¢s dans'z01dS'201019918d] g'gs 01°9s UOTJRJUSWINIOP B[AP SNATY
(JuoneIUaWNOOpP “UOTIBULIOJ
‘SOUBSSTRUUOD SIP 1IJJSuRI)
‘NqIp p 21ep 19 UOTBIO] JUSWOTBUBIA
‘S90INOSSAT “JUAWIO)) (souruojUIEWL
o) "dsa1 30 o101 ‘M) uonisuey | 03 juowdoAdp
[€0IM2 ‘TOIMD axouuy 1°LS ‘6°9S JUBN[OUT O UBUDIUTE woxy)
€TTTES | T0IMYO1dS TOIDI9918d] SEV ‘L'98 ©[9p ue[d Np JUSWISSI[qe)q uonIsues],
[vo1L
SOTAAH TOTVAH' SOTINA] | (4'T°9) uonedyIenb
1'7¢s [€01dST01D1'991¢8d] G'gs ST'89s8 Op STESSO SOp ONATY
[vo1L
SOTAAH TOTVAH €0TINA] | (#'T°9) SaIrejIun sTessa 3o
1'7¢s [201dST01D1'9918d] G'gs ¥'7'8°98 uonewrwei3old e[op dnAsYy
[vo1L
SOTAAH TOTVAH' €OTINA] | (+'T°9) 3DITeRP
1'7¢s [201dS201D1'991¢8d] g'gs €T'8°98 uondaouo)) e[9p SNASY

(918nb9pPE HOIRIUSWUNOOP

Q'] UOISIOA

S9

SJUOWISURTD 9P SOPUBLIOP
SOp owwod sa3enbar
SO[9318} UO IS JUOWd[NAS
[co1
danS 101dS T0IDI'6S1Vd]
[€o1DI1

owgqoad
un,p uono9LINd B[Op
no juowagueyd np joedwr, p

0 [01DT'LSTed] € "AIN a4 19 SIOUITIXA SOP NBOATU Sdd Pue SYN
['ces [101D19¥1ed] T AN ['ce¢s TS 1'CC8S jney, apmy9 aun oMoy Jo sishjeuy
10loxd op uonsag op Apnis
sonbruyo9) op uonesInn, | Sungess, ayonbax o[jonb
99A® JUAWIAMAS [ZOIN'Z01 1'¥°LS Ins 1o[[reaen ea odnbg, | S[enpIAIpUI 0}
I'v'€es | dANS+01dSTOIDIE91ed] CLys ‘€TLs op d1quiowr [onb Mqeyy | Isonbar ugissy
olrey ¥
[+0 [reaen; 9] 1nod smboi 110339, | sysonbar jo
£Ees 1dS®T01dS’ 10101’ €918d] CLys V'TLS 9P QUINS UN oMoy | H0Y9 SjeunsH
S[IUSI
B[99A® 9i19nbax onbeyo sysonbar
AR op aanefa1 gyond el Jajqerg oSLIOLI
(analoa/aydoooe) oyruuni3g| 1sonbax
InS7 H[qels uge Jd/INY ot jo Aypijea
1'ces Tsss CLys 1'CT8s SO MMPOIAAYQYLIIA | 9 JoNFNSIAU]
vy
‘LTS IR (9AT)USAQIJ NO ATJORJIN] K1039180
‘TS ‘0TS ‘oandepy ‘0An00110))) oouBUIIUIEW
‘I'1°¢8 ‘6'¥S smbo souruLUIEW 9P & 0} 3urpioooe
9'1°€s ‘TIPS ‘€S [reaeny op 2dAy of Jed 1asse[) | isonbaix AJIsse|)
10loxd un anod
SJUOWISURYD 9P SOPUBLIOP
SOp owod sa3enbax (s9d) sy1odax
S9[931B1} UO IS JUSWII[NAS uountod odnoid ne ajgnbax wopqoid pue
[201D1651Vd] e[9y29dop 12 opre,p neaing | (SYIA) s1enbax
[np uonsas op [INO,| 99AL uonedIJIpow SUOTJBOIJIPOIN
TOIN'TOIdS T0IDT'6S1Vd] (Jueynuapt Un 5oAe) d)9nbar nol wa1qo1d
1'7TTES [201dS 101DI'6S1Vd] TIPs anbeyp juowenbrun JousIssy pue Ajnuap] Jo siskjeuy

INASSTUINOJ UN D9AE S)BI)UO0D
op 2IpED 9 SULP JUSWS[NAS

oouIuIRIYp porrad
oun 1nod maddojoadp

Q'] UOISIOA

99

‘€°€°Gs SOQ[[TeIP 1senbau
‘TEGS) sanbruyo9) suoneoyoads ®© JO SIsA[euy uonedyIpow
1°7°€s [co1D1°LSTRd] TES6S TTTYS U SO0UOTIXO SI[JOULIOJSURL], porresog | op uonejueduwy
(quorpo
(€01 9] JueN[OUI) UOTEOYIPOW
dqns €01dS TOIDI €91ed] op uonsodoid e
[T0IN'ZO1 ap uonguedw, | 1NOYJ,p
['ces danS'701dS €01DT'€91Rd] | §'TGSSS §TTsys JueAe uoneqoidde | mualqO
1oloxd ap uonisodoad
aun swwod uonisodord 'V uonrsodoad e[€ soro0sse
c1ees B[)11} UO IS JUSWII[NOS ‘CTY IS sonbs11 so1 J9SSAIpE 30
['cees [€01dS'T01DT'€91ed] CY s §'zrgs | osuond ‘rask[eue ‘lOynuAp|
10foxd un anod
SHUOWISURYD 9P SOPUBLIOP
SOp awod sa3enbal uonisodoad
S9[931B1} UO IS JUOWII[NAS e[op (owd) Suof 10
[zo1 QULIDY 31N0D) A01JQUIQq /SIN0D
danS'101dS T0IDT'6S1Vd] S3[NS 19 SUrEUMY SMoeY
01'v SO[INS ‘QILINOYS 30 930I0S
[sotm 2 ‘6'V B[INS ‘SOQUUOP 9P UOISIOAUOD
Vyes €0IM'TOTdS TOIOI'E9TRd] ‘1TTYs e[ans joedur | 1onfeag
10loxd un anod
SHUOWASURYD 9P SOpUBLIOP
SOp awod sa3enbal
SO[9318} UO IS JUOWId[NAS
(101
dansS°101dS 2010165 1Vd] suopnjos ap suondo
[901 So1 10 9sAJeue,] op JB)[NSI
['ces danS'H01dS T0ID1091Vd] | #'TSSS £CTC8s 3 ‘dd/INY 3] Jduawnsoq
10foxd un
suep seouadIXd SOp WO
sojonbal sof ayren uo [BOAIU JNEY, SUOHIN]OS
['ces 1S JuawdNas [TQ1D10918d] | €TSS ['ceys £CTC8s 9P SeAREUId)[E SIp ITqerq

1ofoxd
un anod $ooua3Ixd sap

Q'] UOISIOA

L9

TTTES | T0IAAH YOTVAHTOTAA] | (8'9°€°SS) 9qrevp | dn-mofjoj pue
1'7¢s [101dS'T0IDT Ly Ted] TESSs €S uo1)doouod e[ap uorpadsu] | [01u0d USISA(
[TT1Dd % 011405 Ted]
[(§'9°€°ss) STESSO P
COIN'TOIdS TOIDI0STed] | TE'S'SS TEYS n9[10 1591 op ueld un 1991
sagjorduur
[TOIN'ZOTOI091Ed] sojuesodwod $ap JUAI[D
grees [(F'9°¢°5s) 19 onbruyo9} uorEIUSWNIOP
1'77¢ | TOINPOIAS TOIDI091.d] | TES'SS TEYS ©[9p SUONRIYIPOW S3[JopIu]
sog1oedur (SAd/SIN)
(9°¢gs sojuesodwod SO IYNUIPI 10 3sonbor e
erees ‘S E'6S) YV uondoouod uo suonedyrads | Im pajeroosse
1'7TEs [201D1091ed] TESss ‘TEYS SO[JOULIOJSURIL], ugsog
sawnss 19 1593 9p suefd
TTTEs ROINK ‘S99[[1eI9p SUONEBIYIOdS
1'7¢ | $01AH E0TVAH ¥1TNA] €T $op anbruyda} anNAYY
(quorpo
91 1ed soganoidde uornnjos
B[9p 10 $90UdJIXd SIp dn-mofjoy
(€yes Q0UQIQJII 9P UONRINIFUOD pue [onuod
[201DI % ‘T01DI'6STed] s) IV aun,p uone1))) stsATeuy
17TTes [0TIN'6STEd] TESss ‘€TYs | uoneIngyuo) e[op UONSID pajreed
(ss¢s
s)
crees 7TE6¢Ss TTTYS STRSS?,p 21391e1S B I[qRIg
[201dS201D1€91Rd]
[TOIN'TOT (Ives
danS'z01dS 10101 €91ed] s) sajordur ILINOYS 30 9IOIYS
9°1°¢s [TOIN'LSTEd] TESSS | TTTHS ap $102dse s3] 10h109dg
sagjorduur
S¢S [€01dS €0TDI'LSTRd] 1'7¢8s SQ0BJIOIUL SI] JOYHUIP]
(" ‘soguuop
(§zsss op samonys ‘sourureidord
vyes TY€SS) ‘syuswnoop s[anb) IoyIpow
£y'¢s [201dS €01DTLSTRd] TESSS | TTTYS | 1TESS € sjuesodwod sof JoNuapy
(Fess (SYd/SIN)

Q'] UOISIOA

89

dans z01dsS z01o16STed] | (0T°E'S)
Trees [€01dS €01DT' Ly Ted] TESSS TS TTEsS UOISSQISYY 9P STessy
S[oUUOIOUOJ
[201dS €01DI0STed] STESSO SOp 2)INPUOd
[€01 % 101D1'0STed] (01°¢59) 19 S[UUONOUO,] SIBSSI, P
[€01dS €0TDI'LiTed] TESSS TSPS 7TE8S | uouuosaud, | op uonereddid
sy 1pow
s9JIUN SOp uoneIZNIUL, P
(01°¢59) SP'V SIBSSS SAp NNPUOD
(8°€69) ‘TSPS 19 UOTIRISIUL P SIBSSD P uoneI3auf
[€0TdS €0IDI Ly Ted] TESSS | TTYPS | TTE]S | IUQUUONIAUR, | op uonereddid 1npoig
[TOIN'TOT sLes sowweidoid<—
danS'€01dS T0TID1091Vd] s) o9[[1eop uondoouod
[¥0IN'091Vd] TESss €Yps 9)[IqBOR), B IOYLIDA
[+01
dans z01dS 20101r6STVdl | (101°€'S
Too113°091Vd] T601dD] s) vV uoneIn3yuoo
1777 [€01DI'€9Ted] TESSS CY S ©[9p UONSI3 B[YDA
[LT1L
COTIAH Y01 VAH TOTINA]
[COTdINV'T01danS (€Les UOLBIUdWINO0P/S1S) dn-morjoy
% S01danS?® €01 s) YTy S SO ANAdI IO puE [01U0d
TTTTES | dANST0IdS €0ID10918d] | TE'S'SS CYvS sowwes3oad sap uonoadsu] | uonejudwd[dw]
uoneuawnoop
pue
[+01 2IBMJOS o1
danS 101dS'€0101091ed] | (L€SS) vV saxejun ur 93 ueyd ot
1'7¢s [€01D1091Ed] TESSS | TTEPS stessy 2 uonewweIsold | uonejuswalduy
(8°9°¢°¢9) uondoouod<-> suoneoroads
(L'9°€°s9) SOp M[IqedRN, B[PYLIIA
TTTTES [+01dS T0IDI'9¥1ed] TESss €S 19 UONRIUSWINIOP B[JOYLIDA
(uoneoyrpowt ap 30[qo ©I0J
mb uonejuOWINOOP B 9p 30
[co1 IV 90IN0S 9POd NP UONBAIISIY)
1'777€s | dInS'101dS TOIDT6ST18d] ‘CEYs uonem3yuo)) e[op Uonsdn
[STIL

Q'] UOISIOA

69

dans'z01dS 101D1'6S1Vd] ‘TLYS UOISIOA QUUAIOUR, | IOATYIIY
juowoSueyYd
np IongIA Ud 991U, p 9P
1'Ces LS B[9p SINdjesI[in S9f IouLIoJu]
[So1
danS'101dS €01DT Ly TVd]
[601dD] LYV oreuy
1'cecees ‘TLYS UonRINSIFUOD B JOSIAYY KIOAT](
[co1T1a Ly TVd] (Treres
[TOIN90T S) 9GEVY uornjos e[9p uoneyuerdwr, p uornonpord
1'Ces danS’101dS 101DI'Lp18d] esSs ‘TTTYS ueld un 1addopas(q 0] 9A0IN
A4S
(sInajesinn
[c11dD I'€1°€°SS) sop Juejuas9idol np
1'C¢s 2 C11T1d°0S1Vd +T1dD] eess CTY'8S oreuyy uonjeqoxdde | 11ueiqO J30-usIs 18
[+01 % €01
danS'701dS €01DI65TRd] | (I'€ET°ES | 911V (uonem3yuoo e
[sor1d 6% 10d] S) CITV op uonsag) uoneidoooe saide
1'CTTEs [101D1'6518d] eess ‘C9pS ['Cy'8S | o[euy uonemsyuod e Jqelqg
N.v.m ‘¢S
1'Ces [ST1TA 6v1Vd] ['Eress) sowrR[qoid sa] 12311100
1'1°¢s [201dS 201D 6% 18d] TESSS €998 1'7y'8s 19 s1eI[Nsa1 831 1ar10ddey
A4S
“(
I'€ST°€°SS) SIndJesI[N) SIp Juejuasoidor
[2oIN6v1Rd] (aress) 9V np o[[ouuorpuo | aSueyd Jo 189, aSueyd oy
1'7¢s [101dS 201D 67 1kd] TESSs ‘TS 1'7y'8s | uoneydoeooy p siessg (NAV) oour)doooy | 1da00V/MIIAdY
[101D1'6¥1Vdl]
[901M 6¥1Vd]
[901
danS'101dS TO1DT Ly 18d] majesTIn
[201dS €0IDT 6% 18d] Wires uone)doooe p 9anoe aod dn-moroy
7TTEs [zo1D1°0ST1Rd] S) voneredoid onou 1onjeAd 19 pue [01u0d
1'C¢s [z111d°Ly1ed ‘011dD] eSS SPS OUIQ)SAS OP SIESSA SAP ONANY uoneI3au|

[vo1

0L

r'eces
‘11¢s 9'¢'gs eI’V 9'8s [210150] Un,p A1e1oy ey
BEE
12T anne oun e swojayed
1'7¢s §'gss ¢'8s | aun,p [a10130] un,p uoneISIN uoneISIN
UOI}B)USTNIOP
19 vonjeIn3yuod
B[9p UOI}SO3 Op 9INJOULIYY
1'cecees [€01D1'65TBd] ELYS op sade)g sof oMoy
10loxd un mod sjuowasueyd
op sopuBwISp SIP
Qwod sa39nbai sof 9j1en (o1gnbox gl
Uo 1S JUaWR[Nas [TOIN#01 op oInjouLId) ‘S1I0Y9) 91gnbax
dans ' 101dS 20101 6STVd] 91390 JUBULIOOUOD SOUBUSUIE
[€01dS TOIDI'6S1ed] op 2dnoi3 np saauuop
€ LPS op saseq e[anof e 9130
[
101M'T01dS €01DI'091%d]
[sanajesinn
TOTMPOTdS €0TOT Ly Ted] Xne (" uoneuLIOyUI
[zo1 ‘Uo1BIUAWNOOP)
danS¥01dS €011 LiTed] E£LYS [SLI2JEWL 3] JoINd01d
dn-morjo3
[to1 oTeuy pue jo1nuod
1777 | dInSH01dS €0IDT Ly Ted] ELYS UOTEINSJUOO B[JO)USWNI0(] AIoATIg
sjuowo3ueyd
S9[JUBUISOUOD suonsanb
TLYS Xne 91puodat NO IOWLIO]
(SINJESI[NN SI[ISULIOFUI
(901 TTIESs) 19 (ap9[reted uo 1219do)
1'ces dQNSH0T1dS €0IDTLyIVd] | TES'SS LY ‘UOISIAA J[[2ANOU B[R[[BISU]
(JuowaIANOdI
[TOIN"LOT L1V ap a1dod aun 129.0)

Q'] UOISIOA

IL

sonbneid (¢ ® 7 neaATu
81) sonbryexd
L9 LTETT 8) €0/¥1°¥VeS [ouuosod Supurea],
LOd ‘9 9NADOY €9 BITIT e 10/ OO np uoneuLIo 3o UoneOIENY UBUNUIBIA]
(uonmaedur
‘S1BIUOD SNOS “QIUBUIIUTBU
(9014108 Sap op adnoi3 o[‘maddoorgp)
uoneoyrueld e QOUBURIUIBW B] ONJOJYJO
LOd ‘vOd BIA 02.1pWT) 7°¢ §TT1 uonesiuesio d[fonb ajqerg
[910130] NP UOLEOIIPOW B[OP
SI0] [o10130] np uoneI3uo))
‘TTLY B[9P Uonsan) g op S9jIAL0E
6Sd (1 uonesnqo)g's | ‘I'TL9 s anod ainpgooad e amqerg
() sewR[qoxd
op syodder/(JAR]) suoneoyIpow
o op sajenbai op TAINS 97 10
woddooaop JUSWONSISAIUS, | ‘sowR[qoid op
op 10foxd np syrodder/sojonbar op U0T3d3991
oIped 9 suep e[anod aunpoooad ey mjqerq
IV (neaaru Jney) 7'9 6L €T Y : S9IAIOY SO Joyuawnoo
09T €VOIN UOTIBSIUESIO, |
(sonAnoe (¢ ® 7 neaATUu ‘(¢ 10 gneoAIu Imod soueuojuIEW
¥ ‘ouqqey sonbnyexd sonbneid g) [9p 10 Juouwraddoroagp uonIuydp
80d ¢ ‘uonesiqo YD IPTE 90/€1"EVOIN np sonbrigud3 snssad0id saf $8320.1g
YIV TV 1°5197) 19 BITIE e 10/€T"O0N 11depy 10 UG “1PYNUIP] SOUBUNUIBIA
(LPycTa (¢ ® Z neaATu (& gnesAmu snssoo01d sa7 JoIOIQWE
SINATIOR “I[IqeY sonbnyexd sonbneid (1) 19 IoYTUR[J ‘9OUBUSIUIBUI B[OP SN0 $S00.1J | JUIWISBUBIA
80d ¥ ‘suonediqo SO 1'SEeE 10/21 VO snssa001d sop uonelorWe,p | [euoneziuesIQ $8320.14
TN “TIN €Inq ¢) €9 ANANS ® 10/21° 00N snssao0ad un J1jqery UBUNUIBIA[UBUIUIBIA
[profex]
PPOIA STy suremwo(q
[z09N] Lrmep 9 $8920.1 A $8320.14
[0090D] WD [yewed] | duvuxurey [senzl saapaeid NVUEUUIE]Y | DUEURUILIN
11q0) ARG 1] BIQWIE)) -9AIIILIOD) unojrz UBUINUIBIA] J.1BAM)JOS ER LTI (N JIeMIJOS

SOIIIAIIOR PUB SISSO00IJ QOUBUIIUIRA] 9IBMIJOS JO UOIIBIIJISSE[O POoUBYUF ¢ Xouuy

Q'] UOISIOA

L

1 ‘suonesrqo eer ¢0/€0'YVOIN Jo dn-morjoy
90d TsIng g) €°¢ TV Ty € 10/€0°'00N pue jo.nuon
1'Cs8
[puo
waddoroadp
op 10load
np 21ped 9|
suep L¢'1'y (s
(sonanoe WY B NBIAIU 9p
01 “duqey TUTIY sanbneid ¢y) JUSWITEUCA
¢ ‘suonesrqo TITI¥9C £€0/20°svVdD Suruuelq 1sanbay
SOd TsINq €) TS Ty STyl € 10/20°09D OUBUNUIBIA] | OUBUNUIBIA]
1'ST°L unanud, p 39 Juouaddojoagp
oIV ‘11IV [23AD3E 679 BEICTIL 10/91°¢vdD SP JusuRUuoLIAUY
(€12 g neoATU
sonbneld (1)
¥0/0C" € VO
B 10/0COON
¥
(¢ ® 7 neaATU 19 € NBOAIU Op
sonbneld sonbreid 1) 99[0NUOD SIJTUBTU judwiordap
zIsda o1v [23ADdE ¢°9 8)TYTE 10/9TvVOW SUun,p S3]MPOHUL 10 SIIN[BAD JPy) pue
‘TIV €IV ‘S MAnoe ¢°9 BITTE € 80/91° EVEY | JUOS SII30[0UT09) SA[[PANOU SO suongeAsouuy
s
uo1)00s [suep (¢ JUSI[D 9 99AL
VIS ‘orepowt 10 7 NBIAIU VIS 9] 11[qe1Q 30 (soInsawr S|
np seare ssaooxd sonbryexd IOIOI[QUIE }0 JOSA[RUR ‘IOPI[BA
KoY[so[snoj suep)1 EST ‘ronbridde ‘ms1oyo ‘rogrIuspr) ddueuioyd
80d ‘1SA so[[enpIAIpul ANAR QOUBUSJUIRW B[9P 9INSOW ssad0ad
TN ‘TIN SOINSIIA ‘T¢ye op swweido1d un ajqeyy | [euonezmesi)
suonje1ddo sIp 30 9ouBUS)UTBL
LI'STT [op ‘p10oddns op sohojdwo
(9014108 Sap BICTT sop uoneur1of ap suerd 30
uoneoyrueld ef T€T1 Sasmbar saoueSSIBUUOD ‘Soyor)
LOd BIA 10211pUI) T°G YTl op suonIiuyap S9f Mqerq

(¢ ® Z neaATu

€L

-§59001d-V L Inoy Jqe’9 uyge LA/
q s9[axmpoidoy /Py A : o3enbax
TTI8 -1onpoId-V L aun,p NINISY e[JNINSIAU]
(9A13USAQIJ NO QANIJI]
‘aandepy ‘9A1)021100)) smbax
doueUdIUIRW IP [TeART) D 9dK)
9] Ied Josse[)) : 9ouUBUIIUIRW
7R 1-OVd B[9p So11039380 S9] UO[aS
€6 ANADNOB 69 6l'¢Ty ~SS3001d-V L a19nba1] 9p uoneOYISSL[)
Juounsod
odnoi3 ne ojgnbai e] ayogdop
10 Opre,p heaing hp uonsa3d
9P 1IN0, [99AE (JUeHIIUSPI
¥1®9-OVd Uun 99AE) 90IN0S BS ‘9)onbal
-$S90014-V I, onbeyo juowonbrun 1ougIssy
v T () sweqoad op 11odder 3o
‘1-90IN0SOY (JADY) uoneoyIpow ap sajenbax
CSONADDB 69 VL Sop 2Y29dop 10 uonEONUAP]
2
(sonanoe B 7 NBOAIU 9p
6 ‘11qey sanbyexd ¢1)
¢ ‘uonesrqo £€TT8 10/80'vvVdd JUIWIZRUETA
01sd 18109 €) 6'9 BEITI8 € 10/80°0dD un[qo.1d
(sonbneid (v
(sonanoe Y0 9eEy © 7 NBAATU o
71 ‘s919[Iqey BI'TEY sonbyeid ¢1) JINJSSIUINOJ JUIUWASBUBTA]
¢ ‘suonesiqo TETY £0/70"EVOIN np SI[qRIAI[Sap 9[QNUOS Jenuod
7sa TSIMq ¥) §'g AN ® [0/#0'0dD 19 Juiofuod [ieAen Jenuo) pue Jarddng
o
woddooaop
op 10foxd np
21ped 9] suep
&TTly
BITTTY ¥
eI T Y © 7 NBOATU 9P yIom
(s9nAnoe ANAE sonbneid ¢7) ddurudjUIBW

VL

(neaAru Jney san) | np aipeo 9| €-00IN0SY [onb 1qeiy : 901nossax
[219119eY 6°9 SUBp T 1Y VL C0/T0°EVOIN oun e 2)gnbar oun JUSISSY
() L's onAnde | (¢ & 7 neaAtu ce SA9[[1eIPP sanbruyod)
69 ‘(neaAmu sonbryexd [-1d-Ss9201g suoneoy109ds uo saoua3Ixo
ey s9n) IDISTy VL ‘8 ST Jowniojsue], (/N JUIWISBUBA] Surroursuy
T 9MAIOR G'Q ANAR A -1npoid-v.L 9jgnbar oun,p 99[[1e19p 9sATeuy Judwd.Imbayy uonnjoAy
SINBJOP SO I[[991 9}ISUIP
B[99A®. d91edwos 0 ooyyrueld
TN £€Y99 159 SINEJIP SIP 9JISUIP B
29udWNOop 21npgooid
Jun ¢ JUSWIPULIOJUOD JIAINS
10 99INSOW SO UOTIBOIJLIQA
r99 ©] 9P SIESS9 SIp 9310BIYJ9, "]
29udWNOop 21npgooid
Jun ¢ JUSWIYULIOJUOD JIAINS
10 99INSOW SO UOTIBOIJLIQA
I'¥99 ©] 9P SIESS9 SIp 9310BIYJ9, "]
I's
uo1)00s [suep
VIS d)Rpowt
np seare ssaooxd (¢ ® 7 neaATUu
KoY[so[snoj suep sonbyeid 91)
So[[NpIAIpUL TU/LTYVES JIUWATEUE A
SSINSIN 8I'CIY B T10/LT"TOON dAnenuEn)
TS’ JUSI[O IQIUILIO JLITUY U]
(¢
10 7 NBIAIU
op sonbnexd
9)T€T'8 sowRjqoxd
¥SAa ¥ 9MAIOR 69 LANA R xne 9suodor op owRIsAg
J[QIUAI[D B[99AE 939nbal
(o) S v e-Ovd anbeyo op aanea1 9yuionid ef
ySa PG S9NADDE 679 8I'CIY ~SS39001d-V L T[Qeyd : sa19nbal sIT JoSLIOLI]
9t [-ddd
-8590014
V1 TId (912[01/21d2008) UMISY

Q'] UOISIOA

SL

woddooaop
op 1oloxd
np o1ped
o[suep] L uonisodoid e|
ANNE 199 ‘9°6-AIN © SO100SS® SonbsLI s9] JossaIpe
60d O1TIY -SS9001d-V L 10 J10suon1d “IosATeue ‘IOYNUIPT
uonrsodoid e[op (sw1d) Suo|
7Ty (¢ 19 9ULI9) 1IN0J) AOQUI] /SIN0D
10 7 NBIAIU SO NS 30 surewny sINdJoe}
p senbneid SO INS ‘QILINDYS 30 9J2I0S
SO TYY9 L-AIN B[INS ‘SOQUUOP Op UOISIOAUOD
11Sd ‘ssd BEITY9 ~SS39001d-V L e[ans joedur, | Jonfeag
L°€S9
9°€¢9
‘6'€'69 suonnjos op suondo
‘1°€69 V'S-anN S9[10 9sATeuE,] op J&[NSYI
‘1769 -SS3001d-VL | 10°'10°CvVdD 3 ‘dA/NY 3] Jduawnsoq
(€
Wz neaAw | ¢¢ee-AN
op sonbnead -$$90014
) €Sy | -VL P-dN oxrey g [reaen o] nod sibax
9sd BITSY -§590014-V L 110139, 9P QWIS UN IO
e [-dIN ([BOAIU JNEY, SUOHN|OS
-§59001d-V L Op SoANBUIdI[E SOp JI[qel]
STI'L
(sonbneid
YDV EYY
AN A owR[qod un,p Uo1OLIND B
[yuo op no juowagueyd np joedwr, p
woaddofordp | ¢€e [-VOY 19 S90U03IXd SOp NBOATU Jney,
op 1oloxd $S9001d-V L, 9pMI9 QuN JONIOYH : SOOUIFIX
(neaATU JNEY SOM) | NP AIPRdd | ‘€ B [-[Dd Sop uoNsan — (/)
T 9MAIOE G°9 suep] S'7 1y | -S$9901d-V L ojonbar oun,p asAjeuy
Juo Apnis Suigess,
woddooaop 9jonbai ofjonb Ins oq[reARD
op 1oloxd eA odmbg, | op siquiow

Q'] UOISIOA

9L

S 19 S[QUUOI)OUO,] SIESS? P
110d €799 -)0npoid-v.L JUSUUOMAUR | 9p uoneredaiq UONBIYLII A
SaQyIpow
s9yIuN SOp uorneIZIUI, P
SIESSO SOp INPUOd
19 UOIIRISIUL P SIBSSD P
1'S-aN JUSUUOIIAUD, | op uonereddid uone.I3Nuy
110d -§59001d-V L : INpoid np uonei3ou| jonpoag
saarejrun)
sressq 29 uoneWweISoId
: UoO1EBIUAWINOOP
(neaATU Jney So1) €€¢9 I-TIN ©[10 [910130] 9 Suep
T 9MAIOR G'Q ‘€'TS9 -§59001d-V L juowddueyo un,p uonejueduy
€ 10 7 NBOATU sagjorduur
sonbryexd sajuesodwod sap JuAI[d
(neaatuneysan) | 1) L°€S9 I-IN 19 onbruyo9} uorEIUSWNIOP
COMADDE 679 BITS9 ~SS3001d-V L B[9p SUONEIYIpOU S IonTuf
sagjorduur
sojuesodwod SO IYNUIPI 19
uondoouod ud suoneoyrads s9f
(neaAru JneY SO1}) ‘TES9 T S-AN JowoJsuel] : (JH/INY) 93enbax uonnjos
COMADDE G°9 ‘TTS9 ~SS39001d-V L aun,p a9[[resep uondsouo) [Bd1UYI3 J,
1'€-aAN sojoedwut 9ILINOS 30
¢sa Yy -§59001d-V L 91210S 9p s30adse so] Jo1y109dg
I'¢-an sogjoedut
-§590014-V L SOOBJIOIUI SO] JOIIIUAP]
(" ‘saguuop
op saxmonys ‘sowrweidord
1'€-anN ‘syuowmnoop sjonb) rogrpow
118d -§590014-V L © sjuesodwod s9[Jo1nuap]
[ud
woddooaop (Juaryo 9 JuENyOUI)
op 1oloxd uoneoypow 9p uonisodord
np 21ped 9| S®'I-INA] op uonejuedul, | 1ONI03YJ0 P
suep] ['Z [y | -S$2001d-V.I | T0/10°TVON jueAe uonjeqoidde, | 1uaqO
[ud

Q'] UOISIOA

LL

(neaAru JneY SO1})

sowpqoxd
S9[19511109 39 S)B) NS

SIV 9 9MADE ¢°9 $€99 Y0/91" EVOIN so Jopioddey:N AV P 2A19NU0)
01/L0cvdd

‘90/L0'TVEY SINdYESINI() SOP

‘10/L0 TV yuejues9Idol np 9[[oUUONOUO,]

‘S0M9T"EVON uone)daddy p stessy

€N ‘SIV v'T99 2091°TvaD (N4V) : uonedaooe,p sressg uonepIEA

UOTJBIUIWINIOP,/SISA) SIP dNAJI

CTI-IN 10 sowwe13oad sop uonoadsuy

110d €€99 ~SS39001d-V L - uoneyuerdwr [op dj0nu0)
§'€'9'9 rud

woddooaop Indjesinn

op 1oloxd uonjeydadoe p 911AT}OR

np a1ped mod uoneredoid onou 1on[ea

o1 suep] 10 OWIQJSAS Op STBSSD SOp INATY

€N ‘110d €Ty ‘€091 EVOW - UoNeISNUL,] 3P 2[QNU0D

TTI-IN o9syewIoINe JS9

110d €99 -§590014-V L SIesso p Xnol sop uonno9xs,

110d $T99 UOISSOISYY P SIESSH

sower3ord<>

L 29[1eI9p uondaouod

110d yI'cL9 -RNpoId-V.L | LOMST EVOIN SN[IqeoRn, B[_DYLDA

99[1e19p uondaouod

9-aN [9p uondadsuy : [reIp

110d -§59001d-V L uondoouod e[9p 2]01U0)D)

vES9 SIessa_p

110d v7S9 nal 10 3593 op uerd un 19910
TT9°9 rud
woddooaop

op 1oloxd SQUIT)SO 19 1593 Op

np 9Iped 9[S S-aN sueld ‘sag[[re19p suoneoyroads

€N ‘T10d UBP]IE'T Ty | -SS9001d-V.L sop anbrutod) onady

110d 1’299 Y0/LO VA SIesso, p 139)eNs e M[qerq

S[OUUOT)OUO0J
STESS SOp 9JINPUOD

9’ UOISIO A

8L

(sonanoe
9 ‘sae[Iqey

‘SOOUBSSIRUUOD SIP }IQJSuR)
‘NqIp p 21ep 19 UOTBIO]
‘$90INn0SSa1 ‘puawiwo)) “dsax

19 S9[01 ‘) UONISUER) JUBN[OUL
dduBUdIUIRW B] AP UR[J NP
JUSWIASSI[QR)Y : QOURUIJUIRIA

[s1oA juswaddo[oadp

G ‘uonesIqo 20/L0° TV np anby1oads [a10130] JUIUWASBUBTA]
1‘1nq €) 9°9 ‘10/L0°09Yd un,p uonIsues} Op UOHSIL) uonIsuB.L],
(919nbax
B[OPp 2INJOULIYJ ‘S1I0JJ9) 919nbax
91399 JUBUIOOUOD 90UBUS)UTBWL
op adnoi3 np seguuop
9sd 9 9MADDE ¢°¢ YCTly op aseq] Inof & 21PN
€Te8 (v
© 7 NBOAIU
op sonbnead sImajesinn xne (** UOeULIOJUI
0 THt'8 ‘uonEIuAWNO0P)
8sSd ‘Lsd EITY8 90/91 ¢ VOIN [SLIDJBUL 9] J2INJ0.IJ
(€
10 7 NBIAIU
op sonbnead sjuowo3ueyd
¥)T€98 S9[JUBUIdOUOD suonsanb
8Sd ‘LSA 1798 xne 9I1puodol no IOULIO]
SIN9JESITIN S JOUWLIOJUI
(neaAru JneY SO1}) G'€¢S8 10 (9r9[reIRd WO 1019dO)
SRy AADROR G ‘8TS8 ¢0/91°tvdD ‘UOISIAA J[[2ANOU B[W[[BISU]
juowo3ueyYd
np IongIA Ud 991U, p 9P
8Sd LTSS B[9P SIndjesI{IN SI] JOULIOJU]
uonnjos
(neaAru JneY SO1}) 9 e[op uonejueduwir, p ued
€ 9JIATIOR G°9 LTSS -)onpoId-v.1L un 1oddo[oag(q : uonejueduy
SInojesIIn sap juejuosidos
SI'T1Y np oreuy uoneqoidde, |
SIV ‘LTS8 €0/L0°09d TueiqQ : Judlfo uoneqoiddy

Q'] UOISIOA

6L

[ud

woddooaop
op 1oloxd (uoneuHOWNOOP
np o1ped 91399 10910/I9SIAQI OIIBSS0QU
o[suep] 1S) 9ourudjUrew e[mnod jueinp
919 { 9UIAIIOR 9°Q 6TT1Y UOJBIUIWINIOP] 9P 9NADY
£€¢99 uonesyienb
919 y 2NADDE 9°9 ‘TT99 OP STBSSO SAp INATY
QouBUdIUIRW
] Judyono} b so[jonjoen U0
sosne[o s9[JIudjuIew
10 JOSIAQI ‘SOULIO)XO SINOSSIUINOJ
op seo 9] sue(q : anbyroads
[o10130] Un,p I[IqeUIUTEW,
€€99 [9ouanjur mb juswaddojordp
919 y 2NADDE 9°9 ‘TT99 P S9IIALIOB SOP INAIY
€€99 sarejrun sTessd
019 { 9JIAIIOR 9°9 ‘TT99 10 uonewwrer3oid el op oNAY
£€¢99 S9[TeIp
919 y 2UADDE 9°9 ‘TT99 uondaouo) e] op anAdY
(91BnbOpPE HOIRIUSWUNOOP
90In30nIs asA[eue
€€99 QJLIB[NPO) 9[BINJO}IYDIR
919 { 9UIAIOR 9°Q ‘TT99 uondoouod e[op anAdY

(¢ ® 7 neaATu
op sonbnead

(uondoouod
e[Jueae) naddooagp

IDI¥69 9] 1ed sorjqer9 [IqeUAUTE,
919 y 2UADDE 9°9 BEIT69 S0/L0'cvdd 9P SUONEOYI109ds SOp aNAYY
[ud
woddooaop
op 1oloxd (soueuojurew e op 2dnoi3
np a1ped o[1ed anaax 30 maddooagp
o[suep] o[1ed 9910 ueld) sourudUIBN
919 y 2HADDE 9°9 9CTIYy B[9p UE[d NP INAY

(Tou91RW NP 39 [910130]
NP UOTJBIUSWINOOP ‘UOTJBULIO]

Q'] UOISIOA

08

L S9p 9M[Iqeden, Bl OYLIDA
cT99 -RNpoId-VL | LOMST EVOIN }9 UonRIUIWINO0P B[IoGLIDA
(uonem3yuod
e[op uonsag) uonejdoooe soide
L 9VADDE G°¢ 6CLY d[euly UONRINSYUOO e[M[qeIT
uondoouod<-> suoneoyroads
ceL9 L S9p 9M[Iqeden, Bl OYLIDA
01 93AndE ¢°¢ YITLY -RNpoId-V.L | LOMST EVOIN }9 UOnBUIWINO0P B[IOGLIDA
uoneIN3Yuod
01 93AndE ¢°¢ creLy ¥0/90" € VO €] 9P UONSAT [OPLIDA
(uoneoyrpowt ap 10[qo
©19J b uonejULWNOOp B[9p
S 30 90IN0S 9POd NP UOIJBAIOSY])
P 2NADIE ¢°¢ eI'TL9 -PNpoid-v.L uoneIngyuoy e[op UONSIH
(quorpo
91 1ed soganoidde uornnjos
10 S90UASIX SOp JOULIYJI 9P
uonem3uod dun,p UonedI)))
: uonem3uo)) B Ip UONSIL)
910 p 2NADDE G°¢ 6CLY T0/90°TVOIN_| : 99[11e9p asATeue, | op 2[onuo)
(€
(s9nAnoE (¢ ® 1 neaAru B 7 NBOAIU Op
01 ‘s9911qey op sonbneid sonbyeid 91)
t ‘uonesqo TOISLY L0/90"EVEd JUIUIdTEUBIA]
[8I0q) §°S BI'TLY ® 10/90°00N uone.sYuo) yioddng
11/L0°7vad douILLIgIYP dpotiad sun mod
‘60 1maddopaagp 91 1ed sourujuTEWL
'80/L0°TVEY e[9p 2dmbg | op 10ddng
QouBUdIUTRW
ap admbg, | e juowaddoroagp
€0/L0TVEd op admbg, | ap sympoid
P 2MNADJE 9°9 ‘10/91°7vdAD SOp uonisuey e[oMoy
LO/LO TV ooueudjuIew] 9p 9dnois
¥ 9MAIOR 9°9 ‘20/L0'09d o[zed [oro1301 np uone)daddy
QOUBUDJUIBL UD SOIINOSSAT
€ 9J1ATIOR 9°9 Yy op S90UA3IX9 SOp 9sA[euy

Q'] UOISIOA

I8

yETS senbueid 171)
‘reee 20/61°'SVOIN
01°¢€e B 10/6 10D sisA[eue [esne)
(¢ ® Z neaAru
sonbryexd
YO 16T sarejye p
AN snsso001d sop aLRIUSUY
QouUBUUTRW B[9P
snssa001d Sap TAINS 9] JUSINSSE
YN [UOT}BOIILIQA T°9 STIS b SaNAQI sap 1M
[
© 7 NNBOATU 9P
sonbneid ¢1)
10/50°€VdS
€ 10/S0°0O0N
JUOWI[NAS (¢ ® 7 neaATu ‘(B 7 nBOAIU
ojuepuadopur sonbryexd sonbneid ¢1)
9npenb SOTSTS L0/81 vV Y enb
€N ‘T110d OUBINSSY L°G BITIS € T10/8TODIN 9OURINSSE)3 9YI[EN() AWRISAS
(¢ ® 7 neaATu
sonbryexd
61 ST 11 s[ouuonesue3Io JdueInssy
110d L ANANI snssooo1d sop 9)11en() Aynrend)
UOT)BJUSWINIOP 30 UOIRINSIFU0
6'TL9 B[9p UOI}SOT 9p 9INJOULIQJ
L YAdE G°¢ STLY ¥0/90° € VOIN op sadeyp sof JomdayH
[ud
woddooaop
op 1oloxd
np aIped
o[suep] o[euy uoneIN3Iuod
01 21AROE G°¢ 1€y B[JOSIAQY : UOSIBIAIT
(JuowaIANOIAI
6'TL9 9p a1doo aun 19910)
L 9NATOR G'G ‘STL9 UOISIOA QUUIIOUR, [JOATYOTY

uondoouod<-> suoneoyroads

9’ UOISIO A

4]

(¢ ® 7 neaATu
op sonbneid
6) 1'7'89
BI1T89

asnay

6CIL
‘/TTL
‘LTTL
YTTL
(¢ ® 7 neaATu
op sonbneid
LD S¥019
e1'T0I9

SuLduIuy
ISIAY
/3ULIUISUINY

(s
B 7 NBOATU P

Q'] UOTSIOA

