
The 2nd European Software Measurement Conference – FESMA’99 1

FFP Version 2,0:
An Implementation of COSMIC Functional Size Measurement Concepts

By: Alain Abran

COSMIC Co-manager1

Keynote presentation at the FESMA 99 Conference
Amsterdam, Oct. 7, 1999

Abstract

The Full Function Points functional size measurement method was first released in the fall of
1997. Since this initial presentation, significant improvements to the description of functional
size measurement concepts have been achieved by the COSMIC group. In its second release,
the Full Function Points method has been enhanced significantly in order to implement the
findings of the COSMIC group. Highlights of the improvements will be presented, including
the clarifications to the measurement process model as well as enhancements to the functional
size model and to the measurement procedures.

1. INTRODUCTION

Software functional size measurement is regarded as a key aspect in the production,
calibration and use of software engineering productivity models because of its independence
from technologies and implementation decisions. In 1997 Full Function Points (FFP) was
proposed as a method for measuring the functional size of real-time and embedded software.
Since its introduction, the FFP measurement method has been field tested, and used, in many
organizations providing further feedback on its applicability in software fields outside of its
initial scope.

The Full Function Points measurement method has not only been applied to real-time or
embedded software but also to a variety of technical and system software and to some MIS
software. Applying the method to such a wide range of software brought forward:

a) The need to improve the mechanism allowing well defined mappings to be established
between the standard artifacts produced while using a specific software engineering
methodology and the Base Functional Components (BFC’s) [ISO/IEC 14143-1] used to
measure the functional size of the corresponding software.

b) The need to refine the concept of “software boundary” in order to address functional users
requirements allocated not only to the pieces of software interacting with end users but
also to pieces of supporting software which are part of the operating environment; all
pieces being part of a given project.

c) The need to simplify the set of BFC’s used to measure the functional size of software.

1 (COSMIC team: Alain Abran, Charles Symons – co-manager, Carol Dekkers, Jean-Marc
Desharnais, Peter Fagg, Paul Goodman, Pam Morris, Serge Oligny, Jolijn Onvlee, Risto
Nevalainen, Grant Rule, Denis St Pierre)

The 2nd European Software Measurement Conference – FESMA’99 2

In parallel, ISO has issued a new standard (ISO/IEC 14143-1) on the definition and concepts
of functional size measurement methods, while a group of international experts, COSMIC
(COmmon Software Measurement International Consortium), has established the design
criteria for the next generation of software size measurement methods. In particular,
significant improvements to the description of functional size measurement concepts have
been achieved by the COSMIC group.

These ISO and COSMIC requirements were used as design specifications to produce Version
2,0 of the Full Function Points measurement method, which was pre-released in September
1999 for the purpose of technology transitioning to industrial partners and for fine-tuning in
industrial contexts.

This presentation describes some of the key improvements introduced in this first
implementation of the COSMIC principles through new features of FFP version 2,0
including: a generic software model adapted to the purpose of functional size measurement, a
two-phase approach to functional size measurement (mapping and measurement), and a
simplified set of base functional components (BFC). Through its generic software model,
version 2,0 of the COSMIC - FFP measurement method is applicable to a broad range of
software including embedded, MIS, middleware and system software.

2. COSMIC – FFP

FFP version 1,0 has been used in multiple types of software ranging from MIS to
telecommunications and to defense related software. This diversity of contexts, and
associated vocabulary specific to each software community, has imposed much rigor to ensure
that underlying measurement concepts be stated in an explicit manner independent of a
specific domain of application and to ensure that the transferability of the concept to be
measured would be grasped similarly across multiple communities of measurers.

Therefore, many of the improvements introduced in COSMIC – FFP Measurement manual
are marked by explicit measurement related concepts. Such an approach means that the
concepts and general principles of the software attribute to be measured, that is size of the
functional user requirements, are distinguished from the rules and procedures used to
implement them. The measurement method therefore gains in flexibility and usability by
allowing the practitioners to grasp quickly the aim of the rules within the context of a
specified instantiation of a measurement principle and, consequently, adapt them to the
measurement context of their organization. This has lead in particular to a major change in
the structure of the documentation of the measurement method, moving away from the first
generation of a ‘counting manual’, to the next generation of a ‘measurement standards
manual’, as could be expected in an engineering discipline, for example.

2.1 A measurement process model

In essence, the COSMIC - FFP measurement method consists in the application of
measurement principles through a set of rules and procedures to a given piece of software; the
result of the application of these rules and procedures is a numerical figure representing the
functional size of the software. The method is designed to be independent of the
implementation decisions embedded in the operational artifacts of the software to be
measured. To achieve this characteristic, the method is applied to a generic software model

The 2nd European Software Measurement Conference – FESMA’99 3

onto which actual artifacts of the software to be measured are mapped. Figure 2.1 depicts this
process.

Figure 2.1 – FFP Measurement process model

The FFP measurement rules and procedures are then applied to this instantiated FFP model in
order to produce a numerical figure representing the functional size of the software.

Therefore, two distinct and related phases are necessary to measure the functional size of
software: mapping the artifacts of the software to be measured onto an FFP software model
and then measuring the specific elements of this software model.

The mapping phase takes as input the artifacts of the software to be measured (as they are
found/documented within the organization) and produces as output an instance of an FFP
software model.

This model illustrates that, prior to applying the measurement rules and procedures, the
software to be measured must be mapped onto a specific FFP software model that captures the
concepts, definitions and relationships (functional structure) required for a functional size
measurement exercise.

2.2 A generic software model

A key aspect of software functional size measurement lies in the establishment of what is
considered to be part of the software and what is considered to be part of the operating
environment of the software. As a functional size measurement method, COSMIC - FFP aims
at measuring the size of software based on identifiable functional requirements. Depending
on how these requirements are allocated, the resulting software might be implemented in a
number of pieces. While all the pieces exchange data, they will not necessarily operate at the
same “level”. The COSMIC - FFP software context model, illustrated in Figure 2.2,
recognizes this general configuration by providing rules to identify different LAYERS of
software.

Figure 2.2 – COSMIC Software context model

Measurement
Phase

Rules and
Procedures

Instance of a
software model

FFP functional
size model(1)

Functional size
of the software

model

Mapping
Phase

Software to be
measured

FFP Measurement Manual

(1): FFP functional size model includes concepts, definitions and relationship structure
 of functional size attributes

Functional
requirements

Principal software item

Modification to the operating system

New device driver

Users1

Applications

O.S.

Device drivers

Hardware

LAYERS

A
ll
o

c
a
ti

o
n

(1): Human, engineered devices or other software.

The 2nd European Software Measurement Conference – FESMA’99 4

As illustrated in Figure 2.2, the functional requirements in this example are allocated to three
distinct pieces, each exchanging data with another through a hierarchical organization. One
piece of the software lies at the application level and exchanges data with the software’s users
and with a second piece lying at the operating system level. In turn, this second piece of the
software exchanges data with a third piece lying at the device driver level. This last piece
then exchanges data directly with the hardware. The Full Function Points context model
associates each level with a specific LAYER. Each layer possesses an intrinsic boundary for
which specific users are identified. The functional size of the software described through the
functional requirements is, therefore, the sum of the functional sizes of the pieces where those
requirements have been allocated.

Four important concepts relating to this model are defined.

Concept 1 – Layers
The software to be measured can be partitioned into one or more pieces so that each piece
operates at a different level of functional abstraction in the software’s operating environment
and there is a hierarchical relationship between each particular level of abstraction based on
the data exchanged between them. Each such level is designated as a distinct layer. Each
layer encapsulates functionality useful to the layer lying above itself in the hierarchical
relationship and uses the functionality provided by the layer lying under itself in this
relationship. A further example is provided in Annex A.

Concept 2 – Boundary
Within each identified layer, the piece of software to be measured can be clearly distinguished
from its surrounding peers by a boundary. Furthermore, an implicit boundary exists between
each identified layer. The software boundary is therefore a set of criteria, perceived through
the functional requirements of the software, which allows a clear distinction to be made
between the items that are part of the software (inside the boundary) and the items that are
part of the software operating environment (outside the boundary). By convention, all users
of a piece of software lie outside the boundary of this software. A example is provided in
Annex B.

Concept 3 – Software users
Within each identified layer, it is possible to identify one or more users benefiting from the
functionality provided by the piece of software lying inside the layer. By definition, users can
be human beings, engineered devices or other software. Also by definition, pieces of the
measured software lying inside the immediate neighboring layers are considered as users
(considered as “other software”). Refer to Annex B.

Concept 4 - Functional Requirements
Software purposes can be formally described through a finite set of requirements. The parts
of these requirements describing the nature of the functions to be provided are designated as
functional requirements and are used as the exclusive perspective from which the functional
size of the software is to be measured. The parts of the requirements describing how the
software functions are to be implemented are NOT considered for the purposes of measuring
the functional size of the software.

Figure 2.3 illustrates the software model proposed by the COSMIC - FFP measurement
method. This model describes the perspective from which the pieces of software identified
within each layer are perceived for the purpose of functional size measurement.

The 2nd European Software Measurement Conference – FESMA’99 5

According to this model, software functional requirements are implemented by a set of
functional processes. Each of these functional processes is an ordered set of sub-processes
performing either a data movement or a data transform.

Figure 2.3 – COSMIC Generic software model

The COSMIC - FFP generic software model distinguishes four types of data movement sub-
process: entry, exit, read and write. All data movement sub-processes move only one piece of
data. Entries move the piece from outside the software boundary to the inside; Exits move it
from inside the software boundary to the outside; reads and writes move it without crossing
the software boundary. These relationships are illustrated in Figure 2.4. Another
representation is presented in Annex C. It must be observed that the level of granularity of
the measurement of the data movements is at the data types rather than at the data instances,
which means that the data movements from multiple types of sensors would be taken into
consideration in the measurement model, and not the multiple sensors of the same types.

By using the concepts, definitions and structure of the COSMIC - FFP measurement method,
the artifacts of a piece of software are mapped onto the FFP software model, thereby
instantiating it. This instantiated model will contain all the elements required for measuring
its functional size, while hiding information not relevant to functional size measurement.

Figure 2.4 – COSMIC - FFP sub-process types

2.3 Base Functional Components and Standard Unit (Etalon)

The COSMIC - FFP measurement phase takes as input an instance of a software model and,
using a defined set of rules and procedures, produces a numerical figure the magnitude of

F u n c t i o n a l
r e q u i r e m e n t s

F u n c t i o n a l p r o c e s s

t y p e (1)

D a t a m o v e m e n t
t y p e

(2)
D a t a t r a n s f o r m

t y p e
(3)

S u b - p r o c e s s

o r

S o f t w a r e

(1) : A s e q u e n c e o f d a t a m o v e m e n t a n d t r a n s f o r m a t i o n s u b - p r o c e s s s t e p s , t r i g g e r e d b y a n

 e v e n t e x t e r n a l t o t h e s o f t w a r e i t e m , w h i c h i s c o m p l e t e w h e n t h e d a t a p r o c e s s e d i s
 c o n s i s t e n t w i t h r e s p e c t t o t h e e x t e r n a l t r i g g e r i n g e v e n t .

(2) : A s u b - p r o c e s s e n t e r i n g , e x i t i n g , r e a d i n g o r w r i t i n g a d a t a i t e m .

(3) : A s u b - p r o c e s s t r a n s f o r m i n g a d a t a i t e m t o c r e a t e a n o t h e r o n e .

USERS

Transform

Boundary

Entry Exit

WriteRead

: Data movement types sub-processes

The 2nd European Software Measurement Conference – FESMA’99 6

which is directly proportional to the functional size of the model, based on the following
principle:

The functional size of a piece of software is directly proportional to the number of its data-
moving sub-processes.

FFP Measurement principle

By convention, this numerical figure is then extended to represent the functional size of the
software itself.

Two elements characterize this set of rules and procedures: the BFC’s which are the
arguments of the measurement functions and the standard unit (etalon), which is the yardstick
defining one unit of size (one FFP).

Base Functional Components
COSMIC - FFP uses only four base functional components: entry, exit, read and write. Data
transform sub-processes are not used as a base functional component, it is assumed that the
functionality of this type of sub-process is represented among the other four type of sub-
processes.

Standard Unit (Étalon2)
The standard unit, that is, 1 Full Function Point, is defined by convention as one single data
movement at the sub-process level.

It is worth noting that there is no upper limit to the functional size of a piece of software and,
notably, there is no upper limit to the functional size of any of its measured functional
processes.

For the purpose of transitioning the method to industry environments, the number of data
attributes manipulated by each sub-process will be registered. This will allow further analysis
to be conducted concerning the size to be assigned: a) to each sub-processes, and b) to each
class of sub-processes. Such an analysis will consider the benefits and weaknesses of two
measurement approaches: direct measurement where each identified sub-process is assigned a
pre-determined and invariant size, and indirect measurement where each identified sub-
process is assigned a size based on some sort of weighting function(s).

2.4 Scalability

From the level of granularity offered by the sub-processes types, the COSMIC - FFP
measurement method offers a fully scalable result through the use of its aggregation function.

Thus, the functional size of any functional process is defined as the arithmetic sum of the size
of its constituent sub-processes. Results can also be aggregated by layers and, by extension, to
the whole of the inputted software model by simply adding the functional size of the
constituent elements.

2 In French, an Étalon is the reference of a standard unit of measurement, eg. the ‘étalon’ for the standard unit of
1 meter, the ‘étalon’ for the standard unit of time - 1 second.

The 2nd European Software Measurement Conference – FESMA’99 7

2.5 Simplification of the measurement model

The first version of FFP published in 1997 had kept the initial model of the IFPUG method
with its five (5) function types, to which the four function types described as ‘Entry’, ‘Exit’,
‘Read’ and ‘Write’ had been added to handle in a proper way the control functions types
typical of real-time and embedded software; this meant a total of 9 function types in version
1,0. Since then, industry feedback was almost unanimous: the function types added in
version 1,0 were of a much more generic nature than initially expected from their design,
which meant that they could also be used to take into account the functionality of the
management functions of most types of software. The need to simplify the set of BFC’s used
to measure the functional size of software. The COSMIC – FFP model has therefore been
significantly simplified in keeping in its measurement only the four function types (or data
movement types) as described previously, thereby eliminating the need for mastering of the
IFPUG rules, and the full independence of COSMIC - FFP in terms of evolution and
standardization.

3. CONCLUDING REMARKS

Functional size measurement of software emerged 20 years ago from the empirical results
gathered on a sample of MIS applications [Albrecht 1979]. As it gained wider acceptance by
practitioners in the 80’s, the methods then available have been regularly criticized, notably for
their inability to correctly measure the size of real-time software. Although many alternatives
have been proposed from the mid-’80 to the mid-’90 to address this problem, none of them
seemed to have gained sufficient recognition from the practitioners to be used on a regular
basis across a large number of organizations in many countries.

Full Function Points were initially proposed in 1997 as a public domain alternative to solve
this persistent difficulty. Since then, field tests and repeated usage in many organizations
have demonstrated that FFP offers meaningful results not only to measure the functional size
of real-time and embedded software but also to measure the functional size of a wide range of
technical and system software and, in some cases, of MIS software as well.

In its second version, Full Function Points has been enhanced significantly in order to
implement the findings of the COSMIC group. Highlights of the improvements were
presented, including the implementation of the most innovative contributions of COSMIC. In
addition, improvements have been made to the structure of the traditional ‘Counting Practices
Manual’ in order to transform it into a manual of Measurement standards, as could be
expected to be structured in an engineering discipline.

Technology transitioning is currently being set-up with various partners to ensure its full
transferability into a large variety of industrial contexts and its proper fine tuning.

The COSMIC - FFP measurement method does not presume to measure all aspects of
software size. Thus, other dimensions of software “size” are not captured by this
measurement method, such as technical requirements. A constructive debate on this matter
would first require commonly agreed upon definitions of the other elements within the
ambiguous concept of “size” as it applies to software. Such definitions are still, at this point,
the object of further research and much debate. It is part of the aims of the COSMIC group to
tackle these important issues and eventually come up with additional types of measurement

The 2nd European Software Measurement Conference – FESMA’99 8

methods to capture these other perspectives of software size (in addition to the functional user
requirements).

4. ACKNOWLEDGMENTS

The speaker is the director of Software Engineering Management Research Laboratory at the
Université du Québec à Montréal (Canada). The Laboratory is supported through a
partnership with Bell Canada. Additional funding for the Laboratory is provided by the
Natural Sciences and Engineering Research Council of Canada.

The author would also like to thank all the members of the COSMIC Group for their
thoughtful comments and suggestions in developing version 2,0 of the COSMIC - FFP
measurement method.

Up to date information on both COSMIC and COSMIC – FFP can be found on the following
web sites:

www.cosmicon.com
www.lrgl.uqam.ca

5 . REFERENCES

ABRAN, A., DESHARNAIS , J M, OLIGNY, S. ST-PIERRE, D., SYMONS, C., FULL FUNCTION POINTS

MEASUREMENT MANUAL VERSION 2,0, MONTRÉAL, PRE-RELEASE SEPT. 1999.

ABRAN, A., M. MAYA et al., Adapting Function Points to Real-Time Software, American Programmer, Vol.
10(11) pp. 32-43, 1997.

ISO/IEC 14143-1, Information Technology – Software Engineering – Functional Size Measurement –
Definition and Concepts, 1998.

ST-PIERRE, D., MAYA, M. ABRAN, A. & DESHARNAIS , J.-M., Full Function Points : Function Points
Extension for Real-time Software – Counting Practices Manual, Technical Report no. 1997-04,
September 1997.

SYMONS, C., COSMIC : OVERVIEW OF PRINCIPLES AND STATUS REPORT, KEYNOTE PRESENTATION, FESMA 99,
AMSTERDAM, OCT. 6, 1999

The 2nd European Software Measurement Conference – FESMA’99 9

ANNEX A

Software

I / O
Hardware

Storage
Hardware

Mouse

Keyboard

Screen

Alarm

Relay

Controller

Display

Valve

Camera

Printer

Engineered
Devices

Hard
disk

RAM
memory

ROM
memory

Driver

Driver

Driver

Driver

Driver

Driver

Driver

Driver

Driver

Driver

Operating
System

Graphical
User

Interface

DBMS

Network
access

Middleware

Operating
System

Driver

Application “A”

Application “B”

Layer Layer Layer Layer Layer Layer Layer

Application Back EndFront End

The 2nd European Software Measurement Conference – FESMA’99 10

ANNEX B

: Boundary

LAYER 1

LAYER 2

X1

X2

X3

X4

E1

E2

E3

E4

The 2nd European Software Measurement Conference – FESMA’99 11

USERS

Transform

Boundary

Entry Exit

WriteRead

: Data movement types
 sub-processes

Boundary

STORAGE

ANNEX C

